ebook img

The Covering Factor of Warm Dust in Quasars: View from WISE All-Sky Data Release PDF

1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Covering Factor of Warm Dust in Quasars: View from WISE All-Sky Data Release

Mon.Not.R.Astron.Soc.000,1–8(2013) Printed17January2013 (MNLATEXstylefilev2.2) The Covering Factor of Warm Dust in Quasars: View from WISE All-Sky Data Release Xiang-Cheng Ma,1,2⋆ Ting-Gui Wang1,2 3 1 1DepartmentofAstronomy,SchoolofPhysicalScience,TheUniversityofScienceandTechnologyofChina(USTC),Hefei,Anhui230026,P.R.China 0 2KeyLaboratoryforResearchinGalaxiesandCosmology,ChineseAcademyofScience 2 n 17January2013 a J 6 ABSTRACT 1 By combining the newly infrared photometric data from the All-Sky Data Release of the ] Wide-field Infrared Survey Explorer with the spectroscopicdata from the Seventh Data Re- O leaseoftheSloanDigitalSkySurvey,westudythecoveringfactorofwarmdust(CFWD)fora C largequasarsample,aswellastherelationsbetweenCFWDandotherphysicalparametersof quasars.Wefindastrongcorrelationbetweenthefluxratioofmid-infraredtonear-ultraviolet . h and the slope of near-ultraviolet spectra, which is interpreted as the dust extinction effect. p After correcting for the dust extinction utilizing the above correlation, we examine the re- o- lationsbetweenCFWD andAGNproperties:bolometricluminosity(Lbol),blackholemass r (MBH)andEddingtonratio(L/LEdd).We confirmtheanti-correlationbetween CFWD and st Lbol.FurtherwefindthatCFWDisanti-correlatedwithMBH,butisindependentofL/LEdd. a Radio-loudquasarsarefoundtofollowthesamecorrelationsasforradio-quietquasars.Monte [ CarlosimulationsshowthattheanisotropyofUV-opticalcontinuumoftheaccretiondisccan 2 significantlyaffect,butislesslikelytodominatetheCFWD–Lbolcorrelation. v Keywords: catalogues–galaxies:active–quasars:general–infrared:galaxies 5 4 2 4 2. 1 INTRODUCTION scaleandthemoreextendednucleardisc(e.g.Krolik&Begelman 1 1986; Hopkinsetal. 2005; DiMatteoetal. 2005). It has been ar- Theterminology ‘activegalacticnucleus’ (AGN)generally refers 2 gued that the torus is a smooth continuation of the BLR and the toenergeticphenomenainthecentralregionsofgalaxiesthatcan 1 boundary between them is determined only by dust sublimation beattributedtotheaccretionofgasontosupermassiveblackholes. : (e.g.Elitzur2008).SothetorusmaydefinetheextensionofBLR v Due to its angular momentum, the in-falling gas forms a disc i (Netzer&Laor1993).Also,dustytorusmaybethesourceofout- X aroundtheblackholeandslowlyspiralsinwardsasfrictiontorque flowsonthescalesofparsecs.Theanisotropicobscurationofion- transportstheangularmomentumout.Duringthisprocess,gasin ar thediscisheatedtoafew105 K andproduces strongUV toop- izing continuum causes an ionization cone structure in the nar- rowlineregion,whichhasbeendetectedinmanyobscurednearby ticalcontinuum. StrongUVradiationionizesgassurrounding the Seyfertgalaxies. blackhole,givingrisetoprominentbroademissionlineswithinone parsecandnarrowemissionlinesfurtherout.Theseemissioncom- Due to its great importance, the geometry, column density ponents are further modified by dust in a torus outside the broad distribution and the composition of dusty torus have been sub- lineregion(BLR)andintheinterstellarmediumofgalaxies.Dust jectsof intensive study in thepast thirtyyears. The average cov- absorbsandscattersUVandopticallightandre-emitsatinfrared ering fraction of torus could be constrained from the number ra- (IR)bands, altering spectral energy distribution(SED)as wellas tios of obscured to unobscured AGNs in the local universe. For causinganisotropicobscuration.Inthepastthirtyyears,ithasbeen nearby Seyfert galaxies and radio galaxies, Luetal. (2010) re- establishedthatalargeportionofobserveddiversities,suchaspres- ported a Type 2 to Type 1 ratio around 2:1 to 3:1. This suggests ence or absence of broad lines and prominent non-stellar contin- thatanaverageopeningangleofthedusttorusisabout45degree, uum,canbeattributedtotheanisotropicobscuration ofthe dusty which is basically consistent with that derived from quasi-steller torus(seeAntonucci1993forareview). radiosources(Barthel1989)anddirectimagingofionizingconein The study of dusty torus is of great significance in our un- manynearbySeyfertgalaxies(e.g.Wilson&Ulvestad1983;Pogge derstanding of physical processes of AGNs. The torus is a natu- 1988;Sakoetal.2000).Whileintheliterature,Lawrence&Elvis ralreservoirofgassupplytotheaccretiondisc,andthusprovides (2010) suggested this ratio to be ∼1:1, and so did Reyesetal. a possible connection between the accretion disc at sub-parsec (2008) by reporting approximately equal space densities of ob- scured and unobscured quasars. Yet a consensus has still to be reachedonwhetherand how theopening angledepends onother ⋆ [email protected] properties of AGNs. Lawrence (1991) suggested that the fraction (cid:13)c 2013RAS 2 Ma &Wang of type I AGNs increases with the increase of the nuclear lu- 2 THESAMPLEANDMEASUREMENTOFFLUX minosity. Similar results were obtained by Simpson (2005) and 2.1 SampleDescription Hao&Strauss (2004) for a large sample of AGNs derived from Sloan Digital Sky Survey (SDSS), and by Hasinger (2008) from We construct our quasar sample by cross-correlating the SDSS deepX-raysurveys.However,Luetal.