ebook img

The cosmic web and the orientation of angular momenta PDF

0.69 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The cosmic web and the orientation of angular momenta

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed18January2012 (MNLATEXstylefilev2.2) The cosmic web and the orientation of angular momenta Noam I Libeskind1, Yehuda Hoffman2, Alexander Knebe3, Matthias Steinmetz1, Stefan Gottlo¨ber1, Ofer Metuki2, & Gustavo Yepes3 1Leibniz-Institutefu¨rAstrophysikPotsdam(AIP),AnderSternwarte16,D-14482Potsdam,Germany 2 2RacahInstituteofPhysics,HebrewUniversity,Jerusalem91904,Israel 1 3GrupodeAstrof´ısica,DepartamentodeFisicaTeorica,ModuloC-8,UniversidadAuto´nomadeMadrid,CantoblancoE-280049,Spain 0 2 n 18January2012 a J 6 ABSTRACT 1 We use a 64h−1Mpc dark matter (DM) only cosmological simulation to examine the large ] scaleorientationofhaloesandsubstructureswithrespectthecosmicweb.Awebclassification O scheme based on the velocity shear tensor is used to assign to each halo in the simulation a C webtype:knot,filament,sheetorvoid.Using∼106haloesthatspan∼3ordersofmagnitude inmasstheorientationofthehalo’sspinandtheorbitalangularmomentumofsubhaloeswith . h respect to the eigenvectors of the shear tensor is examined. We find that the orbital angular p momentumofsubhaloestendstoalignwiththeintermediateeigenvectorofthevelocityshear - o tensor for all haloes in knots, filaments and sheets. This result indicates that the kinematics r ofsubstructureslocateddeepwithinthevirializedregionsofahaloisdeterminedbyitsinfall t which in turn is determined by the large scale velocity shear, a surprising result given the s a virilaizednatureofhaloes.Thenon-randomnatureofsubhaloaccretionisthusimprintedon [ theangularmomentummeasuredatz =0.Wealsofindthathaloes’spinaxisisalignedwith the third eigenvector of the velocity shear tensor in filaments and sheets: the halo spin axis 1 v pointsalongfilamentsandliesintheplaneofcosmicsheets. 5 1 INTRODUCTION Clouds,UrsaMinor,CarinaandFornax)havepropermotionscon- 6 sistentwith“rotationalsupport”oftheso-called“disc-of-satellites” 3 3 Satellitegalaxiesrepresentaparticularlyfascinatingsubsetofthe (Metzetal.2008),anobservationrecentlyattributedtotheangular . lowredshiftuniverse.Amongtheirinterestingpropertiesistheso- momentumbiasofsatellitesfallinginalongtheirhostsmainaxis 1 called “Holmberg effect” (Holmberg 1969; Zaritsky et al. 1997) (Deasonetal.2011).Althoughexaminingadifferentenvironment 0 which finds that satellites tend to be oriented close to the poles andmassrangeofhaloes,Tormen(1997)wasthefirsttosuggest 2 oftheirhostdiscgalaxies,avoidingtheplanar regions.Thistype thatgalaxiesfallintoclustersanisotropically.Furthertotheirwork, 1 of polar alignment is also seen in the Milky Way (Kroupa et al. the idea that satellites are preferentially (not randomly) accreted : v 2005;Metzetal.2009)andwasprobablyfirstnotedover3decades andretainamemoryofthelargescalesfromwhichtheycamehas Xi ago(Lynden-Bell1982),anadequateexplanationofwhichisstill also recently been suggested (Knebe et al. 2004; Libeskind et al. lacking. 