ScienceoftheTotalEnvironment643(2018)850–867 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Review The cumulative impacts of small reservoirs on hydrology: A review FlorenceHabetsa,*,JérômeMolénatb,*,NadiaCarluerc,OlivierDouezd,DelphineLeenhardte aCNRS/SorbonneUniversité,UMR7619Metis,Paris,France bUMRLISAH,UnivMontpellier,INRA,IRD,MontpellierSupAgro,Montpellier,France cIrstea,URRiverLy,centredeLyon-Villeurbanne,Villeurbanne69625,France dBRGM,Bordeaux,France eToulouseUniv,INRA,INPT,INPEIPURPAN,AGIR,CastanetTolosan,France H I G H L I G H T S G R A P H I C A L A B S T R A C T • The number of small dams is still increasing and is approaching 39damspersquarekilometre. • Small dams lead to a decrease in annualstreamdischargeof13%±8%. • Cumulative impacts cannot be esti- matedusingsimpleindicators. • Cumulative impacts are difficult to estimateandaremostoftenquanti- fiedfrommodelling. • The lack of information on small reservoir characteristics is a real shortcoming for properly estimating theircumulativeimpacts. A R T I C L E I N F O A B S T R A C T Articlehistory: Thenumberofsmallreservoirshasincreasedduetotheirreducedcost,theavailabilityofmanyfavourable Received1February2018 locations,andtheireasyaccessduetoproximity.Thecumulativeimpactsofsuchsmallreservoirsarenot Receivedinrevisedform12June2018 easytoestimate,evenwhensolelyconsideringhydrology,whichispartiallyduetothedifficultyincollecting Accepted15June2018 dataonthefunctioningofsuchreservoirs.However,thereisevidenceindicatingthatthecumulativeimpacts Availableonline4July2018 ofsuchreservoirsaresignificant. Theaimofthisarticleistopresentareviewofthestudiesthataddressthecumulativeimpactsofsmall Editor:AshanthaGoonetilleke reservoirsonhydrology,focusingonthemethodologyandonthewayinwhichtheseimpactsareassessed. Mostofthestudiesaddressingthehydrologicalcumulativeimpactsfocusedontheannualstreamdischarge, Keywords: withdecreasesrangingfrom0.2%to36%withameanvalueof13.4%±8%overapproximately30references. Smallreservoirs However,itisshownthatsimilardensitiesofsmallreservoirscanleadtodifferentimpactsonstreamdis- Cumulativeimpacts Hydrology chargeindifferentregions.Thisresultisprobablyduetothehydro-climaticconditionsandmakesdefining Waterresourcemanagement simpleindicatorstoprovideafirstguessofthecumulativeimpactsdifficult.Theimpactsalsovaryintime, Anthropization withamoreintensereductionintheriverdischargeduringthedryyearsthanduringthewetyears.This Review findingiscertainlyanimportantpointtotakeintoconsiderationinthecontextofclimatechange. Twomethodsaremostlyusedtoestimatecumulativeimpacts:i)exclusivelydata-basedmethodsandii) models.Theassumptions,interestsandshortcomingsofthesemethodsarepresented.Scientifictracksare proposedtoaddressthefourmainshortcomings,namelytheestimationoftheassociateduncertainties, thelackofknowledgeonreservoircharacteristicsandwaterabstractionandtheaccuracyoftheimpact indicators. ©2018ElsevierB.V.Allrightsreserved. *Correspondingauthors. E-mail addresses:fl[email protected](F.Habets),[email protected](J.Molénat). https://doi.org/10.1016/j.scitotenv.2018.06.188 0048-9697/©2018ElsevierB.V.Allrightsreserved. H.Florenceetal. /ScienceoftheTotalEnvironment643(2018)850–867 851 Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851 2. Evidenceoftheimpactsofsmallreservoirsonhydrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852 3. Howdosmallreservoirsimpacthydrology? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 3.1. Waterbalanceofasmallreservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 3.2. Lossesfromsmallreservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 3.2.1. Seepage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 3.2.2. Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855 3.3. Connectiontothestream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855 4. Methodstoestimatethecumulativeimpactsofsmallreservoirsonhydrology . . . . . . . . . . . . . . . . . . . . . . . . . . 855 4.1. Exclusivelydata-basedmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855 4.1.1. Fromobservationofselectedreservoirstoestimationofcumulativeimpacts . . . . . . . . . . . . . . . . . . . . 855 4.1.2. Statisticalanalysesoftheobserveddischarge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855 4.1.3. Paired-catchmentexperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856 4.2. Modellingapproaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857 4.2.1. Reservoirwaterbalancemodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857 4.2.2. Reservoirinflowquantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857 4.2.3. Reservoirspatialrepresentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857 4.2.4. Aggregaterepresentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857 4.2.5. Statisticalrepresentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858 4.2.6. Distributedrepresentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858 5. Howtoobtainaccesstotheinformationneededonsmallreservoirs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859 5.1. Whattypeofdata? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859 5.2. Physicalandtopographicalcharacteristicsofsmallreservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 5.3. Waterreservoirmanagementcharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861 6.1. Theuncertaintyissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861 6.2. Improvingknowledgeofsmallreservoircharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861 6.3. Improvingabstractionestimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862 6.4. Impactindicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862 7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863 AppendixA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864 1. Introduction (Berg et al., 2016; Mbaka and Wanjiru Mwaniki, 2015; Downing, Large reservoirs have strong impacts on hydrology at regional 2010;PoffandZimmerman,2010;St.Louisetal.,2000),ashavethe toglobalscales.Indeed,itwasestimatedthatsuchlargereservoirs impacts of such reservoirs on hydrology (Nathan and Lowe, 2012; have led to a approximately 2% (Biemans et al., 2011), to a sea Fowleretal.,2015).Thereportedimpactsaregenerallystrongbut leveldecreaseofapproximately30mm(Chaoetal.,2008),andthat presentalargevariation. theystoreavolumeequivalenttoapproximately10%ofthenatural Estimatingthecumulativeimpactsofsystemsofsmallreservoirs annual soil storage capacity at the global scale (Zhou et al., 2016). onagivenbasinhasbecomeanissueastheirnumberincreases(for However,thesestudiesdidnotconsidertheimpactsofsmallerreser- instance, a 3% increase per year in the US; Berg et al., 2016). This voirs on hydrology. Downing (2010) found that small ponds and trendmaypersistbecausethesesystemsareoftenconsideredtobea lakes(smallerthan0.1km2)coveralargerareaandaremorenumer- techniquetoadapttoclimatechange(vanderZaagandGupta,2008). ous than large reservoirs and that approximately 10% of them are Indeed,smallreservoirsaremainlyusedtostorewaterduringthe constructedreservoirs. wetseasontosupportwateruseduringthedryseason,particularly When considered individually, each reservoir may modify its forirrigationandlivestockinruralareas(Wisseretal.,2010;Nathan local and remote environment. The cumulative impacts of many andLowe,2012);tostorewaterduringstormstopreventflooding; reservoirs in a catchment are the modifications induced by a set ortostoresedimentsincheckdamstoreduceerosionandmuddy ofreservoirs(orreservoirnetwork)takenasawhole.Thecumula- floodrisks.Becausethepartoftheglobalpopulationthatwillexperi- tiveimpactsarenotnecessarilythesumofindividualmodifications encewaterscarcityisprojectedtoincreasewithclimatechangeand becausereservoirsmaybeinter-dependent,suchascascadingreser- becausetheintensityofstormeventsisalsoprojectedtosimultane- voirsalongastreamcourse.Cumulativeimpactsarenotthesimple ouslyincrease(Pachaurietal.,2014),thereisincreasingpressureto additionofindividualimpacts:theycandevelopviaanadditiveor constructsmallreservoirs(vanderZaagandGupta,2008;Thomaset incremental process, a supra-additive process (where the cumula- al.,2011). tive effect is greater than the sum of the individual effects) or an However,anuncontrolleddevelopmentofsuchsmallreservoirs infra-additiveprocess(wherethecumulativeeffectislessthanthe mayincreasethewaterresourceprobleminbothquantitativeand sum of the individual effects). The total impact is therefore equal qualitativeways.Thus,watermanagersareseekingsomeindicators to the sum of the impacts of the developments and to interaction that would help to determine optimal networks of small reser- effects. Indeed, addressing the cumulative impacts implies cover- voirs in terms of storage capacities and in terms of locations and ingdifferentspatialandtemporalscales(CanterandKamath,1995) management. Consequently, in France, the Ministry of the Envi- and having a reference state (McCold and Saulsbury, 1996). The ronment requested a joint scientific assessment to collect useful cumulativeimpactsofsmallreservoirsonsedimenttransport,bio- information/knowledgeandtoolstoprovidelocalstakeholderswith chemistry,ecologyandgreenhousegasemissionshavebeenstudied such indicators and methods to assess the cumulative impacts of 852 H.Florenceetal. /ScienceoftheTotalEnvironment643(2018)850–867 smallreservoirs.Thisrequestledtoareviewcoveringbiochemistry, TherightpartofFig.1showsthattheimpactsonannualflows ecology, hydrology and hydromorphology (Carluer et al., 2016). In arenotconstantfromyeartoyearbuttendtobelowerduringthe this paper, a full review of the cumulative impacts of small reser- wet years and two times greater than the median impact in the voirsonhydrologyispresentedbecausethehydrologicalimpactwill driestyears.Thisresultisveryimportantbecauseitindicatesthat affecttheotherimpacts.Althoughthereisnoaccepteddefinitionof evenwithoutchangingthesmallreservoirnetwork,itsimpactswill small reservoirs, it is commonly accepted that the storage capaci- changeinthecontextofclimatechange:itmaydecreaseinareasthat tiesofsuchreservoirsarebelow1millionm3,asstatedbyAyalewet willbecomewetterbutmayincreaseinareasthatwillbecomedrier. al.(2017)andThomasetal.(2011).Thisreviewdoesnotextendto One key issue in estimating the cumulative impacts is under- theverysmallreservoirsoffewhundredsofm3thatcanbeusedfor standinghowsuchimpactsarerelatedtothereservoirnetwork,i.e., waterharvesting(LasageandVerburg,2015). thelevelatwhichthebasinisequippedwithsmalldamstoavoid First,asynthesisofthequantificationoftheimpactsatthebasin over-equippingthebasin,withconsequencesintermsofeconomy scale is presented, and the ability of some conventional descrip- and ecology. Having a single indicator or a set of indicators capa- tors to be used as indicators is studied. Then, the various ways in bleofestimatingthecumulativeimpactsofsmallreservoirsonthe which small reservoirs can impact the water cycle are presented, meanannualdischargewouldbehelpfultomostwatermanagement alongwiththemethodsthatareusedintheliteraturetoestimate agencies.Basedontheestimatedvaluescollectedintheliterature, the cumulative impacts of such numerous and not always well- apreliminaryanalysiswasperformedtodeterminewhethersome knownstructures.Theseresultsarethendiscussed,addressingthe easy-to-accesspropertiesofthereservoirnetworkcouldbeusedas