(2010)didnotfindsucha DR7quasarcatalog(Schneideretal.2010)withtheWISEAll-Sky correlationforradioloudAGNsbytakingintoaccountofvarious Data Release catalog. This leads to a sample of 101639 quasars selection effects, and nor did Lawrence&Elvis (2010) for radio withreliableWISEdetectionsinatleastoneband(96%ofwhole quietAGNs.Thisinconsistencyislargelyduetothecorrectionof SDSSDR7quasarcatalog).Togetamorereliableestimateofthe complicatedselectioneffectsindealingwiththeAGNsineachlu- bolometricluminosityandmid-infraredluminosity,werequirethat minositybin. the SDSS spectra cover the rest-frame wavelengths from 2000– 4000A˚A˚ andthattheWISEbandsaccesstoatleast10µminthe Theinfraredemissionisapowerfulprobeofthedustytorus. quasarrest frame.Thisleadstoaredshift cut 0.76 6 z 6 1.17. 17639quasarsfallinthisredshiftrange. Withamaximumtemperaturearound ∼ 2000K,theemissionof Wefittherest-frameSDSSspectra,corrected fortheGalac- dusty torus is mainly at IR bands. The total IR luminosity from tic extinction using the dust map of Schlegeletal. (1998) and the torus is a measurement of the amount of optical to UV light the extinction curve of Fitzpatrick (1999), in three relative line- absorbedbythetorus,whileindividualfeaturesareusedto probe free windows 2150–2200, 3030–3100 & 4150–4250 A˚A˚ (see thecompositionofgrainsandtheirdistribution.TheSpitzerSpace VandenBerketal.2001)withapower-lawfunction Telescope and more recent Herschel provide very rich data-sets, which allow us to study different features and parameters of the Fλ =c(λ/3000)α, (1) dustytorus.Meanwhile,largeunbiasedmid-infraredsurveysallow tostudythestatisticalpropertiesofthedusttorus.Oneoftheprob- wherenormalizationfactorcandspectralslopeαaretwofreepa- lems that we are primarily concerned is the dust covering factor rameterstobedeterminedbystandardχ2minimizationapproach1. (CF)anditscorrelationswithAGNproperties,suchasbolometric Bad pixels are removed using the mask bits in the SDSS spec- luminosity, black hole mass and accretion rates. In the literature, trum.Toachieve reliablefitting,wefurtherrequirethat thenum- severalauthorshavesuggestedthattheCFdecreaseswithincreas- ber of good pixels must be greater than 50, and that the median ing bolometric luminosity (Lbol) (see, e.g. Maiolinoetal. 2007; signal-to-noiseratio(S/N)shouldbegreaterthan3ineachwin- Treisteretal.2008).However, thesestudies usedeitherarelative dow. 1220 sources (7%) fail to meet these criteria and are thus small sample, oracombination of alow-redshift, low-luminosity dropped.Another71sourceswithbroadabsorptionlines(accord- samplewithahigh-redshift, high-luminosity sample. Inthelatter ingtoShenetal.2011)werealsoexcluded.Furthermore,wedis- caseevolutioneffectcannotbeexcluded. count another69sourceswithfittedspectral slope αgreaterthan 0becausetheircontinuaareseverelyreddenedandarelikelycon- taminatedbystarlight.Bythisstage,16275sources(92%)areleft. Recently, the Wide-field Infrared Survey Explorer (WISE; According to Shenetal. (2011), 15279 of these sources lie Wrightetal. 2010) provided a large amount of photometric data in the footprint of the Faint Images of the Radio Sky at Twenty- at near- and mid-infrared bands that can be used to study the Centimeters(FIRST;Whiteetal.1997)survey.And1568ofthem IR emission as well as dust CF of AGNs for a quite large sam- are classified as ‘radio-loud quasars’. In the following analysis, ple.Forexample,recentworksofMor&Trakhtenbrot(2011)and wewillexaminethepotentialdifferencesbetweenradio-loudand Calderoneetal.(2012)reportedthatCFanti-correlateswithLbol radio-quiet quasars on the properties we are discussing. Further- bystudyinglargemagnitude-limitedsamples.Inthispaper,wewill more, since our purpose is to study the mid-infrared emission of utilizethemostrecentWISEAll-SkyDataRelease,combinedwith warmdust,wewillfirstrestrictouranalysistotheprimarysample thespectroscopicdatafromtheSeventhDataReleaseoftheSloan of12483outof16275quasarsthathavereliabledetectionsinALL Digital Sky Survey (SDSS/DR7; Abazajianetal. 2009), to study fourWISEbands,andthenexaminethepropertiesoftherest3792 the warm dust emission of 16275 quasars in a redshift range of quasars which only have upper limits of W3 or/and W4 magni- 0.76<z<1.17(including∼10%radioloudquasars).Thesam- tudes.Allinformationfortheentiresamplerelevanttothispaperis pleisdescribedin§2.1.WefittheSDSSspectrawithpower-law availableonlineasthesupplementarymaterial(seeAppendixand function toderivethefluxinthenear-ultraviolet(NUV) rangeof Table1foradescription). restframewavelengthfrom2000A˚ to4000A˚ (FNUV).ThisNUV bandisclosetothepeakSEDofthebigbluebump(Zhengetal. 