ebook img

The Cosmic Ray Precursor of Relativistic Collisionless Shocks: A Missing Link in Gamma-Ray Burst Afterglows PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Cosmic Ray Precursor of Relativistic Collisionless Shocks: A Missing Link in Gamma-Ray Burst Afterglows

DRAFTVERSIONFEBRUARY5,2008 PreprinttypesetusingLATEXstyleemulateapjv.10/10/03 THECOSMICRAYPRECURSOROFRELATIVISTICCOLLISIONLESSSHOCKS:AMISSINGLINKINGAMMA-RAY BURSTAFTERGLOWS MILOŠMILOSAVLJEVIC´1,2ANDEHUDNAKAR1 DraftversionFebruary5,2008 ABSTRACT Collisionlessshocksarecommonlyarguedtobethesitesofcosmicray(CR)acceleration. Westudytheinflu- enceofCRsonweaklymagnetizedrelativisticcollisionlessshocksandapplyourresultstoexternalshocksin gamma-rayburst(GRB)afterglows.ThecommonviewisthatthetransverseWeibelinstability(TWI)generates asmall-scalemagneticfieldthatfacilitatescollisionalcouplingandthermalizationintheshocktransition.The 7 TWIfieldisexpectedtodecayrapidly,overafinitenumberofprotonplasmaskindepthsfromthetransition. 0 However,thesynchrotronemissionin GRBafterglowssuggeststhata strongandpersistentmagneticfieldis 0 presentintheplasmathatcrossestheshock;theoriginofthisfieldisakeyopenquestion.Herewesuggestthat 2 thecommonpictureinvolvingTWIdemandsrevision.Namely,theCRsdriveturbulenceintheshockupstream n onscalesmuchlargerthantheskindepth.Thisturbulencegeneratesalarge-scalemagneticfieldthatquenches a TWIandproducesamagnetizedshock. ThenewfieldefficientlyconfinesCRsandenhancestheacceleration J efficiency.TheCRsmodifytheshocksinGRBafterglowsatleastwhiletheyremainrelativistic. Theoriginof 6 themagneticfieldthatgivesrisetothesynchrotronemissionisplausiblyintheCR-driventurbulence. Wedo notexpectultrahighenergycosmicrayproductioninexternalGRBshocks. 2 Subjectheadings:accelerationofparticles—cosmicrays—gamma-rays:bursts—plasmas—shockwaves v 8 4 1. INTRODUCTION Medvedevetal. 2005), survival of the field over larger dis- 5 tanceshasnotbeendemonstrated. 2 Collisionless shocks are observed on all astrophysical According to the popular model of gamma-ray bursts 1 scales. The diffusive shock acceleration (DSA) mechanism (GRBs; e.g., Piran 2005, and references therein), the after- 5 is believed to accelerate cosmic rays (CRs) in these shocks gloworiginatesinarelativisticblastwavethatpropagatesinto 0 (Bell1978;Blandford&Ostriker1978;Blandford&Eichler / 1987). The CRs can carry a substantial fraction of the en- an ambient e- p plasma. The afterglow emission is ascribed h to synchrotron radiation from nonthermal electrons that gy- ergy of the shock and thus the CR pressure can influence p rate in the shock-generatedmagnetic field. Detailed studies - the structure of the shock (Eichler 1979; Blandford 1980; o Drury&Völk 1981; Ellison&Eichler 1984). This picture ofGRBspectraandlightcurves(Panaitescu&Kumar2002; r hasrecentlyreceivedsupportfromX-rayobservationsofsu- Yostetal.2003)haveshownthatthemagneticenergydensity t intheemittingregion(thedownstreamshockedplasma)isa s pernova (SN) remnants (Warrenetal. 