2011;Vera-Ciroetal.2011). r a External galaxies (for example in the SDSS) often exhibit a Onlargerscalesanumberofobservationalstudieshavehinted spatialalignmentofsatelliteswiththelongaxisofthehost(Sales thatgalaxiesseparatedbyasmuchas∼30Mpc(or100softimes & Lambas 2004; Brainerd 2005; Yang et al. 2006; Agustsson & theirvirialradii)mayalsoexhibitalignmentsalbeitwiththelarge Brainerd 2010) although this alignment is strongest for the older scale distribution of matter (Hirata & Seljak 2004; Hirata et al. reddersatellites-youngerbluesatellitegalaxiesexhibitnosignifi- 2007; Mandelbaum et al. 2006; Okumura et al. 2009). On these cantalignment.ItsnotclearwhethertheMilkyWay’spolaralign- scales,matterclustersintoa“cosmicweb”definedeithergeomet- mentisatoddswiththeseresults,asthesurfacebrightnessofmany rically (e.g. Sousbie et al. 2008) or dynamically (e.g. Hahn et al. oftheMilkyWay’sultrafaintsatellitegalaxiesismanyordersof 2007;Forero-Romeroetal.2009). magnitudelowerthanwhatcanbeobservedextra-galactically. Yetwhatlacksfromtheabovestudiesisaclearlinkbetween In addition to their anisotropic spatial distribution at least 5 thelargescalecosmicweb,theorientationofcentralgalaxiesand of the Milky Way’s satellites (the Large and Small Magellanic thepreferentialbiasinsatelliteentrypoints,angularmomentaand (cid:13)c 0000RAS 2 Libeskindetal. Figure1.A0.25h−1Mpcslicethroughthesimulationsboxofsidelength 64h−1Mpc.Intheleftpanel,weshowthemeshcellsassociatedwithknots (black),filaments(lightgray)andsheets(darkgray).Ontherightweshow thedistributionofDMhaloesinthesamesimulationslice. z = 0position.Somestudies,suchasArago´n-Calvoetal.(2007) andHahnetal.(2007)haveusedmethodsbasedonthetidalfield ortheHessianofthedensityfieldtocorrelateintrinsichaloproper- tieswiththecosmicweb.Arago´n-Calvoetal.(2007)foundamass dependenceforthe(perpendicular)correlationbetweenhalospins andcosmicstructure.Hahnetal.(2007)examinedhowanycorrela- tionvariedwithredshift,extendingtheirworkinHahnetal.(2010), where they attempted to establish a link between central galactic discs and the cosmic web. In that paper they found an alignment betweenthespinofgaseousdiscsandtheintermediateaxisofthe ofthelargescaletidalfield,consistentwithlineartidaltorquethe- ory(e.g.Navarroetal.2004;Lee&Erdogdu2007).Howevernone ofthesestudiesexaminedtheorbitsofsatellitegalaxies. InthisLetterweextendandcomplementtheworkofHahnet al.(2007,2010)andArago´n-Calvoetal.(2007)intwoways.First weexaminingtheorientationofthehalowithrespecttothevelocity shear tensor instead of the tidal tensor. This method allows us to obtain much higher spatial resolution for our web classification. Secondly,welookattheorientationwithrespecttothecosmicweb ofsubstructureangularmomentum,inabidtounderstandhowthe Figure2.Normalizedhistogramsofthecosineoftheanglebetweenthe internal dynamics of haloes and the substructures resident within spinaxisofthehalo(LDM,left),theorbitalangularmomentumofsub- themareeffectedbyandreflectiveofthelargescalecosmicweb. structures(Jsub right)andtheprincipalaxesofthecosmicwebinsheets (top),filaments(middle)andinknots(bottom).Weshowtheangleformed withthelong(eˆ1,black),intermediate(eˆ2,red)andshort(eˆ3,blue)axesof thecosmicweb.Auniformdistributionofanglesisshownbytheflatline 2 METHODS atP(|cosφ|)=1. We use a DM only N-body cosmological simulation run assum- ing the standard ΛCDM concordance cosmology (e.g. WMAP5, Komatsu et al. 2009). These assume a flat universe with cos- available halo finder AHF (Knollmann & Knebe 2009) is run on mological constant density parameter Ω = 0.72, matter den- theparticledistributiontoobtainahalocatalogue.AHFidentifies Λ sity parameter Ω = 0.28, a Hubble constant parameterized by haloes and subhaloes in the simulation by searching the particle m H = 100hkms−1 Mpc−1 (withh = 0.7),aspectralindexof distribution for local density by maxima and checking that parti- 0 primordialdensityfluctuationsgivenbyn =0.96,andmassfluc- cles within the virial radius are gravitationally bound to the host s tuationsgivenbyσ =0.817. structure.Substructuresareidentifiedashaloeswhosecenterislo- 8 The simulations span a box of side length 64h−1Mpc with catedwithinthevirialradiusofamoremassiveparenthalo. 10243 particles, achieving a mass resolution of ∼ 1.89 × A grid based velocity field is constructed by the “clouds in 107h−1M and a spatial resolution of 1h−1kpc. The publicly cells” (CIC) algorithm. The velocity of each cell is computed by (cid:12) (cid:13)c 0000RAS,MNRAS000,000–000 Haloesinthecosmicweb 3 summingthemomentumofalltheparticlesineachcellandthen Knots Filaments Sheets Voids dividingbythetotalmassinthatcell.Anormalizedsheartensor isdefinedateachgridcellpointbyΣ = − 1 (cid:0)∂vα + ∂vβ(cid:1), Vff 0.5% 4.5% 26% 69% αβ 2H0 ∂rβ ∂rα Nf 6% 28% 45% 21% whereαandβarethex,y,andzcomponents.TheH0normaliza- Mf 25% 44% 26% 5% tionisusedtomakethetensordimensionlessandtheminussignis N 17 6.1 1.7 0.3 introducedtomakethepositiveeigenvectorscorrespondtoacon- ρ 72 9.4 0.96 0.08 vergingflow.Thesheartensorisdiagonalizedateachgridpointto obtain the eigenvalues λ and the corresponding eigenvectors eˆ, Table1.Propertiesofhaloesandthecosmicweb.Wepresent:thevolume i i (wherei = 1,2,3andλ1 > λ2 > λ3).Thewebclassificationat fillingfractionVff (thefractionofthetotalvolumeoccupiedbyeachweb eachgridcellisdonebycountinghowmanyeigenvaluesareabove type),thenumberfractionNf (thefractionofhaloesassignedtoagiven athresholdλ =0.07,(choseninHoffmanetal2011tovisually web type), the halo mass fraction Mf (the fraction of all halo mass, in th haloesofeachwebtype),thenumberdensityofhaloesN (thenumberof reproducethecosmicweb).If0,1,2,or3eigenvaluesareabove haloesinagivenwebtypedividedbythevolumeoccupiedbythatwebtype, λ weclassifythegridcellasavoid,sheet,filamentorknotre- th normalizedbythemeannumberdensityofhaloes),andthemassdensityof spectively.TheCICvelocityfieldisthengriddedinto2563 cells, haloesρ(thetotalmassofhaloesineachwebtypedividedbythevolume eachwithalengthof0.25h−1MpcandisthenGaussiansmoothed occupiedbythatwebtype,normalizedbythemeanhalomassdensity). with a kernel of 0.25 h−1Mpc so as to suppress numerical arti- factsandspuriouspreferreddirectionsintroducedbythecartesian grid.NotethattheCICalgorithminherentlysmoothesthediscrete webclassificationsandthehaloesinvoidstendtobelowmass- particle distribution across eight cells, two for each of the three littleofthemassboundtohaloesatz=0isinvoids. dimensions. This intrinsic smoothing allows us to use a gaussian smoothing of 1 grid cell while still suppressing artificial grid ef- fects. 