uncertainties,long-termtrends,andimpactsonotherbiochemical, indicators.Forthispurpose,wecollectedthemaincharacteristicsof ecologicalandsocialcomponents. the basins and of their small reservoir network from the available studiesandattemptedtoconnectthemtotheimpactsonthemean 2. Evidenceoftheimpactsofsmallreservoirsonhydrology annualdischarge.Weusedthereservoir’sdensity,expressedasthe numberofreservoirspersquarekilometreorasthevolumestored Fromtheliteraturereview,thecumulativeimpactsofsmallreser- persquarekilometre,andthemeanprecipitationorthemeandis- voirs on hydrology are most often estimated from the annual dis- chargeinthebasin.TheresultspresentedinFig.2showthatnoneof charge,lowflowsandfloods.Thereisageneralconsensusthatsetsof thesecharacteristicsareabletobeusedasindicatorsforsuchcon- smallreservoirsleadtoareductioninthefloodpeaks(Frickel,1972; trastedbasinsastheonesfoundintheliterature.Indeed,withina Galeaetal.,2005;NathanandLowe,2012;Thompson,2012;Ayalew narrowrangeofspecificdischargeorprecipitation,thedecreaseof etal.,2017)ofupto45%,particularlysincesomereservoirsarecon- the annual discharge varies a lot and can not be correlated to the structedasstormwaterretentionponds(Fennesseyetal.,2001;Del densityofreservoirnetwork. Giudiceetal.,2014).However,over-toppingfloodingordamfailure Amoreregional-scaleviewcouldbeusefultoattempttodisen- can result in large floods (Ayalew et al., 2017), which may lead to tangledifferenttypesofclimateoruse.However,accordingtothe casualtiesincludingdeath(Tingey-Holyoak,2014).Suchfailurescan sample of available studies, only a continental-scale analysis was bemorefrequentforsmalldamsthanforlargerdamsduetothelack possible.Itappearsfromthesefiguresthatthegeneralcharacteris- of adapted policies, which may lead to a lack of maintenance and ticspresentawiderspreadbetweencontinentsthanwithinagiven a tendency to store excess water to secure production (Pisaniello, continent,eveniftheresultsarefromdifferentstudies.Forinstance, 2010;CamnasioandBecciu,2011;Tingey-Holyoak,2014). thespecificdischargeislowinAustralia,thedensityislowinAfrica, Thelowflowsarealsofrequentlyreportedtodecreasewhenaset andthestoragevolumetendstobeimportantinAmerica.However, ofsmallreservoirsispresentinabasin(Nealetal.,2000;O’Connor, even within a continent, these characteristics are not sufficiently 2001;HughesandMantel,2010;NathanandLowe,2012;Thompson, welllinkedtotheimpactstobereliablyusedasindicators. 2012) with a large spread (0.3 to 60%), although the water stored This result occurs because the cumulative impacts of reservoir canoccasionallybeusedtosustainalowflow(Thomasetal.,2011). networks rely on a large number of factors: the hydrological pro- Themajorityofstudieshavefocusedontheannualstreamdischarge, cesses occurring in each reservoir, the water management (water reportingadecreaseinthemeanannualdischargethatrangesfrom abstractionrateandtiming,wateruptakesfromandreleasestothe 0.2%(HughesandMantel,2010)to36%(Meigh,1995).Onaverage, river), the reservoir characteristics, the reservoir network geome- in approximately 30 references, the decrease in the mean annual try, and the connectivity of each reservoir to the stream drainage dischargereaches13.4%±8%(Fig.1andAppendixTableA.1). network.Thesepointsaredetailedbelow. Fig.1. Left:Distributionoftheestimatedannualstreamdischargedecreaseattributedtoreservoirnetworks.Thedistributionisestablishedbasedon20values.Right:Impact ontheannualdischargeestimatedduringwet,mediananddryyears.Eachbarcorrespondstoadifferentcatchment.Theestimationsarefromthefollowingreferences:a: Gutteridge-Haskins-Davey(1987),b:OckendenandKotwicki(1982),c:DubreuilandGirard(1973),d:Cresswell(1991),e:Teoh(2003),f: Habetsetal.(2014),andg:Kennon (1966). H.Florenceetal. /ScienceoftheTotalEnvironment643(2018)850–867 853 Fig.2. Cumulativeimpactsofthesmallreservoirsonthemeanannualdischarge(colourscaleontheright),estimatedfromstudiesreportedinAppendixTableA.1,asafunction ofpossibleindicators:reservoirdensityexpressedasthenumberofdamspersquarekilometreandasstoragecapacityincubicmeterpersquarekilometre,annualprecipitation expressedinmm/m2/year,orspecificdischargeexpressedinmm/m2/year.Eachpointrepresentsacatchment,andthesymbolcorrespondstodifferentregions:Africa,America, Asia,andAustralia. 3. Howdosmallreservoirsimpacthydrology? agroundwaterinflow,althoughnonewasreportedintheliterature review. Smallreservoirshaveanimpactonhydrologybecausetheyaffect Outfluxincludesoutflow(downstreamflow)andwaterabstrac- the natural water cycle that would occur without reservoirs. To tion,aswellasevaporationandseepagelossesfromthereservoir. understand how networks of small reservoirs impact river flow at Outflowisdefinedasthedownstreamflowduetoreservoirrelease. thebasinscale,itisnecessarytounderstandthefunctioningofasin- Abstractioncorrespondstothewateruptake,oftenbypumping,for glereservoir,howitcanhaveanimpactontheriverflowandwhy humanuse(irrigation,livestockwatering,andsoforth).Seepageflow theimpactvariesintimeandfromonereservoirtoanother. mayoccuraswaterinfiltrationthroughthereservoirbedorthrough orbelowthedam. All these fluxes can vary considerably from one reservoir to 3.1. Waterbalanceofasmallreservoir another.Forinstance,abstractioncanbethemainoutput,especially for farm reservoirs. However, it can also be null, such as in storm Fig.3presentsthevarioustermsofthewaterbalanceofthereser- waterorcheckdamreservoirs.Section6.3discusseshowabstraction voir.Fromageneralperspective,thereservoirwaterbalancecanbe canbeestimatedatthebasinscale. expressedbythefollowingequation: Waterlossesarepresentforeverytypeofreservoir,butwitha