2005). Recently, Bell a fractionǫ 10- 2to10- 3oftheinternalenergydensity.1 This (2004, 2005) has shown that CRs in SNe can drive turbu- B : field must p∼ersist overat least a few percentof the width of v lenceandamplifymagneticfieldsintheshockupstream,and theblastwave (Rossi&Rees2003). Itsoriginhasremained i Dar&deRújula (2005) speculate that relativistic jets could X akeyopenquestion. dothesame. r Thecurrentloreisthatweaklymagnetizedrelativisticcol- Compressionalamplificationoftheweakpre-existingmag- a neticfield oftheinterstellar medium(ISM)yieldsǫ 10- 9 lisionlessshocksaremediatedbythetransverseWeibelinsta- B ∼ (Gruzinov 2001) and does not explain the field in the emit- bility(TWI;Weibel1959;Fried1959). TWIproducesamag- ting region. If TWI does develop in the transition layer, it neticfieldnearequipartitionthatprovidescollisionalcoupling generatesastrongfieldinthevicinityoftheshocktransition. in the shock transition layer (Gruzinov&Waxman 1999; However,asdiscussedabove,thereisnoevidencethatitcan Medvedev&Loeb 1999). TWI is universally observed in persistovertherequired 109λ fromtheshock(e.g.,Piran two-andthree-dimensionalparticle-in-cell(PIC)simulations s ∼ 2005andreferencestherein). of unmagnetized colliding shells (e.g., Lee&Lampe 1973; X-ray observations of GRB afterglows are modeled as Gruzinov 2001; Silvaetal. 2003; Frederiksenetal. 2004; an opticallythin synchrotronspectrum requiringnonthermal Jaroscheketal.2004;Nishikawaetal.2005;Medvedevetal. electronswith Lorentz factors as high as 106. The obser- 2005; Kato 2005). The resulting field is small-scale, of the ∼ vations indicate that electrons, and thus protonsas well, are orderoftheprotonplasmaskindepthλ . s efficientlyacceleratedintheshocktoproduceahardpower- The role of TWI in particle acceleration and in the down- law spectrum. DSA can achieve such Lorentz factors if the streamthermodynamicsiscontroversial.Thefieldisexpected circum-burstmedium is magnetized at 1 µG level, as ex- to decay rapidly, within a few λ from the shock transition s pected in the ISM. The weak magnetic∼field, however, does (Gruzinov 2001; Milosavljevic´&Nakar 2006). This decay not directly affect the structure of the shock (e.g., TWI can is evidentin three dimensionalPIC simulations (Spitkovsky stilldevelopintheshocktransition). 2005). Although there are claims that the decay saturates It seems that a self-consistent picture of relativistic astro- at distances of 100λ from the shock (Silvaetal. 2003; ∼ s physical shocks includes high energy particles (CRs) and at 1 Theoretical Astrophysics, Mail Code 130-33, California Institute of Technology,1200EastCaliforniaBoulevard,Pasadena,CA91125. 1 Under some circumstances ǫB as low as ∼ 10- 5 can fit the data 2HubbleFellow. (Eichler&Waxman2005). 2 CosmicRayPrecursorinGRBShocks leastaweaklymagnetizedupstream. Hereweexplorethein- B seed field 0 teraction between these components. In § 2, we derive the conditions under which the CRs drive turbulence in the up- stream;thisturbulencegeneratesalarge-scalemagneticfield that increases the acceleration efficiency.2 In § 3, we argue Jret B that this mechanism is a candidate solution of the origin of Jret thefieldinferredfromtheafterglowemissioninexternalGRB expanding shell shocks. In § 4, we discuss implicationsforTWI andfor the productionofultrahighenergycosmicrays(UHECRs). J cr 2. COSMICRAY–MAGNETICFIELDINTERACTION shock 2.1. CosmicRayTrajectoriesandtheReturnCurrent FIG.1.—Schematicrepresentationofthereactionoftheupstreamplasma Consider a relativistic shock wave with Lorentz factor Γ totheCRstreamingaheadoftheshock. Thefigureisintheframeofthe that accelerates particles to Lorentz factors γ Γ. The ac- shocksothattheupstreamplasmamovesverticallydownward. Aninitially celerated particles are roughly isotropic in th≫e downstream weakmagneticfieldloopisstretchedbytheAmpèreforce(Jret×B)/cand plasmaisacceleratedsidewaysasitflowstowardtheshockfront. frame;a fractionofthemaremovingaheadofthe shock. In