ebook img

The Crossing Paths of the Arts and Mathematics: Cucker PDF

428 Pages·46.602 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Crossing Paths of the Arts and Mathematics: Cucker

Manifold Mirrors TheCrossingPathsoftheArtsandMathematics Most works of art, whether illustrative, musical or literary, are created subject to a set of constraints. In many (but not all) cases, these con- straints have a mathematical nature; for example, the geometric trans- formations governing the canons of J. S. Bach, the various projection systems used in classical painting, the catalogue of symmetries found inIslamicartortherulesconcerningpoetic structure.Thisfascinating book describes geometric frameworksunderlying this constraint-based creation. The author provides both a development in geometry and a description of how these frameworks fit the creative process within several art practices. Furthermore, he discusses the perceptual effects derivedfromthepresenceofparticulargeometriccharacteristics. The book began life as a liberal arts course and is certainly suitable as a textbook. However, anyone interested in the power and ubiquity of mathematics will enjoy this revealing insight into the relationship betweenmathematicsandthearts. FelipeCucker is Chair Professor of Mathematics at the City University of Hong Kong. His research covers a variety of subjects, including semi-algebraic geometry, computer algebra, complexity, emergence in decentralizedsystems(inparticular,emergenceoflanguagesandflock- ing),learningtheoryandfoundationalaspectsofnumericalanalysis.He servesontheeditorialboardofseveraljournalsandisManagingEditor ofthejournalFoundationsofComputationalMathematics,publishedby theSocietyofthesamename. Manifold Mirrors The Crossing Paths of the Arts and Mathematics FELIPE CUCKER CityUniversityofHongKong cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericaby CambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521429634 (cid:2)c FelipeCucker2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-Publicationdata Cucker,Felipe,1958– Manifoldmirrors:thecrossingpathsoftheartsandmathematics/ FelipeCucker,CityUniversityofHongKong. pagescm Includesbibliographicalreferences. ISBN978-0-521-42963-4(Hardback)–ISBN978-0-521-72876-8(pbk.) 1. Arts–Mathematics. I. Title. NX180.M33C832013 (cid:3) 700.105–dc23 2012046405 ISBN978-0-521-42963-4Hardback ISBN978-0-521-72876-8Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredtoin thispublication,anddoesnotguaranteethatanycontentonsuchwebsitesis, orwillremain,accurateorappropriate. Everyefforthasbeenmadetosecurenecessarypermissionstoreproduce copyrightmaterialinthiswork,thoughinsomecasesithasprovedimpossibleto tracecopyrightholders.Ifanyomissionsarebroughttoournotice,wewillbe happytoincludeappropriateacknowledgementsonreprinting. CONTENTS Mathematics:user’smanual pageix Appetizers 1 A.1 Martini 1 A.2 Ontheirblindness 3 A.3 TheMusicalOffering 7 A.4 Thegardenofthecrossingpaths 10 1 Spaceandgeometry 11 1.1 Thenatureofspace 11 1.2 Theshapeofthings 12 1.3 Euclid 14 1.4 Descartes 18 2 Motionsontheplane 27 2.1 Translations 27 2.2 Rotations 29 2.3 Reflections 29 2.4 Glides 30 2.5 Isometriesoftheplane 31 2.6 