1997;Shangetal.2011).Wealsocalculatethefluxinnear-tomid- 2.2 Near-UVandMid-Infraredflux infrared(MIR)rangeofrestframewavelengthfrom3µmto10µm (FMIR,§2.2),whichisdominatedbywarm,andasmallportionof We calculate the integrated NUV continuum flux, FNUV, in the rest-frame wavelength range of 2000–4000 A˚A˚ by simply inte- hot, dust.Wefindastrongcorrelation between FMIR/FNUV and gratingthebestfittedpower-lawmodel.Itexcludesthereprocessed NUV spectral slope α, which can be best explained as dust ex- componentssuchasBalmerandpseudoFeIIcontinua,andbroad tinctionandreddeninginNUV(§3).Aftercorrectingforthedust extinction, weestimate thecovering factorof warmdust CFWD, emission lines. The errors of FNUV come from two sources: the andexamineitsrelationswithotherAGNproperties(§4).Inthe uncertaintiesoffittingparameters candα,andtheuncertaintyof SDSSspectrophotometriccalibration.Usingerrorpropagation,we end, we compare our resultswithprevious works and investigate estimate that the former introduces only a small error, typically how anisotropic continuum can affect the observed CFWD–Lbol correlation(§5). 0.5%.Weexpectthelattertobethedominantsource.Toquantify this,wenoticethatthedifferencebetweenspectrophotometricand In this paper, we use a flat cosmology with H0 = 70kms−1Mpc−1,ΩM =0.3andΩΛ =0.7. 1 WeusetheMPFITpackageforallnonlinearfittinginthiswork. (cid:13)c 2013RAS,MNRAS000,1–8 Covering Factorof WarmDustinQuasars 3 photometricmagnitudes hasa1σ scatterof 0.05magat r band2, whichismostlyattributedtotheuncertaintyinspectroscopiccali- bration.Thisindicatesthespectralfluxatrbandhasarelativeun- certaintyof∼0.047.Wewillquote5%inFNUVasthecalibration uncertaintyhereafter. For mid-infrared (MIR) emission, we will focus on the in- tegrated flux in the quasar’s rest-frame wavelength range of 3– 10µm.ThisregimeiscoveredbytheWISEW2,W3&W4bands forour chosen redshift range. Furthermore, theinfrared emission in this regime is primarily dominated by the warm and hot dust heatedbyquasars.Finally,themeanquasarSEDinthiswavelength rangeisrelativelysmoothaccordingtoRichardsetal.(2006)and Shangetal.(2011).Therefore,itisrelativelystraightforwardtoob- tain the integrated flux from the WISE photometric data without invokingdetaileddustmodelling. Inpractice,weapproximatetheMIRSEDasabrokenpower- lawwithbrokenwavelengthattheeffectivewavelengthofW3band Figure 1. Correlation between FMIR/FNUV and spectra slope α. The attherestframeofthequasar.Thenweintegratethemodelfrom blackdotsrepresentthe12483objectsinourprimarysampleandreddots rest-frame3µmto10µm,toobtaintheintegratedMIRfluxFMIR. representthe3792objectswithonlyupperlimitsofW3or/andW4magni- Toestimate theuncertainty of this measured MIR flux, weapply tudes.ThegreenlinedisplaysthetendencypredictedbySMC-likeextinc- the same approach to every object in the sample of Shangetal. tion,onlyforthoseα>−1.7.Thegreendashlinedenotesthemeanvalue (2011),whichhavetheSpitzer MIRspectra.Wefindthatourap- ofFMIR/FNUVforquasarswithα<−1.7. proachgivesFMIR3%higheronaveragethanthedirectintegration ofIRspectraoverthecorrespondentwavelengthrange,withascat- terof8%.Hereafter,weadopt 3%astheglobaloffsetand8%as mostbluequasarsarelikelynotdustreddened,wecheckhowthe theuncertaintyintroducedbyourmethod.Finally,wecombinethis parameterkchangeswithdifferentαranges.Forthe7700sources uncertaintywithstatisticaluncertaintycomesfromtheuncertainty withα > −1.7,weobtaink1.7 = 0.29±0.02,andforthe4505 ofWISEmagnitudesasthefinaluncertaintyofFMIR.Thespectra sourceswithα>−1.5,theresultisk1.5 =0.33±0.02. slopeα,NUVfluxFNUVandMIRfluxFMIRfortheentiresample By comparing the behaviours of radio-loud and radio-quiet canbefoundintheonlinetable(seeTable1forareference). quasarsinoursample,wefindthatthisFMIR/FNUV–αrelationis independentofradioactivities.Also,forthe3792sourcesthatare removedfromourprimarysample,wecalculatetheir FMIR using thesameapproachdescribedin§2.2withtheupperlimitsofW3 3 EXTINCTIONCORRECTION &W4magnitudesprovidedintheWISEcatalog,andfindthatthey 3.1 CorrelationbetweenFMIR/FNUVandSpectralSlopeα sharethesamebehaviourasfortheprimarysample(thereddotsin Fig.1).Therefore,wewillnotdistinguishthesedifferentcategories The observed near-ultraviolet spectral slopes of quasars in our ofquasarswhenanalyzingextinctioneffectbelow. sample lie in a quite wide range from −2.9 for the bluest one Previous studies suggested that dust extinction to quasars to 0 for the reddest one, with a median value of −1.7. We plot can be characterized by an SMC-like extinction curve (e.g. FMIR/FNUVversasαinFig.1.Thereisafairlystrongcorrelation Richardsetal.2003;Hopkinsetal.2004;Gaskelletal.2004).To betweenFMIR/FNUV andαwithaSpearmanrankingcorrelation illustratetheextinctioneffectonFMIR/FNUV–αrelationquantita- coefficient Rs = 0.41, corresponding