largespreadofintensity,rangingfromthemainoutfluxtonegligible ddVt =Qin+P+GWin−Qout−E−S−Qabs. (1) obneeess.tTimheatneedx.tsectionfocusesontheselossesandonhowtheycan Here, dV is the water volume variation [m3] over the period 3.2. Lossesfromsmallreservoirs dt[s],Qinisthestreaminflowtothereservoir[m3/s],Qoutistheout- flowfromthereservoir[m3/s],Eistheevaporationrate[m3/s],Pis 3.2.1. Seepage theprecipitationrate[m3/s],Sistheseepagerate[m3/s],GW isthe Seepage(alsocalledpercolationflux)maybeparticularlyimpor- in groundwaterinflow[m3/s]andQ isthewaterabstraction[m3/s]. tanttoconsiderforsmallreservoirsbecausemostofthesereservoirs abs Inflowcanhave4sources:i)theupstreamflow,whichdepends are built with earthen dams. The seepage rate depends on the on the way in which the reservoir is connected to the river hydraulic head gradient betweenthe reservoir and the underlying (Section3.3);ii)thesurfacerunofffromtheareadirectlydrainedby aquifer(orunsaturatedzone)ordamwall,aswellasonthehydraulic thereservoiralongitsbank;iii)theinterceptedprecipitation;andiv) conductivitiesoftheaquiferandreservoirbedmaterial. 854 H.Florenceetal. /ScienceoftheTotalEnvironment643(2018)850–867 Fig.3. Waterbalanceofasmallreservoiranditsmaindrivers.Thecomponentsofthewaterbalanceareindicatedbylargearrows:inputscanbeinflows,suchasupstreamrunoff, lateralsurfacerunoff,anddirectprecipitation;outputscanbeoutflows,abstraction,seepageandevaporation. Althoughseepageisalossatthereservoirscale,thewaterisnot Whenthecumulativeimpactsareconsidered,boththeseepage lost and is mostly diverted. Indeed, infiltration tanks, encountered rate and the seepage fate are important. In the case of infiltra- especiallyinAsia,arebuilttofavourinfiltrationthroughthereservoir tionintothedamwall,theseepagewatermightflowdownstream bedtoincreasethegroundwaterrecharge.Inthisway,alargerpart in the river, and thus, the seepage flux might not be lost at the ofthemonsoonflowisstoredinthegroundwaterwhileavoidingthe scale of the river basin. An illustration of such a process was pro- evaporationlossfromreservoirsduringthedryseason(Glendenning videdbyKennon(1966),whoobservedthatephemeralrivershave etal.,2012).However,whendamsareintendedtostorewaterover becomepermanentaftertheimplementationofdamsbuilttopre- thelongterm,seepageisconsideredasaloss.Insuchcases,imper- vent erosion (see Section 4.1.1), and by those studies that include viouslayersofclayorgeomembrane(Alonsoetal.,1990;Yiasoumi groundwater recharge from dam seepage (Ramireddygari et al., and Wales, 2004) are used to reduce seepage, but their efficiency 2000; Barber et al., 2009; Smout et al., 2010; Shinde et al., 2010; decreaseswithage.Thus,irrespectiveoftheintendedfunctionofthe Perrin et al., 2012). Therefore, seepage fluxes from each reservoir reservoir,itisratherimportanttoestimatetheseepageratefromthe shouldnotbeaggregatedtoestimatethelossatthebasinscaleand reservoirbecauseitdeterminesitsefficiencyforstoringwater(then, thusfortheestimationofthecumulativeimpactsofsmalldamson alowseepagerateisexpected)orwithinthegroundwater(then,a hydrology. highseepagerateisexpected).Intheliterature,estimationsofthe seepageratewerebasedonwaterbalanceapproachesconstrained bylocalobservationsoftheprecipitation,potentialevaporationand reservoir’s water level (Culler, 1961; Kennon, 1966; Sukhija et al., 1997; Singh et al., 2004; Bouteffeha et al., 2015), as well as on additionalobservationsofthesoilmoistureandpiezometricheads (Shinogi et al., 1998; Antonino et al., 2005; Massuel et al., 2014), environmentaltracers(Sukhijaetal.,1997),ormorefrequentlyon modelling approaches (Zammouri and Feki, 2005; Boisson et al., 2014;JainandRoy,2017). Fig.4presentssomeestimationsoftheseepageandevaporation lossesfromtheliteratureunderdifferenthydroclimaticcontextsand forreservoirsbuiltforvariouspurposes.Mostestimatedseepageval- ues are greater than 5mm/day on average in the studied periods, andthus,theseepagerateappearstobehigherthantheevapora- tion rate. However, most of the values found in the literature are frompercolationtanks,i.e.fromdamsbuilttopromotearapidinfil- tration of the runoff during the wet season to recharge the water table.Fortheothertypesofdams,theestimationscanbelower:less than 1mm/day for Culler (1961) in the US and up to 6.2mm/day forShinogietal.(1998)overa6-monthperiodinabasininBrazil. Fig.4. Estimationoftheseepagelossandtheevaporationfluxofsmallreservoirs Fowleretal.(2012,2015)considerthathillslopedamsinAustralia onaseasonaltoannualbasis.Twotypesofreservoirsaredistinguished:infiltration arenotefficientforstoringwateriftheseepagerateisgreaterthan reservoirsandothertypesofreservoirs.Thevaluesaretakenfromthearticlescitedin 5mm/day. thissection. H.Florenceetal. /ScienceoftheTotalEnvironment643(2018)850–867 855 3.2.2. Evaporation flowwhileupstreamflowexists,suchasforhillslopereservoirsand Unlikeseepage,evaporationfluxesfromeachreservoirshouldbe check dams. Such reservoirs have strong impacts on the intensity aggregated at the basin scale. The impact of the reservoirs on the andthedurationoflowflows.Inparticular,theresumptionofflow evaporation losses is then the difference between the evaporation inthefallcanbesignificantlydelayed.Inthecaseofdiversionora fromthelandcoverthatwaspresentpriortothedamsbeingbuilt minimumflowbypassreservoir,adownstreamflowisensuredwhen and the evaporation from the reservoirs. Such estimations are not the upstream flow is non-zero. If the reservoir is located in diver- straightforward,particularlybecausetheheatstorageofthewater sion,thenthefillingperiodofthereservoircanbemanagedsuchthat bodyaffectsthesurfaceenergyflux(Assoulineetal.,2008;McMahon thereservoirmayhavenoimpactontheriverflowduringpartsof