3 RESULTS Note that the number of positive eigenvalues corresponds to thenumberofeigenvectorsalongwhichmassismoving“inwards” Fig.1showsa0.25h−1 Mpcslicethroughthecentreofoursim- orcollapsing,whilethenumberofnegativeeigenvaluesindicates ulation box. Since each point (grid cell) in space is given a web expansion.Inthisworkweassumethatif0<λi <λththeeigen- classification,wecanvisualizethecosmicwebbydividingitinto vectoriscollapsingsoslowlyastobeconsideredexpanding.Thus its constituent components. Fig. 1 reveals the nature of the cos- knotsandvoidsarecollapsingandexpandinginallthreedirections mic web: knots are fragmented over dense clumps in the puffier respectively.Filaments,expandalongtheirlongaxis,eˆ3,whilecol- filaments,whichthemselvesinhabitthecentersofevenlessdense lapsingalongeˆ1andeˆ2whilesheetscollapsealongtheirshortaxis sheets. The filamentary appearance of sheets in Fig. 1 is a result eˆ1,andexpandintheplanedefinedbyeˆ2andeˆ3. oftheplanarcutofthetwodimensionalmanifold.Althoughitap- Wefocusontheorientationofhaloangularmomentum(LDM) pears that sheets dominate the environment of haloes this is only andtheorbitalangularmomentumofsubhaloes(Jsub)withrespect duetotheirlargevolume.InTable1wepresentthepropertiesof to the cosmic web. Often the word “orientation” is used to mean thecosmicwebintermsofvariousfillingfactors. theorientationofthesevectors.ForthestudyofLDM onlyvirial- Thistablerevealsthenatureofthehalodistribution-forex- izedhaloesmoremassivethat109.5M(cid:12)areconsidered;thisreturns ample,althoughvoidsoccupy69%ofthesimulationvolume,only ∼106haloes.Ofthese,∼2.7×104haloescontain∼1.2×105 21% of the haloes are found in voids. Furthermore, these haloes substructures more massive than 30 particles, that are then used tendtobesmall,makingupjust5%ofthemassboundtohaloes. inthestudyofJsub.Onlysubhaloeswith>30particlesareused Finallysincethevolumeoccupiedbyvoidsissolarge,thenumber here (AHF returns converged results for haloes above this limit, densityofhaloeshereis0.3timesthemeanwhilethemassdensity seeKnebeetal.2011),butnotethatincreasingordecreasingour isjust0.08timesthemeanmassdensityofthehaloesintheuni- subhaloresolutionto20or200particles,hasnoeffectonourre- verse.Converselyforknots,weseethatalthoughtheyoccupyjust sults. 0.5%ofthesimulation’svolume,theycontainaquarterofthemass ThealignmentofLDM andJsub ismeasuredwithrespectto boundtohaloesandare72timesdenserthenthemeandensity. theeigenvectorsofthesheartensor.Toeachhosthaloacosmicweb Fig.2showsthenormalized(differential)distributionofthe classificationcanbeassignedbyfindingwithinwhichgridcellthe anglesformedbetweentheprincipalaxesofthecosmicwebwith haloislocated.Itistheorientationofhalopropertieswithrespect thehaloandsatelliteorbitalangularmomentaL andJ for DM sub tothatgridcell’sorthonormalbasisoftheV-webthatisexamined haloesinavarietyofdifferentcosmicwebenvironments.Weper- here. formedKolmogorov-Smirnoff(KS)teststocheckthenullhypoth- For the purpose of this Letter we examine only haloes that esis that the distributions are consistent with being drawn from a arefoundatz = 0withinsheets,filamentsandknots.Weignore random (uniform) distribution. With the exception of the Knots, theorientationofhaloeswithrespecttovoidsfortworeasons(see thenullhypothesiscanberuledoutathigh(>99.99%)confidence table1anddiscussioninsection3fordetails):thenumberdensity levels.Weexaminethesepanelsindetailbelow. ofhaloesinvoidsisexceedinglysmallwhencomparedtotheother In Fig. 2a-c, we show the alignment of L with the three DM (cid:13)c 0000RAS,MNRAS000,000–000 4 Libeskindetal. principleaxesofthecosmicweb.Insheets(Fig.2a)weseeaclear haloestendtoalignwitheˆ andeˆ insheetsandfilamentsandjust 1 3 alignmentwitheˆ anda(slightlyweaker)perpendicularalignment witheˆ inknots. 