to a chance probability of tively,weapplySMC-likeextinction(Pei1992)ofdifferentvalues Pr <10−6.Wefitthisrelationwithalinearfunction3 of E(B −V) to an intrinsic blue QSO continuum, which is de- log(FMIR/FNUV)=k·α+b, (2) scribed by an intrinsic spectral slope β (Fλ ∝ λβ) in the NUV range and a certain fraction of reprocessed infrared emission, to wherekandbarefreeparameters.Forall12483quasarsincluding getasetoffakedquasarcontinuua.WemeasuretheNUVspectral in our primary sample, the best fit yields k = 0.24 ±0.02 and slope(α) and FNUV foreach faked continuum inexact thesame b=0.45±0.05. wayasthatdescribedaboveforrealQSOs.Itturnsoutthatthere- This correlation can be naturally interpreted as wavelength- lationshipbetween αand E(B−V)can bewell described bya dependent dust extinction. For example, Richardsetal. (2001) linearfunction, showed that SDSS colors of quasars can be well represented by powerlawsof spectral indexes α = −1.5±0.65 witharedtail E(B−V)=c(α−β), (3) possibly due to dust extinctions. Because extinction is larger at for E(B − V) < 0.3. Particularly, for β = −2.0, we have shorter wavelengths, it makes the observed optical-UV spectrum c=0.127.ForsuchaE(B−V)range,thedustextinctionhaslittle flatter(redder),andsimultaneouslyraisesobserved FMIR/FNUV. The large intrinsic scatters of α and FMIR/FNUV dominate the effectontheFMIR,whichcanthusbeconsideredasaconstant.The variations at small αand small FMIR/FNUV, thusmake the cor- relation between log(FMIR/FNUV) and α for the mock quasars canbewelldescribedbyalinearfunctionwithaslopeof0.322,in- relation weaker for blue sources as seen in Figure 1. Given that dependentofthevalueofβforawiderangeof−2.2<β <−1.8. Thisslope isalso veryclosetotheobserved one k1.7 = 0.29 or 2 seehttp://www.sdss.org/dr7/products/spectra/spectrophotometry.html k1.5 = 0.33. Therefore, our analysis supports that the observed 3 WeusetheIDLprocedure robust linefit.proforallthelinear fittingin FMIR/FNUV–αrelationisstatisticallyattributedtothedustextinc- thiswork. tion.Andthescatteringofthiscorrelationisdominatedbyintrinsic (cid:13)c 2013RAS,MNRAS000,1–8 4 Ma &Wang dispersionsofthecontinuumslopeandFMIR/FNUV (greenlines denoting by FMIR, should beconsidered asthe MIR emissionof inFig.1). thewarmdust. Assuming that theNUV and MIR are isotropic, wecan cal- culatetheNUVluminosityLNUVandMIRluminosityLMIRfrom 3.2 ExtinctionCorrectionforFNUV FNUV and FMIR, respectively. Next, we consider the bolometric correction (BC) for the total luminosity from optical to X-ray. In this subsection, we will correct FNUV for dust extinction in a Sincewehavealreadycorrectedforextinctioneffect,wewilluse statisticalwayusingtherelationderivedinthelastsection. First, the mean SED of optically blue quasars in Richardsetal. (2006) we estimate the intrinsic distribution of log(FMIR/FNUV) using tocalculatethiscorrection.WecalculatetheLNUVusingthesame bluequasarswithα< −1.7.Asmentionedabove,inthisregime, extinctionissmall,andvariationsoflog(FMIR/FNUV)andαare 1meµtmhotdod1e0sckreibVedtoinob§t2ai.n2,tahnedtointatelgluramteinloosgi(tyνfinν)thoivserralnogge5ν.fTrohmis dominatedbyintrinsicscatters,ratherthanreddeningeffect,albeit yieldsBC =4.34.Thusbolometricluminositiescanbecalculated the latter must be present. The distribution of log(FMIR/FNUV) by Lbol = BC ×LNUV. Finally, we define the covering factor forbluequasarscanbewelldescribedbyaGaussianfunctionwith ofwarmdustasCFWD =LMIR/Lbol.Ourdefinitionofcovering ameanvalueof0.010(FMIR/FNUV = 1.02),andadispersionof factorissimilartothatofCalderoneetal.(2012),butdifferentfrom σ=0.144. theirsinthesensethatweconsidertheIRfluxinafixedMIRrange Aswehaveshown inthelast subsection, thedependence of dominatedbywarmdustratherthanthewholeIRbandscoveredby FMIR/FNUVonobservedspectralslopeαcanbeexplainedbydust WISE.Besides,wedonot takeintoaccount anisotropicemission extinction.Therefore,itispossibletocorrectFNUVinastatistical intentionallybythisstage,whilewewillexamineorientationeffect wayfortheextinctionusingthederived FMIR/FNUV–αrelation, inthelastsection. withfittedspectralslopeαasanextinctionindicator.Assumingthe meanFMIR/FNUVatdifferentαisthesame(1.02)asthatforblue quasars,andfollowingtheFMIR/FNUV–αrelationderivedinthe lastsubsection,wecalculatethecorrectionfactorforFNUV: 4.2 DependenceofCFWDonAGNProperties 3.5×100.322×α ifα>−1.7 Inthissubsection, we consider therelations between CFWD and C =(cid:26) 1 ifα<−1.7. (4) AGN properties: bolometric luminosity Lbol, black hole mass MBH,andEddingtonratioL/LEdd.Wepresenttheserelationsfor Inthefollowinganalysis,westillusethenotationFNUVtodenote oursampleinFig.2.Weadoptthevirialblackholemassesinthe the NUV flux, while it has already been corrected for extinction catalogofShenetal.(2011)withanadditional extinctioncorrec- effect. Itshould be pointed out that thiscorrection isonly insta- tion. These massesare estimated using thewidth of MgII λ2798 tisticalsensefortheentiresampleratherthanforindividualobject andUVcontinuumluminosityat2800A˚ (Eqn.