et al., 2013). This storage partly depends on the temperature of theyear,whichmayallowpreservingtheecologicalfunctionofthe the water columns, which is impacted by the depth of the dams river.Thismanagementcanalsobeadaptedtothehydrologicalsitu- (although in opposite ways depending on the references (Girard, ationofeachyear.Thereservoirsbuiltmainlytofavourgroundwater 1966;MartínezAlvarezetal.,2007;Maglianoetal.,2015)duetothe rechargecanhavealltypesofconnectionswiththeriver;however,it associatedchangeinthefreewaterarea);onthewatercirculation appearsthatmostofthemarebuiltdirectlyintheriverstream,thus withinthereservoir(whichisalsoimpactedbythereservoir’sman- collectingalltheupstreamflows(Shinogietal.,1998;Sideriusetal., agement);andontheinteractionwiththeedges,whichcanberather 2015).Dependingontherespectiveinflowandabstractiondynamics, closeforsmallreservoirsandthataffectsthewindvelocityandthe cumulativeabstractionmayexceedthereservoirstoragecapacity,as advectionofairhumidity(Fig.3).Severalmethodswereusedtopro- illustratedinFig.5forexample,forwhichtheabstractionsfromthe videestimationsoftheevaporationfromsmallreservoirsbasedon reservoirsreach105to120%ofthemaximumstoragecapacity. observations: energy balance approaches (Anderson, 1954; Culler, 1961; Kennon, 1966; Gallego-Elvira et al., 2010), eddy-covariance 4. Methodstoestimatethecumulativeimpactsofsmall measurements(Rosenberryetal.,2007;Tannyetal.,2008;Mengistu reservoirsonhydrology andSavage,2010;Nordboetal.,2011;McJannetetal.,2013),scin- tillometers(McJannetetal.,2013;McGloinetal.,2014),andwater Quantifyingthecumulativeimpactsofsmallreservoirshasbeen balance approaches (Girard, 1966; Martínez Alvarez et al., 2007). conducted using a variety of methods, all of them requiring data Fig. 4 presents the estimations found in the literature. The mean and observations. Two classes of methods can be distinguished: i) annualestimationsrangefrom1.4to5.5mm/day,andthereported themethodsexclusivelybasedontheanalysisofobserveddataand summervaluesareallabove3mm/day. ii)themethodsbasedonhydrologicalmodelling. MartínezAlvarezetal.(2007)proposedarelationshipbetween thesmallreservoirevaporationlossandtheClassApanevaporation 4.1. Exclusivelydata-basedmethods thatvariesaccordingtothereservoir’sdepthandareaandthatvaries intime(from86to94%). 4.1.1. Fromobservationofselectedreservoirstoestimationof Severalestimationsofthesmallreservoirevaporationlossbased cumulativeimpacts on meteorological data were proposed (de Bruin, 1978; Martínez Thisapproachwasmainlyusedinearlyworksperformedfrom Alvarez et al., 2007; McJannet et al., 2013; McMahon et al., 2013; the50stotheearly70sintheUS(Kennon,1966;Culler,1961;Frickel, Morton,1983).BenzaghtaandMohamad(2009),MartínezAlvarezet 1972)andinBrazil(Dubreuiletal.,1968;DubreuilandGirard,1973; al.(2008)andCraig(2008)foundthattheevaporationlossesfrom Molle,1991).Inlightofthesepioneeringworks,itcanbeobserved reservoirscanbeveryimportantattheregionalscaleandhavean thatthecumulativeimpactsonhydrologyhavebeenascientificand importanteconomicimpact. watermanagementissueforalongtime. Several techniques might help reduce evaporation from reser- Despitesomedifferencesinthemethodologyamongthesestud- voirs: casual chemical treatment to modify the albedo or form a ies, they all aimed at quantifying single reservoir hydrologic func- monolayerfilm,completelyorpartiallycoveringthereservoirs,man- tioningfromthemonitoringofasampleofreservoirs.Losseswere agingthereservoiredgestoreducewindspeed,andoptimizingthe estimatedusingamassbalanceofthesampledrepresentativereser- useofthewaterinreservoirnetworksbasedonthetemperatureof voirs based at least on the monitoring of the water level, inflows thewaterinthereservoirs(Barnes,2008;Lund,2006;Assoulineet andoutflowsofthereservoirs.Theseearlystudiesinitiallymadethe al.,2011;Martínez-AlvarezandMaestre-Valero,2015;Gallego-Elvira assumptionthatcumulativereservoirimpactswerethesumofthe etal.,2011;Carvajaletal.,2014;Recaetal.,2015).However,such impactofeachreservoirfollowinganaggregationprocess.However, techniques are not yet widely used and are not considered in the themainoutcomeofthesestudieswastoshowthatthisassumption existingcumulativeimpactstudies. wasnotvalid.Indeed,Culler(1961)andKennon(1966)foundthat the seepage was a significant loss for the sampled reservoirs but 3.3. Connectiontothestream contributed to downstream flow. Therefore, interactions between reservoirsandhydrologiccompartments,especiallythestream,were Byitself,theconnectionofthereservoirtothestreamiskeyto identifiedveryearlyasprocessestobetakenintoconsiderationto understandingtheimpactsofthereservoirontheriverflow.Indeed, reliablyestimatethecumulativeimpacts. thisconnectionwillimpactboththeinflowandtheoutflow.Small reservoirs can collect all the upstream flow (Fig. 5a for a hillslope 4.1.2. Statisticalanalysesoftheobserveddischarge reservoir or dam situated on the stream with no minimum flow) The idea is to connect the detected changes in the statistical or only a part of the flow (reservoir with minimum flow by-pass, properties of river discharge time series with the evolution of the Fig.5b,whichallowsmaintainingaminimumflow,ordamsituated reservoirnetworkwithinthebasin.Indoingso,thedetailsofeach indiversionFig.5csinceinthiscase,thereservoircannotfillaslong reservoirfunctioningarenottakenintoconsideration.Toourknowl- asinflowdoesnotexceedsomethresholds).Inthecasethatallthe edge, this type of study based solely on observations was only upstreamflowsarecollected,thedownstreamoutflowwillprimar- performedbyGaleaetal.