theupstreamframe,thevelocitiesoftheacceleratedparticles aredirectedwithinanangleθ √2/Γoftheshocknormal.3 ∼ reachhigherenergiesandfartherfromtheshockintotheup- IftheupstreamcontainsamagneticfieldB,thefielddeflects stream. The upstream fluid sees a net positive CR current chargedparticlesmovingaheadoftheshock.Whentheveloc- J ev n in the region where it overlapswith the pre- ityofaparticleisdeflectedtoanangle 1/Γfromtheshock | CR|∼ s CR normal,theshockcatchesupandre-abs∼orbstheparticle. cursor. Here vs and nCR are the CR velocityand density. In the upstream region, which is not accelerated to relativistic The orbit of a particle in the upstream field can be quasi- velocities by the CR pressure, the CR velocity is about the circular or diffusive, depending on how the radial distance speedoflight,v c;thus,wehave X the particle traverses ahead of the shock compares to the s∼ relevantmagneticcorrelationlengthλ. Thetypicalangleby J ecn . (4) CR CR which the magnetic field deflects the particle is ∆θ X/r ∼ g ∼ To maintain overall charge neutrality, the upstream re- when the orbit is quasi-circular and ∆θ (λX)1/2/r when ∼ g sponds to the CR current by supporting an opposite “return theorbitisdiffusive,where current” J that short-circuits the electric field associated ret γmc2 with the charge separation in the CR precursor.5 If nCR is rg= (1) smallerthantheupstreamdensity,thereturncurrentapproxi- eB(λ) matelybalancestheCRcurrent, isthegyroradiusoftheparticleexpressedintermsofthemag- neticfieldB(λ)onscalesλ. Reabsorptionintheshockoccurs Jret JCR. (5) ∼ when∆θ 1/Γ,andthusthedistancetraversedbytheparti- Iftheupstreamcontainsaweakmagneticfield,thereturncur- ∼ cleinthequasi-circularanddiffusiveregimeis rentcoupleswiththisfield;nextweexploretheconsequences r /Γ, (X .λ), ofthiscoupling. X g (2) ∼(cid:26)(rg/Γ)2/λ, (X ≫λ). 2.2. TheDrivingofTurbulenceandFieldAmplification Insphericalblastwaves,aparticlecanbeacceleratedbyre- Here we argue that the return current drives turbulence in peatedshockcrossingifthetimeseparatingitsemissionand the upstream and suggest that this turbulence leads to mag- re-absorptionin the shock X/c is smaller than the expan- netic field growth on scales much larger than the proton ∼ sion time of the shock R/c, where R is the shock radius.4 plasma skin depth. One type of interaction between the CR ∼ ThereforeX Risrequiredforacceleration. Themaximum precursorandthemagneticfieldoftheupstream,exploredby ≤ distancethattheparticlereachesfromthemovingshocktran- Bell(2004,2005) inthecontextofNewtonianshocks, isthe sitionissubstantiallysmaller, Ampèreforce J B ∆∼ ΓX2, (3) F= retc× (6) whichacceleratestheupstreamperpendiculartotheshockve- because the particle and the shock are both movingat about locity. We assume that the initial weak magnetic field has the speed of light. Another requirement for acceleration is poweronallscales,asexpectedininterstellarturbulence,and thatthecoolingtimebelongerthantheaccelerationtime(see thatthepoweronrelevantscalesisroughlyscale-independent. §3). Consideraloopofradiusλofaweakinitialmagneticfield Ingeneral, protonsand electronsare bothemittedinto the B paralleltotheshocktransitionthatisdirectedclockwiseas shockupstream.However,thesynchrotronandself-Compton 0 seenfromtheshock,asshowninFigure1,andassumethatthe cooling inhibit the acceleration of electrons, and so the pro- upstreamisinitiallystationary.TheAmpèreforceaccelerates tons,whichwerefertoastheCRprecursoroftheshock,can thefluidawayfromthecenteroftheloop. Bell(2004,2005) carriedoutmagnetohydrodynamic(MHD)simulationsofthis 2Gruzinov(2001)andWaxman(2004)speculatethatCRscouldamplify large-scalemagneticfieldsinexternalGRBshocks. process;webaseourestimatesonhisresults. 