3 1 witheˆ andeˆ .Thisindicatesthatahalo’sspinaxisliesinthesheet 1 2 alongtheaxisthatiscollapsingslowest(eˆ )andperpendicularto 3 the sheet’s short (normal) axis (eˆ ). KS tests rule out uniformity 1 at a high confidence level for all three axes. When we examine 4 DISCUSSIONANDCONCLUSIONS the orientation of L in filaments (Fig. 2b) we find a general DM WehaveexaminedtheorientationofDMspinaxis(L )andthe DM weakening of the alignments found in sheets, but the same over orbitalangularmomentumofsubstructures(J )withrespectto sub allpictureprevails-thehalospinaxispointsalongthelongaxis thecosmicwebinsheets,filamentsandvoids.Ourmainfindings ofthefilament(eˆ ).Again,KStestsruleoutuniformityatahigh 3 are confidencelevel.Thealignmentweakensfurtherinknots(Fig.2c) where the distribution of L is fully consistent with a random • Substructuresorbitsuchthattheirangularmomentatendtobe DM orientationwithrespecttoallthreeprincipalaxes(KSprobabilities alignedwiththeintermediateaxisofthewebstructuretheyarein. of∼20%). If the second axis of the web is parallel to the intermediate axis ofthematerialthatcollapsedtoformthehaloatturnaround,then Haloes that live in sheets are aligned perpendicular to the ourresultisconsistentwithtidaltorquetheory(e.g.Navarroetal. sheet’sshortaxis,whilefilamenthaloesarealignedparalleltothe 2004).Thisoccursbecausethevelocitysheariscloselyrelatedto filamentaryaxis,aresultconsistentwithpreviouswork(e.g.Hahn theinitialconditions. etal.2007;Arago´n-Calvoetal.2007).Insheets,thisisbecausethe • InsheetsandfilamentsJ tendstobeperpendiculartothe shortaxisistheaxisofcollapse,hencetheaxisfromwhichmat- sub short(eˆ )andlong(eˆ )axisofthecosmicweb,whileinknotsitis ter is being gravitationally pulled along. If the sheet is squeezed 1 3 perpendicularonlytothelongaxis.Thisindicatesthatinsheetsand alongthisaxis,itfollowsthattheangularmomentumwillbeper- filaments,substructuresmoveinjustoneplane(theeˆ -eˆ )whilein pendicular to eˆ . Yet this interpretation weakens in filaments (as 1 3 1 knotstheplaneoftheirorbitisallowedanyconfigurationparallel therearetwo“shortaxes”)anddisappearsinknots.Ashaloesare tothe longaxis,eˆ .This transitionis most likelydue totheran- drawnintofilamentsandthenknots,theirangularmomentumbe- 1 domizationoforbitsinthehighlynonlinearhalointeriors. comesrandomized,mostlikelyduetothehighlynonlinearchaotic • ThespinaxisofaDMhalotendstoalignwiththeshortaxisof motionspresentindenserenvironments. thecosmicwebinsheetsandinfilaments,butisconsistentwitha Fig.2d-fshowsthealignmentofJ ,theorbitalangularmo- sub randomorientationinhaloesassociatedtoknots.Sinceinsheetsthe mentum of substructures with the cosmic web. It is immediately spinaxisliesintheplane,andassumingthatinsheetsthelongand clear that that J is always aligned parallel to the intermediate sub intermediateaxesaredegenerate,thisresultisalsoconsistentwith axis of the cosmic web - this alignment is strongest in filaments Navarroetal.