(2)inShenetal. sincethe intrinsicUV continuum slope β and FMIR/FNUV have 2011). fairly broad distributions. Nevertheless, by applying different cut onαasthestandardforbluequasars,weestimatetheuncertainty log(MBH,vir) = a+b log( λLλ ) ofthiscorrectionforindividualobjectislessthan10%. M⊙ 1044ergs−1 FWHM +2 log( ), (5) kms−1 witha = 0.740andb = 0.62.Shenetal.(2011)didnotconsider 4 WARMDUSTCOVERINGFACTORANDITS intrinsicextinctionontheUVluminosity.Inthefollowinganalysis, RELATIONWITHAGNPROPERTIES wewillapplyacorrectionbyadding 4.1 CoveringFactorofWarmDust ∆=1.588∗E(B−V) (6) TheobservedMIRfluxFMIRcomesfromthreecomponents:emis- tothevalueprovidedbyShenetal.(2011).Thiscorrectioniscalcu- sion of the warm and hot dust heated by AGN, young-star emis- latedaccordingtoSMCreddeningcurveat2800A˚.AndE(B−V) sionatMIRband,andtheemissionoftheaccretiondiscextending can be calculated from spectra slope (α) using Eqn. (3) in § 3.1. toMIRbands.Star-formationgalaxiesarecharacterizedbystrong Bolometricluminositiesandblackholemassesfortheentiresam- PAHemissioninMIR.Previousinfraredspectroscopicstudiessug- plearealsoprovidedintheonlinetable. gestthatPAHfeaturesareveryweakinquasarspectra.Therefore, First,CFWDisanti-correlatedwithLbol.TheSpearmanrank thiscomponent isnot statisticallyimportant inourMIR range of rWeset-efsratimmeat3e–t1h0eaµcmcr.eWtioenwdiilslcnceogmlepcotnietnitnbtyheexatnraaplyosliastihoenreoaffttehre. tchoerraenlattii-ocnorcreoleaftfiiocnienist(vRersy)osifgtnhiifisccaonrtre(lPatrio<nis1−0−06.3).6A,inldiniceaatrinfigt yields optical/UVpower-lawcorrectedforreddeningeffect.Thiscouldbe consideredasanupperlimitconsideringspectralflatteninginthe logCFWD = (−0.23±0.02)logLbol/(erg·s−1) near-infraredduetostarlightcontributionintheSDSSspectrum4. +(9.79±0.04). (7) Numerically, the disc contribution to FMIR is5.2% of FNUV for β = −2.2,9.3%ofFNUV forβ = −2.0and16.6%ofFNUV for There is a significant anti-correlation between CFWD and β=−1.8.SincewefocusontheMIRemissionofthedusttori,we blackholemassMBHwithaSpearmanrankcorrelationcoefficient willsubtract0.093FNUVfromFMIRtoremovethecontributionof theaccretiondiscandtheslightstarlight.Theremainedvalue,also 5 We discount the IR luminosity here since most mid- and far-infrared emissionisthere-radiationoftheabsorbedcontinuum(Shangetal.2011). 4 Starlightcontributioninourcontinuumwindowsisgeneralsmallforlu- Butthis still includes asmall contribution fromemission lines, which is minousquasarsinthispaper(e.g.Stern&Laor2012). doublycounted. (cid:13)c 2013RAS,MNRAS000,1–8 Covering Factorof WarmDustinQuasars 5 (Rs =−0.27,Pr <10−6).Alinearfityields CFWD withincreasingLbol.Ourresultsareinqualitativeconsis- tencywithpreviousworks. logCFWD = (−0.13±0.02)log(MBH/M⊙) Maiolinoetal. (2007) estimated the dust covering factor for +(0.50±0.02). (8) a few tens of QSOsusing monochromatic flux ratio of 6.7µm to Finally,noapparentcorrelationisfoundbetween CFWD andEd- 5100A˚,whichissimilartoourmethodinthespirit.However,their dingtonratio, samplewasconstructedbymergingtwogroupsofQSOsfromto- tallyseparateredshiftranges.Moreover,theiranalogous CF–Lbol L = Lbol (9) correlationisfarlesssignificantwhenonlyconsideringeitherone LEdd 1.5×1038MBH groupofobjectswithcloseredshifts.Therefore,theirresultmight (ρ=−0.008andPr =0.34). behamperedbypossibleevolutioneffect.Asimilartrendwasob- Wecompareradio-quietandradio-loudquasarsonthesethree tainedbyTreisteretal.(2008),whomadeuseofnearlyonehun- diagrams,andfindthattheyareindistinguishable.Particularly,we dredobjectsconstructedfromdifferentsurveys.Incomparisonwith have fitted related parametres separately for the radio-loud sub- theseworks,oursampleismuchlarger,andisuniformlyselected sample. First, the median value of CFWD is consistent with that inarelativelysmallredshiftrange. of the radio-quiet subsample within 10%. Second, the slopes of More recently, Mor&Trakhtenbrot (2011) used the prelim- CFWD–Lbol and CFWD–MBH relations are −0.21 ± 0.02 and inary data release of WISE to study the hot dust component for −0.15±0.02,respectively.ThedistributionofCFWD,andthese a large and uniformly selected sample. Their definition of hot fittingslopesareconsistentwiththeir1σuncertainties.Therefore, dustcoveringfactorisquitesimilartoours,andtheirresultsalso weconcludethatnoneofthesethreerelationsareaffectedbyradio revealed a dependence of hot dust CF on bolometric luminos- activities. ity. Their sample covers a very wide redshift range and their hot Next,weconsiderthe3792sourcesthatonlyhaveupperlim- dust luminosities were estimated using a certain dust model. In- itsofW3and/orW4magnitudes. Fromtheleftpanel of Fig2,it stead, wetake amodel-independent approach in our work. Simi- isobviousthattheseobjectshavesystematicallylowerLbol,while larly,Calderoneetal.