3Unlessotherwisenoted,quantitiesareevaluatedintheupstreamframe. 4 Itisalsoimplicitlyassumedthatsomefractionofaccelerated particles 5 Thereturncurrentisestablishedontheplasmatime.10mswhichis candiffusebacktotheshockaftertheyfindthemselvesinthedownstream. instantaneouscomparedtothelightcrossingtimeoftheCRprecursor. MILOSAVLJEVIC´ &NAKAR 3 The dynamics of the upstream fluid can be approximated Thereforewecanlimitthegeneratedmagneticfieldtoliebe- using MHD, and thus flux freezing during the expansion of tweenB andB . 1 2 theloopimpliesthat Forsomeλ,theabovevaluesofBformallyimplysuperlu- minal motion. We do not analyze the evolution of the mag- B θ = const, (7) netic field after its energy approaches equipartition with the ρr rest energyof the upstream.6 Our treatment is applicable at where B and ρ are the azimuthal magnetic field and the distances from the shock where the magnetic field does not θ density at radius r, respectively. If the expansion is non- reachequipartition,B<(4πρism)1/2c. relativistic and if the thermal and magnetic pressure are ig- 2.3. TheCosmicRaySpectrumandtheQuasi-SteadyState nored so that only the Ampère force influences the motion, theradiusoftheloopacceleratesaccordingto The generated magnetic field can modify the spatial pro- fileofJ byconfiningCRsclosertotheshockthanthepre- d2r J B J B CR ret θ CR 0r. (8) existing field. The maximum coherence length of the new dt2 ∼ ρc ∼ λρ0c field cannot exceed the maximum distance CRs reach from theshock R/Γ2. Thereforethepropagationofthemosten- Therefore,theloopexpandsexponentiallyr(t) λeσt atarate ∼ ∼ ergeticCRstraversingadistanceX Rbetweenemissionand ∼ J B 1/2 re-absorptionis always diffusivein the new field. If the CR σ CR 0 , (9) motionisdominatedbythenewfield,7 theshocksettlesina ∼(cid:18) λρ0c (cid:19) quasi-steadystateinwhichtoeverydistance∆ R/Γ2from ≤ implyingavelocityofexpansionofdr/dt rσ. the shock corresponds a γ such that CRs with Lorentz fac- The upstream accelerates until the pres∼sure overtakes the torγ areconfinedwithinadistance∆fromtheshockbythe Ampèreforce(weassumethattheexpansionremainssublu- magneticfieldgeneratedbythestreamingofthesesameCRs. minalatthispoint).Inarealisticenvironmentwherethemag- ThedensityoftheCRsatadistance∆is neticfieldfluctuatesonallscales,weexpecttheexpansionon 1 dN eachscaletosaturatewhenneighboringmagnetic“rings”on nCR(γ)∼ 4πR2∆(γ)dlnγ, (15) similar scales collide, namely when r 2λ. This happens when ∼ wheredN/dγ istheCRenergyspectrum. TheCRspectrum σ∆ producedbytheDSAistypicallyapowerlaw σt 1. (10) ∼ c ∼ dN γ- p (16) Compressionalamplificationofthemagneticfieldatthispoint dγ ∝ is of the order of unity. However it is commonly argued in a range γ γ γ . We take the minimum Lorentz (Kulsrud 2005, and references therein) that a turbulent dy- min max ≤ ≤ factorofCRstoequal(Achterbergetal.2001,andreferences namo produces magnetic energy near equipartition with the therein) turbulentenergy.Therefore,theupstreamfluidthatisexposed γ Γ2. (17) toacurrentJ overatimetwilldevelopturbulentmotionon min CR ∼ allscales Numerical simulations of acceleration in ultrarelativis- λ.λ JCRB0t2. (11) tic shocks (Achterbergetal. 