(2004)(giventhatthereissomecorrelationbetween yetseeninallwebclassificationsatsignificantKSconfidencelev- galaxyandhalospin). elsandisindicativeofsimilarfindingsbyNavarroetal.(2004).In bothsheetsandfilamentshowever,thereisadditionallya(slightly Ourresultsindicatethatthelargescalevelocitysheartensoris weaker)perpendicularalignmentwiththesmallandlongaxesof stilladeterminingfactorintheorientationoftheangularmomenta theweb.Thisindicatesthatsubstructuresareaccreted(andarethus ofsubstructures.AlthoughKnebeetal.(2004)alreadyclaimedthat moving)inaplanefairlywelldefinedbyeˆ (thesheet’sshortaxis) thepositionofasubhaloatapocenterrecalleditsfilamentaryaccre- 1 andeˆ (thesheet/filamentslongaxis). tionevenafterseveralorbits,thislinkwasnotquantitativelyestab- 3 lishedbythem.Thisresultisalsoconsistentwithanumberofre- Remarkablytheperpendicularalignmentwitheˆ radicallyand 3 centstudies(Libeskindetal.2011;Vera-Ciroetal.2011)thathave significantly flips in knots (Fig. 2i). This indicates that although arguedthatamemoryofthelargescaleenvironmentisimprinted substructuresareaccretedintheeˆ -eˆ plane,bythetimetheyland 1 3 onz = 0subhaloorbitsandDMhaloes.Yetnoneofthesestud- inknotstheplanehasnutatedsuchthatJ isperpendiculartojust sat ieswereabletodrawadirectparallelbetweenthelargescalesand eˆ ,themainaxisoftheknot.Theplaneofaccretioninfilaments 1 satelliteorbitsatz = 0,insteadtheyreliedontyingz = 0prop- iswelldefined-theeˆ -eˆ ,whileinknotsthisplaneisallowedto 1 3 erties of satellite galaxies to the merger history of the host halo. nutateabouteˆ . 2 Indeedourresultissurprisingsincewedonosuchtrackingbackin Itisimportanttonotethatthesignificantperpendicularalign- time.Insteadourresultindicatesthatthelargescalevelocityfield ment of J with eˆ in knots is strong evidence that the cosmic sub 1 isreflectedintheorbitsofsubhaloesatz=0. webiswelldefinedinknots.Thisindicatesthattheuniformdistri- Sinceasubhaloesz = 0positionisperpendiculartoitsan- butionofanglesseenbetweenthecosmicwebandL inknots DM gularmomentum,ourfindingshelpunderstandtherelationshipbe- (Fig.2c)isindeedduetoarandomizationofL . DM tweentheanisotropicz = 0spatialdistributionofsatellitegalaxy Weclosethissectionbynotingthatwealsoexaminedtheori- insimulations(Knebeetal.2004;Libeskindetal.2005;Zentner entation of substructure position with the cosmic web. Since the etal.2005;Libeskindetal.2007)andobservations(e.g.Sales& positionvectorisbyconstructionperpendiculartoJ wefinda Lambas 2004; Kroupa et al. 2005, among others) with their ap- sub mirror image panels (d)-(e), in otherwords, the positions of sub- parent coherent motion (Metz et al. 2008, 2009; Libeskind et al. (cid:13)c 0000RAS,MNRAS000,000–000 Haloesinthecosmicweb 5 2009; Deason et al. 2011). Subhaloes are assumed to host lumi- Komatsu E., Dunkley J., Nolta M. R., Bennett C. L., Gold B., nous satellite galaxies that do not enter the halo randomly but in HinshawG.,et.al.2009,ApJS,180,330 somecorrelatedway(e.g.Tormen1997;Li&Helmi2008;Knebe KroupaP.,TheisC.,BoilyC.M.,2005,A&A,431,517 etal.2011).Ourfindingsindicatethattheorientationofthenon- LeeJ.,ErdogduP.,2007,ApJ,671,1248 