ebook img

The Conway–Maxwell–Poisson Distribution PDF

356 Pages·2023·25.263 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Conway–Maxwell–Poisson Distribution

Monographs The Conway- Maxwell- Poisson Distribution Kimberly F. Sellers TheConway–Maxwell–PoissonDistribution WhilethePoissondistributionisaclassicalstatisticalmodelforcountdata,thedistribu- tionalmodelhingesontheconstrainingpropertythatitsmeanequalsitsvariance.This textinsteadintroducestheConway–Maxwell–Poissondistributionandmotivatesitsuse indevelopingflexiblestatisticalmethodsbasedonitsdistributionalform. This two-parameter model not only contains the Poisson distribution as a special casebut,initsabilitytoaccountfordataover-orunder-dispersion,encompassesboth thegeometricandBernoullidistributions.Theresultingstatisticalmethodsserveina multitudeofways,fromanexploratorydataanalysistooltoaflexiblemodelingimpetus forvariedstatisticalmethodsinvolvingcountdata. Thefirstcomprehensivereferenceonthesubject,thistextcontainsnumerousillus- trativeexamplesdemonstratingRcodeandoutput.Itisessentialreadingforacademics in statistics and data science, as well as quantitative researchers and data analysts in economics,biostatisticsandotherapplieddisciplines. KIMBERLY F. SELLERSisProfessorintheDepartmentofMathematicsandStatis- tics at Georgetown Universityand aresearcher at the U.S. CensusBureau. Her work hascontributedtocountdataresearchandsoftwareforthelast15years.SheisaFel- lowoftheAmericanStatisticalAssociationandanElectedMemberoftheInternational StatisticalInstitute. INSTITUTE OF MATHEMATICAL STATISTICS MONOGRAPHS EditorialBoard MarkHandcock,GeneralEditor(UCLA) JohnAston(UniversityofCambridge) ArnaudDoucet(UniversityofOxford) RamonvanHandel(PrincetonUniversity) IMS Monographs are concise research monographs of high quality on any branch of statistics or probability of sufficient interest to warrant publication as books. Some concern relatively traditional topics in need of up-to-date assessment. Others are on emergingthemes.Inallcasestheobjectiveistoprovideabalancedviewofthefield. OtherBooksintheSeries 1. Large-ScaleInference,byBradleyEfron 2. Nonparametric Inference on Manifolds, by Abhishek Bhattacharya and Rabi Bhattacharya 3. TheSkew-NormalandRelatedFamilies,byAdelchiAzzalini 4. Case-ControlStudies,byRuthH.KeoghandD.R.Cox 5. ComputerAgeStatisticalInference,byBradleyEfronandTrevorHastie 6. ComputerAgeStatisticalInference(StudentEdition),byBradleyEfronand TrevorHastie 7. StableLèvyProcessviaLamperti-TypeRepresentations,byAndreasE.Kyprianou andJuanCarlosPardo The Conway–Maxwell–Poisson Distribution KIMBERLY F. SELLERS GeorgetownUniversity ShaftesburyRoad,CambridgeCB28EA,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartofCambridgeUniversityPress&Assessment, adepartmentoftheUniversityofCambridge. WesharetheUniversity’smissiontocontributetosocietythroughthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108481106 DOI:10.1017/9781108646437 ©KimberlyF.Sellers2023 Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisions ofrelevantcollectivelicensingagreements,noreproductionofanypartmaytake placewithoutthewrittenpermissionofCambridgeUniversityPress&Assessment. Firstpublished2023 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-108-48110-6Hardback CambridgeUniversityPress&Assessmenthasnoresponsibilityforthepersistence oraccuracyofURLsforexternalorthird-partyinternetwebsitesreferredtointhis publicationanddoesnotguaranteethatanycontentonsuchwebsitesis,orwill remain,accurateorappropriate. Tothosethat“count”mostinmylife: Myfamily,especiallymyson Contents ListofFigures pagexii ListofTables xiv Preface xxi Acknowledgments xxiii 1 Introduction:CountDataContainingDispersion 1 1.1 PoissonDistribution 2 1.1.1 RComputing 4 1.2 DataOver-dispersion 5 1.2.1 RComputing 7 1.3 DataUnder-dispersion 10 1.3.1 RComputing 11 1.4 WeightedPoissonDistributions 16 1.5 Motivation,andSummaryoftheBook 18 2 TheConway–Maxwell–Poisson(COM–Poisson)Distribution 22 2.1 TheDerivation/Motivation:AFlexibleQueueingModel 23 2.2 TheProbabilityDistribution 25 2.2.1 RComputing 28 2.3 DistributionalandStatisticalProperties 35 2.3.1 RComputing 39 2.4 ParameterEstimationandStatisticalInference 40 2.4.1 CombiningCOM–PoissonnessPlotwithWeighted LeastSquares 40 2.4.2 MaximumLikelihoodEstimation 41 2.4.3 BayesianPropertiesandEstimation 42 2.4.4 RComputing 43 2.4.5 HypothesisTestsforDispersion 50 vii viii Contents 2.5 GeneratingData 52 2.5.1 InversionMethod 52 2.5.2 RejectionSampling 53 2.5.3 RComputing 56 2.6 ReparametrizedForms 57 2.7 COM–PoissonIsaWeightedPoissonDistribution 64 2.8 ApproximatingtheNormalizingTerm,Z(λ,ν) 65 2.9 Summary 69 3 DistributionalExtensionsandGeneralities 71 3.1 TheConway–Maxwell–Skellam(COM–SkellamorCMS) Distribution 72 3.2 TheSum-of-COM–Poissons(sCMP)Distribution 75 3.3 Conway–MaxwellInspiredGeneralizations oftheBinomialDistribution 77 3.3.1 TheConway–Maxwell–binomial(CMB)Distribution 78 3.3.2 The Generalized Conway–Maxwell–Binomial Distribution 81 3.3.3 The Conway–Maxwell–multinomial (CMM) Distribution 83 3.3.4 CMBandCMMasSumsofDependentBernoulli RandomVariables 86 3.3.5 RComputing 87 3.4 CMP-MotivatedGeneralizationsoftheNegativeBinomial Distribution 93 3.4.1 TheGeneralizedCOM–Poisson(GCMP)Distribution 93 3.4.2 TheCOM–NegativeBinomial(COMNB)Distribution 98 3.4.3 The COM-type Negative Binomial (COMtNB) Distribution 101 3.4.4 ExtendedCMP(ECMP)Distribution 106 3.5 Conway–MaxwellKatz(COM–Katz)ClassofDistributions 112 3.6 FlexibleSeriesSystemLife-LengthDistributions 113 3.6.1 TheExponential-CMP(ExpCMP)Distribution 114 3.6.2 TheWeibull–CMP(WCMP)Distribution 117 3.7 CMP-Motivated Generalizations of the Negative HypergeometricDistribution 119 3.7.1 The COM-negative Hypergeometric (COMNH) Distribution,TypeI 120 3.7.2 TheCOM–Poisson-typeNegativeHypergeometric (CMPtNH)Distribution 120

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.