2001; Ellison&Double 2002; max∼ ρ c Lemoine&Pelletier 2003) agree with the spectral index 0 p = 20 2.22 derived analytically by Keshet&Waxman Eacheddy amplifiesthe magneticenergyonits ownscale 9 ≈ (2005) for isotropic diffusion. While the true spec- on an e-folding time 1/σ(λ). The bulk of the kinetic en- tral index will depend on the detailed interaction be- ergy initially stored in expanding shells 1(σλ )2 turns ∼ 2 max tween CRs and magnetic turbulence (e.g., Ellison&Double intoturbulentmotionandthemagneticfieldonscales λ . ∼ max 2004;Lemoine&Revenu2006;Niemiec&Ostrowski2006; Thefieldinequipartitionwith theenergyinturbulenteddies Lemoine,Pelletier,Revenu 2006) and may differ from this equals derivedvalue,weadopt 4πλJ B 1/2 B CR 0 . (12) 20 1∼(cid:18) cρ (cid:19) p= (18) 0 9 Thisistheminimumfieldstrengthgeneratedintheshockup- inwhatfollows.IfE isthetotalenergyinCRsintheshock CR streamonscalesλ λmax. TheinteractionbetweentheCRs wave,thentheCRspectrumisnormalizedsuchthat ≤ andthegeneratedfieldcouldcontinueto acceleratethe fluid γmax dN after the shells have collided once. This could result in ad- γm c2 dγ=E . (19) p CR ditionalturbulentdrivingandfieldgrowth. Thenasaturation Z dγ γmin occurswhentheAmpèreforcebalancesthemagnetictension WerelatetheLorentzfactoroftheshocktothetotalenergy B2 intheblastwave(Blandford&McKee1976) F , (13) | |∼ 4πλ E 1/2 Γ tot , (20) whichimpliesalimitonthefinalfieldof ≈(cid:18)n m c2R3(cid:19) 0 p 4πλJ 4πλJ B ret CR. (14) 6 Magnetic fieldexceeding equipartition withtherestenergy oftheup- 2 ∼ c ∼ c streamwouldaffectthehydrodynamicprofileoftheshockandacceleratethe Bell (2004), who considered Newtonian shocks, argues that ups7trTehaempirneetxhiestdinirgecmtiaognnoefticshfioeclkdpcoroupldaghaatvioenp,otwheerreobnytrheedluacrignegstvsscaanledsJ∼CRR. such a field is generatedas a consequenceof CR streaming. andthusitcoulddominatetheCRmotionevenifthenewfieldisstronger. 4 CosmicRayPrecursorinGRBShocks wheren ρ /m . Weassumefurtherthatafraction andtoexpressdistancefromtheshockintermsofthedimen- 0 0 p ≈ sionlessparameter E ǫCR≡ ECtoRt (21) ∆˜ ∆Γ2 1. (27) oftheblastwaveisstoredintheCRs. ≡ R ≤ We proceed to outline the procedure by which the shock- Themaximumγ andλcorrespondtoCRsthatreachfarthest acceleratedCRLorentzfactor,theshock-generatedmagnetic fromtheshock,i.e.,to∆˜ =1. field coherence length, and the energy density in the shock generatedmagneticfield arecalculatedself-consistentlyasa 3. GAMMA-RAYBURSTAFTERGLOWS functionofdistancefromtheshock∆. In§3,weapplythis Externalshocksin GRBs are the bestastrophysicalcandi- proceduretoexternalGRBshocks. dates of weakly magnetized relativistic collisionless shocks. They have Lorentz factors Γ&100 when the blast wave is 2.4. TheSelf-ConsistentSolution ataradiusR 1017cm(Piran2005,andreferencestherein). Atanydistance∆fromtheshock,theCRcurrentisdom- The blast wa∼ve decelerates and becomes Newtonian at R inated by the least energetic CRs that reach this distance. 1018cm. Theexternalshocksareinitiallybeamedinthefor∼m CRs with smaller γ are confined to shorter distances from ofajetwithatypicalopeningangleθ 0.1rad. Theangular j the shock. The CR current JCR(∆) is larger at smaller ∆. sizeofthecausallyconnectedregioni∼ntheshockis1/Γ. At Notethetimeoverwhichanupstreamelementisexposedto earlytimeswhenΓ>1/θ,theblastwavehasisotopicequiv- j JCR(∆) is proportionalto ∆≪R, i.e., since the cosmic rays alentenergyEtot=1052- 1054ergsandevolvesasaspherical are confined so close to the shock front in an ultrarelativis- fragmentwith a Lorentz factor given by equation (20). The tic shock, the time available for generation of the magnetic