randomlyaccretedsubhaloesisdeterminedbythecosmicwebat LiY.,HelmiA.,2008,MNRAS,385,1365 z = 0,thusconnectingthelargescalesheets,filamentsandknots Libeskind N. I., Cole S., Frenk C. S., Okamoto T., Jenkins A., withthesub-virialradiusscaleofsubhaloorbits.Insummary,The 2007,MNRAS,374,16 non-randominfallpointsofsubhaloesisbothreflectiveofthelarge Libeskind N. I., Frenk C. S., Cole S., Helly J. C., Jenkins A., scalestructureandfrozenintothez = 0angularmomentumofa NavarroJ.F.,PowerC.,2005,MNRAS,363,146 subhalo,while,duetolongdynamicaltimes,thez = 0positions LibeskindN.I.,FrenkC.S.,ColeS.,JenkinsA.,HellyJ.C.,2009, ofsatellitesaresusceptibletorandomizationprocesses. MNRAS,399,550 Thestrengthofthealignmentislikelytodependonanumber LibeskindN.I.,KnebeA.,HoffmanY.,Gottlo¨berS.,YepesG., offactors-massofhalo,redshift,andhowoldagivenparenthalo SteinmetzM.,2011,MNRAS,411,1525 is. A comprehensive study of the nature of haloes in the cosmic Lynden-BellD.,1982,TheObservatory,102,202 webisforthcoming(Metukietalinpreparation). MandelbaumR.,HirataC.M.,IshakM.,SeljakU.,BrinkmannJ., 2006,MNRAS,367,611 MetzM.,KroupaP.,JerjenH.,2009,MNRAS,394,2223 MetzM.,KroupaP.,LibeskindN.I.,2008,ApJ,680,287 ACKNOWLEDGMENTS NavarroJ.F.,AbadiM.G.,SteinmetzM.,2004,ApJL,613,L41 This work was supported by the Deutsche Forschungs Gemein- OkumuraT.,JingY.P.,LiC.,2009,ApJ,694,214 schaft,theMinisteriodeCienciaeInnovacioninSpain,theRamon SalesL.,LambasD.G.,2004,MNRAS,348,1236 y Cajal program, (AYA 2009-13875-C03-02, AYA2009-12792- Sousbie T., Pichon C., Colombi S., Novikov D., Pogosyan D., C03-03, CAM S2009/ESP-1496, FPA2009-08958) and through 2008,MNRAS,383,1655 Consolider-IngenioSyeC.Thesimuationswerecarriedoutatthe TormenG.,1997,MNRAS,290,411 LeibnizRechenzentrum(LRZ)andtheBarcelonaSupercomputing Vera-CiroC.A.,SalesL.V.,HelmiA.,FrenkC.S.,NavarroJ.F., Center(BSC). SpringelV.,VogelsbergerM.,WhiteS.D.M.,2011,MNRAS, pp1100–+ YangX.,vandenBoschF.C.,MoH.J.,MaoS.,KangX.,Wein- mannS.M.,GuoY.,JingY.P.,2006,MNRAS,369,1293 REFERENCES ZaritskyD.,SmithR.,FrenkC.S.,WhiteS.D.M.,1997,ApJL, 478,L53+ AgustssonI.,BrainerdT.G.,2010,ApJ,709,1321 ZentnerA.R.,KravtsovA.V.,GnedinO.Y.,KlypinA.A.,2005, Arago´n-CalvoM.A.,vandeWeygaertR.,JonesB.J.T.,vander ApJ,629,219 HulstJ.M.,2007,ApJL,655,L5 BrainerdT.G.,2005,ApJL Deason A. J., McCarthy I. G., Font A. S., Evans N. W., Frenk C. S., Belokurov V., Libeskind N. I., Crain R. A., Theuns T., 2011,MNRAS,415,2607 Forero-RomeroJ.E.,HoffmanY.,Gottlo¨berS.,KlypinA.,Yepes G.,2009,MNRAS,396,1815 HahnO.,CarolloC.M.,PorcianiC.,DekelA.,2007,MNRAS HahnO.,PorcianiC.,CarolloC.M.,DekelA.,2007,MNRAS HahnO.,TeyssierR.,CarolloC.M.,2010,MNRAS,405,274 Hirata C. M., Mandelbaum R., Ishak M., Seljak U., Nichol R., PimbbletK.A.,RossN.P.,WakeD.,2007,MNRAS,381,1197 HirataC.M.,SeljakU.,2004,PhysRevD,70,063526 HolmbergE.,1969,ArkivforAstronomi,5,305 KnebeA.,GillS.P.D.,GibsonB.K.,LewisG.F.,IbataR.A., DopitaM.A.,2004,ApJ,603,7 KnebeA.,KnollmannS.R.,MuldrewS.I.,PearceF.R.,Aragon- CalvoM.A.,AscasibarY.,BehrooziP.S.,et.al2011,MNRAS, 415,2293 KnebeA.,LibeskindN.I.,DoumlerT.,YepesG.,GottloeberS., HoffmanY.,2011,ArXive-prints KnollmannS.R.,KnebeA.,2009,ApJS,182,608 (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.