(2005).Astudybasedona30-yearriverdis- ilydependonthelevelofthespillandonthereservoirwaterstorage. chargetimeseriesoftwoFrenchcatchmentsshowednostationarity Following“fill-and-spill”(Deitchetal.,2013),downstreamdischarge breakinsummer,whileabreakwasshowninwinter,i.e.,duringthe occursonlywhenthereservoirisfullyfilled;conversely,aslongas fillingperiod(Galeaetal.,2005). thereservoirhasnotreacheditscapacity,downstreamdischargeis One difficulty of such statistical analyses is discriminating the null. Therefore,it is possibleto have periodswithnodownstream specificimpactofsmallreservoirsfromthoseoflanduseandland 856 H.Florenceetal. /ScienceoftheTotalEnvironment643(2018)850–867 Fig.5. Illustrationof3differentconnectionsbetweentheriverandthereservoiranditsconsequencesintermsofriverflow.Inflow,outflowandabstractionareaccumulated weeklyvalues,whereasstorageisaweeklyvalue.Theyareallexpressedasafractionofthemaximumstorage.Abstractionsinthereservoirsreached105to120%ofthemaximum storagecapacity.a)Hillslopereservoirismanagedasafillandspill,withaweakandirregularinflow.b)Theminimumflowbypassensuresthataminimumoutflowoccursas longasinflowispresent.c)Thereservoirindiversionisexpectedtofillupassoonastheinflowreachesagivenminimumflowordependingonmanagementpractices. cover (LULC) evolution or of climate change (CC). Reservoir devel- 4.1.3. Paired-catchmentexperiment opment occurred over decades, a sufficiently long period to be A paired-catchment experiment is an approach already used sensitivetoLULCmodifications(suchasagriculturalintensification in hydrology for quantifying the impact of LULC changes from a orcrop modification)and CC. Toovercomethisissue,Schreideret comparativeanalysisofstreamflowsmonitoredintwocontrasted al. (2002) compared the observed river flows with simulated ones catchments (see, for instance, Brown et al., 2005 for a review in obtainedusing the observedatmosphericforcing,but withoutany foresthydrology).Thompson(2012)is,toourknowledge,theonly explicitrepresentationofthesmalldamsinthemodels.TheIHACRES studyusingthisapproachtocomparestreamflowsfromtwoadja- rainfall-runoff model, a dynamic, lumped parameter model, was centandsimilarcatchments,onewithoutareservoirandthesecond usedtosimulatestreamflowwithparameterscalibratedconsidering withthreesmallreservoirs.Froman18-monthmonitoring,annual periods before the development of reservoirs. They found signifi- streamflowwasestimatedtobelowerby40%inthecatchmentwith cantdecreasingtrendsintheobserveddischargeofbasinsthathad 3reservoirsthaninthe“no-reservoir”catchment(Thompson,2012). adevelopmentoffarmdamcapacity,andtheywereabletoattribute Althoughtheexperimentfounddifferencesinthespecificdischarge, these trends to non-climatic stressors since such trends were not thefullcomparisonofthewaterbalanceremaineddifficult.Themain simulatedwithareservoir-freebasin. shortcomingofThompson’sapproachisthatcatchmentproperties H.Florenceetal. /ScienceoftheTotalEnvironment643(2018)850–867 857 (soils,lithology,landcover,topography,andsoforth)werespatially 4.2.2. Reservoirinflowquantification heterogeneousoverashortdistance,makingdecipheringthestream Inmostmodellingapproaches,upstreaminflowisprovidedbya flowdifferencesdifficult.Furthermore,indirectreservoirimpactson catchmenthydrologicalmodelsimulatingthewaterbalance(WB),or landuse,suchasthecattlegrazingaroundthereservoirinThomp- theenergyandwaterbalance(EWB),intheupstreamcatchmentand son’s case study, can also modify stream flow. The study would the routing of the flow downstream (Table 1). Existing catchment havebenefitedfromfollowingtheclassicapproachusedinpaired- hydrologicalmodelsareusedinthemodellings,reflectingthediver- catchment experiments, implying a calibration period where both sityofcurrenthydrologicalmodels.Suchmodelsneedatmospheric catchments are monitored, followed by a period when one of the forcingandsomeinformationonthelandcover,soilandtopogra- catchmentsissubjectedtolandusechange(reservoirbuilding)and phy, unless the model parameters are calibrated without any data the other remains as a control. However, building a reservoir net- onthephysiographiccharacteristics.Twomodels,TEDIandDeitch workoveralargeareaisgenerallydifficultforpracticalandfinancial (Table 1), developed an alternative and pragmatic method based reasons.Consequently,suchanapproachhasneverbeenutilizedto on using observed discharge time series as input to the model. In ourknowledge. doingso,theTEDIandDeitchmodelsdonotbelongtoanycurrent modelling approaches. Using observed discharge at available river gaugesimpliesbeingabletosuccessivelyi)disentanglethenatural 4.2. Modellingapproaches flowfromtheanthropogenicflowandii)distributetheobserveddis- chargealongthereservoirnetworks.Toachievethefirststep,Deitch Modelling is the most widely used approach for studying and etal.(2013)usedhistoricalgaugeddischargemeasuredpriortothe quantifying the cumulative impacts of small reservoirs. Although reservoirpre-developmentperiod.Thedischargewasthenspatially various modelling approaches have been developed, all are based distributedaccordingtothedrainageareaofeachreservoirandthe onthecouplingofthesmallreservoirwaterbalancemodelwitha spatialdistributionoftheaverageannualrainfall.Thepropagationof quantitativemethodtoestimatestreaminflowintothesmallreser- streamwaterwasthenoperatedfromthemostupstreamreachto voirs. Three of the main model components are detailed below: thecatchmentoutletbyconsideringthewatervolumeintercepted i) the small reservoir water balance model, ii) the quantitative ineachreservoir.Thecumulativeimpactofreservoirsisthenclas- method used to quantify inflow to reservoirs, and iii) the spatial sicallythedifferencebetweensimulateddischargeandthegauged representation of the reservoir network. The inflow quantification discharge.InTEDI,Nathanetal.