evolution at late times when Γ.1/θ is poorly understood: j field is short. The field is generated on scales λ for which the opening angle is expected to increase; Γ decays faster σ(λ,∆)∆/c&1..8 In calculating σ, the distance CRs reach (perhaps exponentially)with R, and the isotropic equivalent fromtheshockandtheCR numberandcurrentdensitiesare energyapproaches 1051ergs. allcalculatedusingthegeneratedfieldB,ratherthanthepre- Here we explore∼the interaction between the CRs and the existing field B0. A self-consistent solution for the CR and pre-existingmagneticfieldinthecircum-burstmediumwhile magneticfieldprofileaheadoftheshockshowsthatCRswith theevolutionoftheblast-waveisquasi-spherical(Γ>1/θ). j smallerγ generateastrongermagneticfield(becauseoftheir We expect that our results are qualitatively applicable also largerJCR)onsmallerscalesλ(becauseoftheshorterexpo- when Γ<1/θj by taking Etot 1051ergs and R 1018cm. suretime)andareconfinedbytheirself-generatedfield. The WederivethemaximumLoren∼tzfactorγ ofCRst∼hatreacha maximumCRLorentzfactorγmaxandthemaximumfieldcor- distance∆fromtheshock,themaximummagneticfieldcor- relTaotiosonllveenfgothrγλ(m∆ax),aλre(∆ob),taainndedBf(o∆r)∆,w∼eRpr/oΓc2ee(dseaes§fo2l.l1o)w.s. erenleartgioyndleennsgittyhiλntahtethmisagdniesttaicncfiee,ldasnodnthsceaflerascλti.on ǫB of the First,weeliminaterg andX fromequations(1),(2;thediffu- Followingthesolutionoutlinedin§2.4weobtain sivecase),and(3)toobtain γ2m2c4 γ∼5×107∆˜0.25 ǫ0- .162B0- .637E503.75R1- 71..54n-00.37, λ∆∼ Γ4e2pB2 (22) λ∼1011∆˜0.70 ǫ0- .125B0- .655E5-30.7R317.0.45n0- 0.55cm Next,weeliminatenCR,γmin,andECRfromequations(4)and ǫB∼10- 2∆˜- 1.21ǫ0- .199B0- .619E513.21R1- 73..584n-01.19, (28) (15—21)toobtain where∆˜ =1 correspondsto the highestenergyCRs thatare JCR= 18πΓγ4/191ǫ/C9mREctoRte2∆. (23) aticocneloefrattheedeinnerthgey Eshtootccka.rriHederbey, ǫCCRRs=ah0e.1aǫd- 1ofisthteheshforacck-, p Etot = 1053E53ergs, B0 = B- 6 µG, nism = n0cm- 3, and R = Next,weeliminateσfromequations(9)and(10)toobtain 1017.5R cm. We have used p= 20 but the dependenceon 17.5 9 pisweak. Evidently,intheshocksconsideredhere,thefield J B 1/2∆ CR 0 1. (24) generated in the precursor has the capacity to confine CRs (cid:18) λρ0c (cid:19) c ∼ withhigherenergiesthanapreexistingmicrogaussfield.9 Finally,wesetthestrengthofthesaturatedmagneticfieldto Note that λ λ 2 107n- 1/2cm. The fractional max ≫ s ∼ × 0 B where the Ampère force balances magnetic tension (see magnetic energy density ǫ should be approximately pre- 2 B § 2.2; the results for saturation at B are qualitatively the served as the fluid passes the shock transition. The depen- 1 same) dence of ǫ on the radius and the field correlation length is B B 4πλJCR. (25) ǫB ∝R1.41λ- 1.73 (it is independentof Etot if ǫCR is constant). ∼ c Note that ǫB is larger on smaller scales since it is generated We substitute Γ from equation (20) in equations (22) and atsmaller∆bythelargerJCR thatisdominatedbyCRswith smallerγ. (23). ThenwesubstituteJ fromequation(23)inequations CR Sincetheupstreamisturbulentonscales.