Onthepossibleisometriesontheplane 36 3 Themanysymmetriesofplanarobjects 39 3.1 Thebasicsymmetries 41 3.1.1 Bilateralsymmetry:thestraight-linedmirror 41 3.1.2 Rotationalsymmetry 42 3.1.3 Centralsymmetry:theone-pointmirror 42 3.1.4 Translationalsymmetry:repeatedmirrors 44 3.1.5 Glidalsymmetry 46 3.2 Thearithmeticofisometries 47 3.3 Arepresentationtheorem 52 3.4 Rosettesandwhirls 55 3.5 Friezes 59 3.5.1 Thesevenfriezes 59 3.5.2 Aclassificationtheorem 64 3.6 Wallpapers 69 3.6.1 Theseventeenwallpapers 69 v ListofContents 3.6.2 Abriefsample 76 3.6.3 Tablesandflowcharts 77 3.7 Symmetryandrepetition 80 3.8 Thecatalogue-makers 81 4 Themanyobjectswithplanarsymmetries 83 4.1 Origins 83 4.2 Rugsandcarpets 89 4.3 Chineselattices 103 4.4 Escher 106 5 Reflectionsonthemirror 111 5.1 Aestheticorder 111 5.2 TheaestheticmeasureofBirkhoff 116 5.3 Gombrichandthesenseoforder 120 5.4 Betweenboredomandconfusion 125 6 Arawmaterial 128 6.1 Theveiledmirror 128 6.2 Betweendetachmentanddilution 134 6.3 Ablurredboundary:I 138 6.4 Theamazingkaleidoscope 146 6.5 Thestricturesofverse 152 7 Stretchingtheplane 158 7.1 Homotheciesandsimilarities 158 7.2 Similaritiesandsymmetry 162 7.3 Shears,strainsandaffinities 166 7.4 Conics 174 7.5 Theeclosionofellipses 177 7.6 Klein(abernurderName) 184 8 Auralwallpaper 188 8.1 Elementsofmusic 189 8.2 Thegeometryofcanons 193 8.3 TheMusicalOffering(revisited) 198 8.4 Symmetriesinmusic 206 8.4.1 Thegeometryofmotifs 208 8.4.2 Theubiquitousseven 210 8.5 Perception,localityandscale 213 vi ListofContents 8.6 Thebareminima(againandagain) 216 8.7 Ablurredboundary:II 220 9 Thedawnofperspective 225 9.1 Alberti’swindow 227 9.2 Thedawnofprojectivegeometry 240 9.2.1 Bijectionsandinvertiblefunctions 243 9.2.2 Theprojectiveplane 245 9.2.3 AKleinianviewofprojectivegeometry 251 9.2.4 Essentialfeaturesofprojectivegeometry 253 9.3 Aprojectiveviewofaffinegeometry 254 9.3.1 Adistantvantagepoint 255 9.3.2 Conicsrevisited 258 10 Arepertoireofdrawingsystems 260 10.1 Projectionsanddrawingsystems 260 10.1.1 Orthogonalprojections 263 10.1.2 Obliqueprojections 269 10.1.3 Ontiltanddistance 277 10.1.4 Perspectiveprojection 282 10.2 Voyeursanddemiurges 286 11 Thevicissitudesofperspective 293 11.1 Deceptions 293 11.2 Concealments 295 11.3 Bends 298 11.4 Absurdities 306 11.5 Divergences 311 11.6 Multiplicities 315 11.7 Abandonment 317 12 Thevicissitudesofgeometry 321 12.1 Euclidrevisited 321 12.2 Hyperbolicgeometry 325 12.3 Lawsofreasoning 328 12.3.1 Formallanguages 328 12.3.2 Deduction 330 12.3.3 Validity 333 12.3.4 TwomodelsforEuclideangeometry 335 12.3.5 Proofandtruth 338 vii ListofContents 12.4 ThePoincarémodelofhyperbolicgeometry 339 12.5 Projectivegeometryasanon-Euclideangeometry 346 12.6 Sphericalgeometry 353 13 Symmetriesinnon-Euclideangeometries 357 13.1 Tessellationsandwallpapers 357 13.2 Isometries and tessellations in the sphere and the projectiveplane 359 13.3 Isometriesandtessellationsinthehyperbolicplane 363 14 Theshapeoftheuniverse 373 Appendix:Rule-drivencreation 381 Compliers/benders/transgressors 381 Constrainedwriting 386 References 395 Acknowledgements 402 Indexofsymbols 404 Indexofnames 405 Indexofconcepts 409 viii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.