(2012)studiedthedustcoveringfactorforall at the same time their CFWD (upper limits) are similar to those radio-quietAGNsconstructedfromWISEandSDSSwithinasmall of quasars in our primary sample, so they shift to the left on the redshiftrange.TheseauthorsreportedasimilartrendofCF–Lbol CFWD–Lbol diagram. In other words, they show systematically relationbydividingthewholesampleintothreebins.Comparing lowerCFWD,comparingtothequasarsofsimilarluminositiesin with these studies, our work has taken the extinction effect into theprimarysample.Becausethefractionofthesesourcesissmall, account.Also,weusedtheextinction-correctedbroadband NUV weget almostanidentical slopeforCFWD–Lbol relationforthe luminosity,whichisabetterestimationofbolometricluminosity. entire sample. From the middle and right panels of Fig. 2, these Furthermore,wefindthatCFissignificantlycorrelatedwithblack quasarshavesimilardistributionofblackholemasses,butsystem- holemass,butisindependentofEddingtonratio.Thelatterresults aticallylowerL/LEddthantheprimarysample.However,theyfol- areconsistentwiththosereachedbyCao(2005)forPGquasars. lowthesameCFWD–MBH andCFWD–L/LEdd relationsasthe Intheliterature,manyauthorsusedthefractionoftype2ob- primarysample. jectsasanindicatoroftotaldustcoveringfactorandreachedasim- ilarconclusion. Forinstance, Simpson (2005) and Hao&Strauss (2004) found a similar dependence of type 2 fraction on the 5 DISCUSSIONANDCONCLUSION [O III] luminosity using a magnitude-limited sample from the SDSSspectroscopicsurvey.Similarresultswerereportedbyother 5.1 OnRadio-loudQuasars authors using sample constructed from flux-limited X-ray sur- Approximately10%objectsinoursampleareradio-loudquasars. vey (e.g. Hasinger 2008) or a combination of multi-band survey As we have discussed earlier, they exhibit the same correlations (Hatziminaoglouetal. 2009). However, some other authors have as radio-quiet quasars. Therefore, the majority of the radio-loud reportedthe opposite results.Lawrence&Elvis(2010) suggested quasarshavetheverysimilarstructureofaccretiondiscanddusty thatthereisnocorrelationbetweentype2fractionand[OIII]lu- torus.ThisisconsistentwithRichardsetal.(2006)andShangetal. minosityafterremovingLINERsfromthedefinitionoftype2ob- (2011) that mean SEDs of radio-quiet and radio-loud quasars in jects,andsodidLuetal.(2010)bytakingintoaccountofvarious NUVandMIRarequitesimilar.However,itisofnecessitytopoint selectioneffects. A caution should betaken when comparing our outthatasmallfractionoftheradio-loudquasarswithinoursam- results withthose derived from the fraction of type 2 AGNs. We ple are blazars, in which the relativistic jets are beamed toward only consider the covering factor of warm dust, which is merely us. Inthiscase, therelativisticjetswould contributesignificantly aportionoftheobscuringmaterial.Furthermore,afractionofthe or even dominate the observed flux at near-ultraviolet and mid- type2objectsareobscuredbydustintheirhostgalaxiesratherthan infrared bands. Therefore, NUV and MIR emission in these ob- dusttorithemselves(Goulding&Alexander2009). jectswillnolongerrepresenttheprimaryemissionoftheaccretion discsandre-emissionofthedustytori.Thusourdefinitionofwarm 5.3 EffectsofAnisotropicContinuum dustcoveringfactorisnolongappropriatefortheseblazars.Nev- ertheless,thefractionofblazarsinourwholesampleisquitesmall Itshouldbeemphasizedthatuptonow,ourwholeanalysisisbased (∼ 1% of type 1 quasars according to the argument of Padovani ontheassumptionthattheNUVandMIRemissionofquasarsare 2007),theywilldefinitelynotaffectourconclusion. isotropic. However, the NUV emission from a geometrically thin butopticallythickaccretiondiscispredictedtobestrongeratpo- lardirectionsthanatequatorialdirections(e.g.Shakura&Sunyaev 5.2 ComparisonwithPreviousStudies 1973; Laor&Netzer1989; Fukue&Akizuki 2006). If thisisthe Inthiswork,weusethemid-infraredtonear-UVluminosityratio case,ourestimationofbolometricluminositywouldbebiasedde- toestimatethecoveringfactorofwarmdust,andfindadecreaseof pending on the viewing angle (cf. Nemmen&Brotherton 2010; (cid:13)c 2013RAS,MNRAS000,1–8 6 Ma &Wang Figure2.RelationsbetweenwarmdustcoveringfactorCFWDandAGNproperties:bolometricluminosityLbol(leftpanel),blackholemassMBH(middle panel),andaccretionrateLbol/LEdd(rightpanel).Themeaningsofblackandreddotsareexactlythesameasinfigure1.Thebluedotsrepresentradio-loud quasarsintheprimarysample.Thegreendashlinesrepresentthelinearfitfortheserelations. Runnoeetal. 