λ ,andsince (24)and(25). We finallysolveforγ, λ, andB asafunction max of∆andtheparametersoftheblastwave. Itisconvenientto this turbulence is accompanied by density inhomogeneities, the shock transition and the fluid passing the transition are expressthemagneticfieldstrengthintermsof also expected to be turbulent on the same scales. The evo- B2 lution of the magnetic field after it passes the transition is ǫ (26) B≡ 4πρc2 9 ThemaximumLorentzfactortowhichCRsareaccelerated inthepre- 8Inreality,fieldsaturationwillrequiremultiplee-foldings,σ∆/c∼ few. existingfieldoftheISMisγmax(B0)∼4.6×106E513/2B- 6n0- 1/2R-171./52. MILOSAVLJEVIC´ &NAKAR 5 described by the laws governing MHD turbulence, and we Evenunderthemostoptimisticassumptions(ǫ 1onscales B do not attempt to describe it here. The value of ǫ in the λ R/Γ2),theresultingLorentzfactorsare ∼ B ∼ downstreamregionwillbethatreachedintheshockupstream, modifiedbyanyevolutionthattheturbulenceexperiencesas γ<3 1010E1/3 n1/6, (29) ittravelsdownstreampasttheshocktransition. × tot,51 0 The main premise of ourtreatmentis that the precursoris whereE =1051E ergsisthetotal,beamingcorrecteden- tot tot,51 dominatedbyprotonsandthuscarriesanetpositivecurrent. ergyofthe blastwave. Thereforewe donotexpectUHECR Tocompetewiththeprotonsinthedistancetheyreachahead accelerationinexternalGRBshocks. oftheshock,theelectronswouldhavetohaveLorentzfactors γe>γminmp/me Γ2mp/me.Electronswithγe 108- 1010in 5. CONCLUSIONS ∼ ∼ therestframeoftheupstreamarecooledbythesynchrotron CRs accelerated in relativistic collisionless shocks excite mechanism on timescales much shorter than the age of the large-scales turbulence and magnetic field generation in the shock, and thus their acceleration to even higher energies is shock upstream. The field generated in the shock precursor suppressed. Therefore,indeed,theshockprecursoratproton haspoweronscalesmuchlargerthantheprotonplasmaskin Lorentzfactorsγ &105 iscompletelydominatedbyprotons depth.ThepropagationofCRsinthegeneratedfieldisdiffu- andcarriesanetpositivecurrent. sive. InexternalGRBshocks, CRs areacceleratedto higher energies in the generated field than in the pre-existing field 4. DISCUSSION oftheISM.Thegeneratedfieldreachesequipartitionwiththe Thepicturepresentedherecastsdoubtonthe roleofTWI energydensity in the fluid. The shocktransitionis turbulent incollisionlessshocks. ItiscommonlyarguedthatTWIgen- withahydrodynamicprofiledominatedbyCRpressure. The erates the magnetic field that facilitates collisional coupling commonlyinvokedTWI is probablyquenchedin relativistic in the shock transition. However, if the upstream is weakly collisionlessshocksbythemagneticfieldandtheturbulence magnetized,the shockacceleratesCRs, and these CRs drive generatedintheshockprecursor.ExternalGRBshocksdonot upstreamturbulenceandmagneticfieldgeneration.Whenthe accelerateUHECRs. PICsimulationsofcollisionlessshocks upstreamfluidreachesthetransition—whereTWIisassumed mustincludea weakupstreammagneticfield andsimulatea totakeplace—thelarge-scalefieldgeneratedintheprecursor spatialdomainaslargeastheCRgyroradiusintheupstream willplausiblyquenchTWI.Hededal&Nishikawa(2005)find toobservetheaccelerationofparticlesbeyondequipartition. thatTWIisquenchedforratiosoftheelectronplasmatocy- clotron frequencyω /ω <5. For nonrelativistic upstream pe ce electronsthis implies quenchingfor ǫ &2 10- 5, which is We thankJonathanAronsandAndreiGruzinovforinspir- B expectedfromouranalysis.10 × ingustoexploretheimportanceofupstreamturbulence. We Recently, a question has been raised whether external are also indebted to Tony Bell, Don Ellison, and an anony- GRB shocks are sites of UHECR acceleration (γ 1010- mousrefereeforsendingusdetailedcommentsandtoSteven 1011, Dermer 2002; Waxman 2004). The idea th∼at UHE- Cowley and Marc Kamionkowskifor illuminating conversa- CRs are produced in GRBs (Waxman 1995; Vietri 1995; tions. M. M. thanks the Center for Cosmology and Particle