(2005)usedtheobserveddischarge method and the spatial representation of the reservoir have to be oftheperiodofinterest.Theinflowineachreservoiriscalculated consistent and are thus intrinsically dependent. A spatially dis- fromtheobservedcatchmentdischargeassumingaproportionality tributedrepresentationofreservoirsrequiresbeingabletoestimate with the reservoir catchment area. The outflow from every reser- the spatial distribution of stream flow to estimate the upstream voir is transfered directly to the outlet. It is then considered that inflow to each reservoir. Conversely, an aggregated estimation of theobtainedcumulativeimpactcorrespondstotwicethesimulated stream flow over a sub-basin or over the full catchment leads to impactofthereservoirnetworkbecausethegaugedischargealready thereservoirnetworkrepresentationbeingaggregatedonthesame includestheimpactsofexistingreservoirs. domain. Mostofthereviewedstudiesfocusedonassessingtheimpactsof 4.2.3. Reservoirspatialrepresentation reservoirsusedforirrigationorlivestockwateringonstreamflow.In Howthereservoirnetworkisrepresentedfromaspatialperspec- suchcases,theimpactsarequantifiedbycomparingthecatchment tivevariesfromonemodeltoanother.Thespatialrepresentationof streamflowsimulationwithandwithoutreservoirs,exceptforthe thereservoirnetworkcanbeclassifiedintothefollowingthreetypes TEDImodel,aswewillseeinSection4.2.2.Theexceptionstomod- (seeFig.6,Table1). ellingapproachesdedicatedtostreamflowimpactsarethoseaiming atassessingtheimpactsongroundwater.Theseapproachesmostly • Inthespatiallyaggregateapproach,allthereservoirsinacatch- focus on infiltration tanks, for which part of the stored volume ment(inTable1,Aforaggregationonsub-catchmentsandA* rechargestheaquifer.Insuchcases,onlytheimpactsontheaquifer foraggregationonagridcell)arerepresentedintheformofa duetothelossfromthereservoirsarerepresented,eitherwithout singleequivalent,orcomposite,reservoir. simulationofthegroundwater(Martín-Rosalesetal.,2007;Hughes • The statistical representation constitutes a refinement of the and Mantel, 2010), with a simplified representation of the aquifer aggregate representation (Fig. 6B). The reservoir network is (Smoutetal.,2010;Shindeetal.,2010;Perrinetal.,2012),oreven represented in the model in an aggregated way by grouping moreseldom,witha2-Dhydrogeologicalmodel(Ramireddygariet reservoirs into a finite number of classes. Some hydrological al.,2000;Barberetal.,2009). connections between several of these classes may be repre- sented(SinTable1). • The spatially explicit representation consists of representing 4.2.1. Reservoirwaterbalancemodel everyreservoir(Fig.6C). ReservoirwaterbalancemodelsrelyonEq.(1).Mostsmallreser- voir water balance models take into account the evaporation and abstraction,forwhichtemporalestimationisrarelywellknownand 4.2.4. Aggregaterepresentation isoftenanimportantpoint(seeSection5.3)(Table1).Whenseep- In the aggregate representation (Fig. 6A), the characteristics of age is taken into account, it is considered only as infiltration to the equivalent reservoir (capacity and surface area) are obtained groundwater. Ignoring seepage is justified by the small expected byaggregatingsinglereservoircharacteristics.Themaininterestof rates (Hughes and Mantel, 2010) or by the lack of information on the aggregate representation is to require only global information theprocess(rate,timing,anddrivingfactorGüntneretal.,2004)and about the reservoirs and their characteristics. In fact, the spatial bythefactthatseepagefluxcancontributetodownstreamflow.To densityofreservoirswithinacatchmentcanbelarge,greaterthan simulate the reservoir water mass balance, downstream discharge 10reservoirs/km2insomecases(Nathanetal.,2005),andanexhaus- issimulatedconsideringthatreservoirsoperatewiththetechnique tive inventory of all reservoirs along with their characteristics is of “fill-and-spill” (Section 3.3, unless a conservation flow is taken out of reach. Rather, a global estimation of reservoirs and their into account (Table 1). Reservoir inflow is simulated by different characteristics may be approximated from simple rules of spatial approaches,aspresentedinthenextsection. extrapolation(cf.Habetsetal.,2014).Forinstance,toestimatethe 858 H.Florenceetal. /ScienceoftheTotalEnvironment643(2018)850–867 Table1 Mainprocessesinreservoirwaterbalancemodel,aswellastemporalandspatialrepresentationsofreservoirsinnumericalmodels.Spatialrepresentationcanbethefollowing (seeFig.6):A:aggregaterepresentationbycatchment(orA*bygridingrid-basedmodels),S:statisticalrepresentation,orD:distributedrepresentation.Inflowtothereservoirs canbederivedfromOBS:observations,WB:waterbalance,orEWB:energyandwaterbalance.Outflowiscomputedeitherbasedonspill(aboveawaterlevelorvolumeinthe reservoir)and/ortakingintoaccountaconservationflow(CF). Processesincluded Model Spatialrepresentation Timestep Inflow Outflow Evaporation Directprecipitation Seepage Aquifer Abstraction ACRUi A Day WB CFspill x x x x GR4Jk A Day WB HYDROMEDl A Day WB Spill x x x POTYLDRj A Day WB CFspill x ? x ? x ISBA-Rapidh A* Hour EWB Spill x x SWAT Ag,Sn Day WB Spill x x x x TEDIa S Month/day OBS Spill x x x WASAd S Day WB Spill x x x WaterCASTc S Day WB Spill x x x CASCADEm D Day WB Spill x x x CHEATb D Month OBS Spill x x x Deitchetal.e D Day OBS Spill PITMANf A Month WB Spill x x a Nathanetal.(2005). b Nathanetal.(2005). c Cetinetal.(2009). d Güntneretal.(2004). e Deitchetal.(2013). f HughesandMantel(2010). g Perrinetal.(2012). h (Habetsetal.,2014). i TarbotonandSchulze(1991). j Ramireddygarietal.(2000). k Payanetal.(2008). l Ragabetal.(2001). m Shinogietal.