2012) and our definition of covering factor would certainly be inaccurate. For example, if an object is viewing rel- atively edge-on, we will underestimate its bolometric luminosity Lbol while overestimate its covering factor CFWD. In a statisti- calview,thiscanresultinananti-correlationbetweenCFWD and Lbol,thesametendencyaswehavediscoveredfromoursample. To illustrate this more clearly, we construct a simple model tosimulatetheeffect of different viewingangles. Thesimulation involves the same number of faked quasars as for our sample. We adopt three assumptions: (1) The intrinsic CFWD and Lbol are independent, and obey log-normal distributions respectively. (2) The inclinations are random in a range of 1/2 < µ < 1, where µ = cosθ (the viewing angle). A lower limit on µ is set, since we require the line-of-sight must lie in the open angle of thetorus,otherwisetheNUVemissionwouldbetotallyabsorbed. Thevalue1/2iscorresponding toatype2totype1ratioof1:16 (Lawrence&Elvis2010;Reyesetal.2008).(3)TheobservedLbol andCFWDforeachobjectarecalculatedfromobservedNUVflux andNIR/NUVfluxratioviewingfromacertaindirection.Thede- pendenceofNUVfluxonviewingangleusedinourmodelis 2 f(µ)=f0×µ(µ+ ), (10) 3 following the results of Fukue&Akizuki (2006) who have taken intoaccount limbdarkening effect.Moreover, werequirethatthe observedLbolandCFWDhaveexactlythesamedistributionasfor oursample. WeplotoursimulatedCFWD–LbolrelationinFig.3,incom- parison with the same relation of the sample. It turns out that Figure3.Above:theCFWD–Lbolrelationfortheprimarysample.Bot- our simulation obtains a similar but more compact relation. This tom:thesamerelationforthesimulatedsample. seemstoindicatethattheobserved CFWD–Lbol mayresultfrom anisotropicNUVcontinuum. However,westressthatoursimulationisinitialandneedsto Inotherwords,thesampleisbiasedagainstleastluminousquasars berefinedinseveralaspects.First,theassumptionthattheviewing atlargeinclinations.Wenotethatthecontinuumfluxdecreasesby angles are uniformly distributed is not satisfied by a flux-limited a factor of 2.9 from µ = 1 to µ = 1/2, so this selection effect sample,suchastheSDSSquasarsampleusedhere.Forexample,a willsignificantlyaffecttheinclinationdistributionofquasarswith quasarclosetothefluxlimitmaymoveoutofthislimitifitisob- luminositiesofafactorof2.9abovetheminimumvalue.Thenetef- servedatahigherinclination.Thusitwillbemissedinthesample. fectwillweakentheCFWD–Lbolcorrelation.Inprincipal,wecan incorporate this selection effect into the simulation by using the 6 Wesetthelowestµtothevaluefortheaveragetorusoppeningangle, quasar luminosity function. However, we should understand that ratherthanthatgivingbythewarmdustcoveringfactorofeachobjectbe- dustextinctionisalsocoupledwiththeselectioneffectinthereal causethecoveringfactorofthickcoldandhotdustisnotknown. case. Furthermore,dust extinctionmayormaynot correlate with (cid:13)c 2013RAS,MNRAS000,1–8 Covering Factorof WarmDustinQuasars 7 the inclination. If the absorber is the continuous extension of the REFERENCES dustytorus,therewillcertainlybeacorrelation;whileontheother AbazajianK.N.,Adelman-McCarthyJ.K.,Agu¨erosM.A.,etal., hand,iftheabsorptionisduetotheinterstellarmediumofthehost 2009,ApJS,182,543 galaxy, there may be no correlation. Because of lack of such de- AntonucciR.,1993,ARA&A,31,473 tailedknowledge,wedidnotcarrymorecomplicatedsimulations. Barthel,P.D.1989,ApJ,336,606 Second, IR emission is also likely to be anisotropic due BeckerR.H.,WhiteR.L.,&HelfandD.J.,1995,ApJ,450,559 to the radiation transfer effect. According to the calculations of Calderone,G.,Sbarrato,T.,&Ghisellini,G.,2012,MNRAS,425, Nenkovaetal.(2008a,b),foratypicalclumpy dustytorusmodel, L41 theMIRfluxis∼ 50%weakerviewingfroma45degreeinclina- CaoX.,2005,ApJ,619,86 tionthanviewingfromface-ondirection.Thisfactorisverysimi- DiMatteoT.,SpringelV.,&HernquistL.,2005,Nat,433,604 lar to the anisotropy of NUV flux. In that case, the CFWD–Lbol ElitzurM.,2008,Mem.Soc.Astron.Italiana,79,1124 relation will be much shallower due to the decrease of infrared FitzpatrickE.L.,1999,PASP,111,63 flux viewing from higher inclinations. Hence the correlation will FukueJ.,&AkizukiC.,2006,PASJ,58,1039 beweakened. GaskellC.M.,GoosmannR.W.,AntonucciR.R.J.,&Whysong Therefore,althoughoursimulationsuggeststhattheobserved D.H.,2004,ApJ,616,147 CFWD–Lbol relation may be attributed to the inclination effect, GouldingA.D.,&AlexanderD.M.,2009,MNRAS,398,1165 thereisfairlypossiblethattherelationisintrinsic.Adetailedstudy HaoL.,&StraussM.,2004,AGNPhysicswiththeSloanDigital combining anisotropic radiationfromboth thediscsand dust tori SkySurvey,311,445 isveryfavourableinthefuture.Also,continuumvariationontime HasingerG.,MiyajiT.,&SchmidtM.,2005,A&A,441,417 scalesofyearswillcausesimilartrendduetoadelayedresponse HasingerG.,2008,A&A,490,905 of dust emission. The fact that CF is correlated with black hole massbutnotcorrelatedwithEddingtonratiofurtherindicatesthat HatziminaoglouE.,FritzJ.,&JarrettT.H.,2009,MNRAS,399, luminosity dependence of CFisnot solely due to theanisotropic 1206 emissionalone. HopkinsP.F.,StraussM.A.,HallP.B.,etal.,2004,AJ,128,1112 Tosummarize,weuseacompletesampleinanarrowredshift HopkinsP.F.,HernquistL.,CoxT.J.,etal.,2005,ApJ,630,705 rangetostudythewarmdustemissionof ∼ 16,000quasars. We KrolikJ.H.,BegelmanM.C.,1986,ApJ,308,L55 correctforthedustextinctioneffectinastatisticalwayforthefirst Laor,A.,&Netzer,H.1989,MNRAS,238,897 timeinthiskindof study. Wefindthat CFWD iscorrelated with LawrenceA.,1991,MNRAS,252,586 LbolandMBH,whilenotwithEddingtonratio.MonteCarlosim- LawrenceA.,&ElvisM.,2010,ApJ,714,561 ulationsuggeststhatCFWD–Lbolrelationmaybesignificantlyaf- LuY., WangT.