Milgrom&Usov 1995) is motivated by the observation that PhysicsatNewYorkUniversityforhospitalityandacknowl- the cosmic energy densities in UHECRs and GRB fireballs edgessupportbyNASAthroughtheHubbleFellowshipgrant are comparable. The presumed absence of strong upstream HST-HF-01188.01-A awarded by the Space Telescope Sci- magneticfieldsinexternalGRBshockshasfocusedattention ence Institute, which is operated by the Association of Uni- onUHECRproductioninshockspropagatingintorelativistic versities for Research in Astronomy, Inc., for NASA under ejecta(Waxman2004;Gialis&Pelletier2005). Ouranalysis contract NAS5-26555. E. N. was supported at Caltech by a of external shocks indicates that the maximum Lorentz fac- seniorresearchfellowshipfromtheShermanFairchildFoun- tor of CRs producedthere is well below the UHECR range. dation. 10 Because of the finite transverse velocities of the CRs (∼c/Γ in the frameoftheISM),theCRsthemselveswillnotexciteTWIintheupstream. REFERENCES Achterberg, A., Gallant, Y. A., Kirk, J. G., & Guthmann, A. W. 2001, Gruzinov,A.2001,ApJ,563,L15 MNRAS,328,393 Gruzinov,A.,&Waxman,E.1999,ApJ,511,852 Bell,A.R.1978,MNRAS,182,147 Hededal,C.B.,Haugbølle,T.,Frederiksen,J.T.,&Nordlund,Å.2004,ApJ, Bell,A.R.2004,MNRAS,353,550 616,L107 Bell,A.R.2005,MNRAS,358,181 Hededal,C.B.,&Nishikawa,K.-I.2005,ApJ,623,L89 Blandford,R.D.1980,ApJ,238,410 Jaroschek,C.H.,Lesch,H.,&Treumann,R.A.2004,ApJ,616,1065 Blandford,R.D.,&McKee,C.F.1976,Phys.Fluids,19,1130 Kato,T.N.2005,Phys.Plasmas12,080705 Blandford,R.D.,&Ostriker,J.P.1978,ApJ,221,L29 Keshet,U.,&Waxman,E.2005,Phys.Rev.Lett.,94,111102 Blandford,R.D.,&Eichler,D.1987,Phys.Rep.,154,1 Kulsrud,R.M.2005,PlasmaPhysicsforAstrophysics(Princeton:Princeton) Dar,A.,&deRújula,A.2005,Phys.Rev.D,72,123002 Lee,R.,&Lampe,M.1973,Phys.Rev.Lett.,31,1390 Dermer,C.D.2002,ApJ,574,65 Lemoine,M.,&Pelletier,G.2003,ApJ,589,L73 Drury,L.O.,&Völk,J.H.1981,ApJ,248,344 Lemoine,M.,&Revenu,B.2006,MNRAS,366,635 Eichler,D.1979,ApJ,229,419 Lemoine,M.,Pelletier,G.,&Revenu,B.2006,preprint(astro-ph/0606005) Eichler,D.,&Waxman,E.2005,ApJ,627,861 Medvedev,M.V.,&Loeb,A.1999,ApJ,526,697 Ellison,D.C.,&Double,G.P.2002,Astropart.Phys.,18,213 Medvedev, M. V., Fiore, M.,Fonseca, R.A.,Silva, L.O.,& Mori, W.B. Ellison,D.C.,&Double,G.P.2004,Astropart.Phys.,22,323 2005,ApJ,618,L75 Ellison,D.C.,&Eichler,D.1984,ApJ,286,691 Milgrom,M.,&Usov,V.1995,ApJ,449,L37 Frederiksen,J.T.,Hededal,C.B.,Haugbølle,T.,&Nordlund,Å.2004,ApJ, Milosavljevic´,M.,&Nakar,E.2006,ApJ,641,978 608,L13 Niemiec,J.,&Ostrowski,M.2006,ApJ,641,984 Fried,B.D.1959,Phys.Fluids,2,337 Nishikawa,K.-I.,Hardee,P.,Richardson,G.,Preece,R.,Sol,H.,&Fishman, Gialis,D.,&Pelletier,G.2005,ApJ,627,868 G.J.2005,ApJ,622,927 6 CosmicRayPrecursorinGRBShocks Nishikawa,K.-I.,Hardee,P.E.,Hededal,C.B.,&Fishman,G.J.2006,ApJ, Vietri,M.1995,ApJ,453,883 642,1267 Warren,J.S.,etal.2005,ApJ,634,376 Panaitescu,A.,&Kumar,P2002,ApJ,571,779 Waxman,E.1995,Phys.Rev.Lett.,75,386 Piran,T.2005,Rev.Mod.Phys.,76,1143 Waxman,E.2004,ApJ,606,988 Piran,T.2005,AIPConf.Proc.784:MagneticFieldsintheUniverse:From Weibel,E.S.1959,Phys.Rev.Lett.,2,83 LaboratoryandStarstoPrimordialStructures.,784,164 Yost,S.A.,Harrison,F.A.,Sari,R.,&Frail,D.A.2003,ApJ,597,459 Rossi,E.,&Rees,M.J.2003,MNRAS,339,881 Silva,L.O.,Fonseca,R.A.,Tonge,J.W.,Dawson,J.M.,Mori,W.B.,& Medvedev,M.V.2003,ApJ,596,L121 Spitkovsky, A.2005,AIPConf.Proc.801:Astrophysical Sources ofHigh EnergyParticlesandRadiation,801,345

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.