(1998),Jayatilakaetal.(2003). n Zhangetal.(2012). inflow into the equivalent reservoir, it is necessary to determine onereservoirtoanotherbutquitehomogeneousinreservoirsofsim- the contributive catchment. It can be a fraction of the catchment ilarsizes.Inthisway,itovercomesoneofthemainshortcomingsof area (Tarboton and Schulze, 1991; Hughes and Mantel, 2010) that theaggregaterepresentation.Evaporation,forexample,dependson can be estimated from the sum of the drainage area of all reser- thewatercolumnheightandcirculationwithinthereservoir,which voirsordependingonthecumulativereservoirarea(Habetsetal., isexpectedtodependonreservoirsize(cf.Section3.2).Connectivity 2014). to the network – reservoirs and rivers – and operation rules may Theaggregaterepresentationleadstoobtainingasimulationof also be different depending on the reservoir function, which also thehydrologicalcumulativeimpactsofreservoirsatthecatchment, depends on the reservoir size. Another advantage of the statisti- grid-cell or sub-catchment outlet but intrinsically does not allow cal representation is being computationally faster than the fully simulatingthecumulativeimpactsalongtherivernetworkfromthe distributed one because fewer reservoir mass balances have to be head to the outlet, unless the sub-catchments are small, which is computedandwatertransfersbetweenreservoirsaresimplified.The often not the case because the size of the sub-catchment is often mainshortcomingisthatitdoesnotobtaindistributedsimulationsof determined by the availability of river gauges. Furthermore, this thehydrologicalimpactsofreservoirs;particularly,thecumulative representation may not reflect the different responses of the vari- impactsalongthefullrivernetworkcannotbesimulated. ous reservoirs in terms of key processes (evaporation, infiltration, operations,andsoforth;Zhangetal.,2012). 4.2.6. Distributedrepresentation A distributed representation of the reservoir is the only way 4.2.5. Statisticalrepresentation toexplicitlyrepresenttheinteractionsbetweenreservoirsbycon- The statistical representation is a trade-off between the other sidering the outflow from one reservoir as a contribution to the tworepresentations.Itconsidersthatinformationaboutthelocation inflowofthedownstreamoneandtheinteractionsbetweenreser- andcharacteristicsofreservoirs,particularlyofsmall-andmedium- voirs and hydrological compartments (river, soil, and aquifer) by sizedreservoirs,cannotbeexhaustivelyavailable.Italsoreliesonthe estimatingtheimpactsofeachreservoironitsconnectedriverreach assumptionthatreservoirconnectivitymayplayaroleinthecumu- or/and aquifer. Indeed, two dams with similar characteristics may lative impacts. The reservoir network is represented by classes of havedifferentimpactsaccordingtotheirlocationalongthestream reservoirsdeterminedfollowingreservoirwatercapacity(Güntner network, mostly because the inflow is not the same. The interest etal.,2004;Nathanetal.,2005;Loweetal.,2005)andalsoreser- in a spatially explicit representation is in quantifying and under- voirdrainagearea(Zhangetal.,2012).Eachclassisrepresentedas standingthelocalhydrologicimpactatariverreachscaleandthe asingleequivalentreservoir.Güntneretal.(2004)andZhangetal. cumulative impacts along the river network (Deitch et al., 2013). (2012)usedacoupledsequentialandparallelschemetorepresent Quantifying local hydrologic impacts may be particularly relevant theupstream-downstreamconnectivityofdifferentwaterreservoir towaterquality,ecologicaldisturbanceormorphogenesisevolution. classesinthecatchment. Inaspatiallyexplicitrepresentation,waterinflowintoeverysingle Asamainadvantage,thestatisticalrepresentationhastoconsider reservoir as stream discharge and lateral surface runoff has to be thediversityofkeyreservoirprocesses,whichcanbevariablefrom knownorestimated.Toourknowledge,onlyShinogietal.(1998)and H.Florenceetal. /ScienceoftheTotalEnvironment643(2018)850–867 859 Fig.6. Spatialrepresentationofreservoirnetworkinmodelsusedtoquantifycumulativereservoirhydrologicimpacts. Smout et al. (2010) have performed catchment hydrologic mod- of information and the difficulty to obtain it exhaustively, statisti- ellingtoobtaintheseestimations,withanapplicationtorelatively calrepresentationsandaggregaterepresentationsareconsideredas simplecasestudiescharacterizedbyfewreservoirs.Otherreported pragmaticalsolutionsandusedinmostmodellingstudies. casestudiesusingspatiallyexplicitrepresentationsusedobserved- stream-discharge-based models (Nathan et al., 2005; Cetin et al., 2009;Deitchetal.,2013). 5. Howtoobtainaccesstotheinformationneededonsmall A spatially explicit representation relies on the availability of reservoirs? exhaustive information about reservoir location, characteristics, water uses and topology, which are rarely available over large 5.1. Whattypeofdata? areas. This point constitutes a main shortcoming of the approach, asaddressedinSection4.1.1.Furthermore,itcanbeexpectedthat Stream discharge time series, at one or several points in the uncertainties in the local information, added to the uncertainty catchment, are required data in statistical analyses (Section 4.1.2) in estimated spatial discharge and individual reservoir water bal- and in the TEDI and Deitch models (Nathan et al., 2005; Deitch et ances, can skew the local simulated impacts, and by propagation, al., 2013, Section 4.2.1), and such data are also used by the other the cumulative impacts. This could alleviate the theoretical inter- types of models to calibrate or assess the modelling. Such data estinthespatiallyexplicitrepresentation.Acknowledgingthelack areexpectedtobefoundinexistingdatabases.Statisticalanalyses