-G.,DongX.-B.,&ZhouH.-Y.,2010, MNRAS, fectedbyanisotropicdiscemission.Butitmaynotbethedominant 404,1761 factorforthisrelation. MaiolinoR.,ShemmerO.,ImanishiM.,etal.,2007,A&A,468, 979 MorR.,&TrakhtenbrotB.,2011,ApJ,737,L36 Nemmen,R.S.,&Brotherton,M.S.2010,MNRAS,408,1598 NenkovaM.,SirockyM.M.,Ivezic´Zˇ.,&ElitzurM.,2008,ApJ, ACKNOWLEDGMENTS 685,147 Wethanktheanonymousrefereeforthecommentsregardingradio- NenkovaM.,SirockyM.M.,NikuttaR.,Ivezic´Zˇ.,&ElitzurM., loudquasarsandpotentiallimitationsoftheassumptionsusingin 2008,ApJ,685,160 the simulation, which largely helped us improve our work. This NetzerH.,&LaorA.,1993,ApJ,404,L51 workwassupportedbytheChineseNSFthroughNSFC-10973013 Padovani,P.2007,TheFirstGLASTSymposium,921,19 andNSFC-11233002.Thisworkhasmadeuseofthedataobtained PeiY.C.,1992,ApJ,395,130 bySDSSandWISE.FundingfortheSDSSandSDSS-IIhasbeen PoggeR.W.,1988,ApJ,328,519 provided by theAlfred P.SloanFoundation, theParticipatingIn- Reyes,R.,Zakamska,N.L.,Strauss,M.A.,etal.,2008,AJ,136, stitutions, the National Science Foundation, the U.S. Department 2373 of Energy, the National Aeronautics and Space Administration, Richards, G.T.,Fan, X.,Schneider, D.P.,et al.,2001, AJ,121, the Japanese Monbukagakusho, the Max Planck Society, and the 2308 Higher Education Funding Council for England. The SDSS web Richards G. T., Hall P. B.,Vanden BerkD. E., et al., 2003, AJ, site is http://www.sdss.org/. WISE is a joint project of the Uni- 126,1131 versity of California, Los Angeles, and the Jet Propulsion Lab- Richards G. T., Lacy M., Storrie-Lombardi L. J., et al., 2006, oratory of California Institute of Technology, funded by the Na- ApJS,166,470 tionalAeronauticsandSpaceAdministration.TheWISEwebsite Runnoe, J. C., Brotherton, M. S., & Shang, Z. 2012, MNRAS, ishttp://wise.astro.ucla.edu/. 422,478 SakoM.,KahnS.M.,PaerelsF.,&LiedahlD.A.,2000,ApJ,543, L115 SchlegelD.J.,FinkbeinerD.P.,&DavisM.,1998,ApJ,500,525 SchneiderD.P.,RichardsG.T.,HallP.B.,etal.,2010,AJ,139, APPENDIX 2360 We present the primary data of all 16275 sources in our sample SimpsonC.,2005,MNRAS,360,565 with an ASCII table as the supplementary material of this paper. ShakuraN.I.,&SunyaevR.A.,1973,A&A,24,337 Theentiretableisavailableonline.Hereweofferasmallportion ShangZ.,BrothertonM.S.,WillsB.J.,etal.,2011,ApJS,196,2 ofthetableforaguidance(Table1). ShenY.,RichardsG.T.,StraussM.A.,etal.,2011,ApJS,194,45 (cid:13)c 2013RAS,MNRAS000,1–8 8 Ma &Wang Table1.Primarydataofoursample. Name Redshift Spectraslope NUVflux MIRflux CFWD Bolometricluminosity Blackholemass Flagb FIRST (SDSSJ) (z) (−α) (FNUVa) (FMIRa) log(Lbol/(ergs−1)) log(MBH/M⊙) flagc 000013.14+141034.6 0.958 1.657 2.773e-13 2.617e-13 0.217 45.757 8.800 0 -1 000024.02+152005.4 0.989 1.744 2.820e-13 2.044e-13 0.167 45.798 9.181 1 -1 000025.21+291609.2 0.924 1.718 8.433e-14 9.096e-14 0.249 45.201 8.216 0 -1 000025.93+242417.5 1.156 1.296 1.487e-13 2.077e-13 0.322 45.688 9.310 1 -1 000026.29+134604.6 0.768 1.691 3.206e-13 1.291e-13 0.093 45.582 8.670 1 -1 000028.82-102755.7 1.152 1.277 4.372e-13 2.150e-13 0.113 46.152 9.449 0 1 000031.86+010305.2 1.093 1.086 2.274e-13 3.818e-13 0.387 45.812 8.552 0 0 000042.89+005539.5 0.951 1.805 9.408e-13 1.033e-12 0.253 46.279 8.844 0 0 000057.67-085617.0 1.095 1.460 8.727e-13 8.643e-13 0.228 46.397 8.778 0 0 000123.96-102458.1 1.058 1.616 6.734e-13 6.254e-13 0.214 46.248 9.338 0 0 000123.98+284249.4 0.936 0.269 2.419e-13 2.935e-13 0.280 45.672 9.255 0 -1 000140.70+260425.5 0.765 1.385 3.656e-13 3.700e-13 0.233 45.636 8.670 0 -1 Thefulltableincludingall16275sourcesisavailableonlineassupplementarymaterial.Aportionisshownhereforguidanceofitscontent. aThefluxisinunitofergs−1cm−2A˚−1. HereFNUVreferstothevalueafterextinctioncorrection(see§3)andFMIRreferstothevalueafterdiscountingthedisccontribution(see§4.1). bFlag:0=12483sourceinourprimarysample;1=therest3792sourceswhichonlyhaveupperlimitsforW3orW4magnitudes. cFirstflag:thesameascolumn15inthecatalogofShenetal.(2011).-1=notinFIRSTprint;0=FIRSTundetected;1=coredominant;2=lobedominant. Stern,J.,&Laor,A.2012,MNRAS,423,600 TreisterE.,KrolikJ.H.,&DullemondC.,2008,ApJ,679,140 VandenBerkD.E.,RichardsG.T.,BauerA.,etal.,2001,AJ,122, 549 White,R.L.,Becker,R.H.,Helfand,D.J.,&Gregg,M.D.,1997, ApJ,475,479 WilsonA.S.,&UlvestadJ.S.,1983,ApJ,275,8 WrightE.L.,EisenhardtP.R.M.,MainzerA.K.,etal.,2010,AJ, 140,1868 Zheng W., Kriss G. A., Telfer R. C., Grimes J. P., & Davidsen A.F.,1997,ApJ,475,469 (cid:13)c 2013RAS,MNRAS000,1–8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.