ebook img

The Contribution of Novel CP Violating Operators to the nEDM using Lattice QCD PDF

0.71 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Contribution of Novel CP Violating Operators to the nEDM using Lattice QCD

EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2017 7 1 0 The Contribution of Novel CP Violating Operators to the nEDM 2 using Lattice QCD n a J RajanGupta1,a,TanmoyBhattacharya1,VicenzoCirigliano1,andBoramYoon1 6 1 1LosAlamosNationalLaboratory,TheoreticalDivision,T-2,LosAlamos,NM87545 ] t Abstract. In this talk, we motivate the calculation of the matrix elements of novel CP a l violating operators, the quark EDM and the quark chromo EDM operators, within the - p nucleonstateusinglatticeQCD.Thesematrixelements,combinedwiththeboundonthe e neutronEDM,wouldprovidestringentconstraintsonbeyondthestandardmodelphysics, h especiallyasthenextgenerationofneutronEDMexperimentsreducethecurrentbound. [ Wethenpresentourlatticestrategyforthecalculationofthesematrixelements,inpar- ticularwedescribetheuseoftheSchrodingersourcemethodtoreducethecalculationof 1 the4-pointto3-pointfunctionsneededtoevaluatethequarkchromoEDMcontribution. v 2 Weendwithastatusreportonthequalityofthesignalobtainedinthelatticecalculations 3 oftheconnectedcontributionstothequarkchromoEDMoperatorandthepseudoscalar 1 operatoritmixeswithunderrenormalization. 4 0 . 1 1 Introduction: Baryogenesis and the need for novel CP violation 0 7 1 The observed universe has 6.1+−00..32 × 10−10 baryons for every black body photon [1], whereas in a : baryon symmetric universe, we expect no more that about 10−20 baryons for every photon [2]. It is v difficulttoincludesuchalargeexcessofbaryonsasaninitialconditioninaninflationarycosmological i X scenario[3]. Thewayoutoftheimpasseliesingeneratingthebaryonexcessdynamicallyduringthe r evolutionoftheuniverse. a In the early history of the universe, if the matter-antimatter symmetry was broken post inflation and reheating, then one is faced with Sakharov’s three necessary conditions [4]: the process has to violatebaryonnumber, evolutionhastooccuroutofequilibrium, andcharge-conjugationandT(or equivalentlyCPifCPTremainsagoodsymmetry)invariancehastobeviolated. CPviolation((cid:8)C(cid:8)P)existsinthestandardmodel(SM)ofparticleinteractionsduetoaphaseinthe Cabibo-Kobayashi-Maskawa(CKM)quarkmixingmatrix[5],andpossiblybyasimilarphaseinthe leptonicsector,giventhattheneutrinosarenotmassless[6].(cid:8)C(cid:8)ParisingfromtheCKMmatrixinthe SMcontributesatO(10−32)e-cm,muchsmallerthanthecurrentexperimentalboundd <2.9×10−26 n e-cm. ThusthenEDMputsnoconstrainontheSMandthestrengthofthe(cid:8)C(cid:8)PintheCKMmatrixis muchtoosmalltoexplainBaryogenesis. Inprinciple,theSMhasanadditionalsourceof(cid:8)C(cid:8)ParisingfromtheeffectofQCDinstantons.The presenceofthesefiniteactionnon-perturbativeconfigurationsinanon-Abeliantheoryoftenleadsto inequivalent quantum theories defined over various ‘Θ’-vacua [7]. Because of asymptotic freedom, aSpeaker.e-mail:[email protected] EPJWebofConferences allnon-perturbativeconfigurationsincludinginstantonsarestronglysuppressedathightemperatures wherebaryonnumberviolatingprocessesoccur. Becauseofthis,(cid:8)C(cid:8)Pduetosuchvacuumeffectsdo notleadtoappreciablebaryonnumberproduction.Inshort,additionalmuchlarger(cid:8)C(cid:8)Pisneededfrom physicsbeyondtheSM(BSM). To determine whether such additional(cid:8)C(cid:8)P exists, a very promising approach is to measure the static electric dipole moments of elementary particles, atoms and molecules, which are necessarily proportional to their spin. Since under time-reversal the direction of spin reverses but the electric dipole moment does not, a non-zero measurement confirms T violation or equivalently(cid:8)C(cid:8)P. Of the elementaryparticles,atomsandnucleithatarebeinginvestigated,theelectricdipolemomentofthe neutron(nEDM)isthelaboratorywherelatticeQCDcanprovidethetheoreticalpartofthecalculation needed to “connect” the experimental bound (value) on the nEDM to the strength of(cid:8)C(cid:8)P in a given BSMtheory. MostextensionsoftheSMhavenewsourcesof(cid:8)C(cid:8)P. EachofthesecontributestothenEDMand forsomemodelsitcanbeaslargeas10−26e-cm.Plannedexperimentsareaimingtoreducethebound ond < 2.9×10−26 e-cmtod (cid:46) 3×10−28 e-cm. ThestrategyforfindingoutwhichclassofBSM n n theories are viable candidates is as follows: As the bound on the nEDM is lowered in current and plannedexperiments,BSMtheorieswith(cid:8)C(cid:8)PgivingrisetoanEDMlargerthanthisboundgetruled outprovidedthe“connection”betweentheboundandthecouplingsisknownsufficientlyaccurately. This “connection” is the matrix elements of the novel CP violating interactions within the neutron statethatsimulationsoflatticeQCDaregearinguptoprovide. 2 QCD Lagrangian and the EM current in the presence of CP Violation Many candidate BSM theories have been proposed by theorists. While the true BSM theory is not known, one can write down all possible(cid:8)C(cid:8)P interactions at the energy scale of hadronic matter (∼ fewGeV)intermsofquarkandgluonfieldsbasedonsymmetryandorganizedbytheirdimension; operators with higher dimension being, in general, suppressed. At the lowest dimension five, there aretwoleadingoperatorscalledthequarkEDM(qEDM)andthequarkchromoEDM(CEDM).The QCDLagrangianinthepresenceoftheΘ-term,theqEDMandtheCEDMoperatorsis L −→L(cid:26)(cid:26)CP =L +iΘG G˜ + i(cid:88)dγqΣµνF˜ q + i(cid:88)dGqΣµνG˜ q (1) QCD QCD QCD µν µν q µν q µν q q wherethesumisoverallthequarkflavors,Σµν =[γµ,γν]/2,andF andG aretheelectromagnetic µν µν and chromo field strength tensors. The couplings dγ are the qEDMs and the dG are the CEDMs. q q They parameterize new(cid:8)C(cid:8)P in BSM theories. The goal is to constrain BSM models by bounding these couplings using the experimental bound on the neutron EDM and lattice QCD calculations of the matrix elements of the corresponding operators. In other words, the matrix elements of the electromagnetic current JEM between neutron states in the presence of CP violation provides the µ “connection”betweentheBSMcouplingsandthenEDM. Inthepresenceof(cid:8)C(cid:8)P,theelectromagneticcurrent,definedasδL/δAµ,getsanadditionalterm: (cid:88) (cid:88) (cid:88) e qγµq−→e qγµq+(cid:15)ρσνµpν dγqΣµνq. (2) q q q q ThematrixelementsofthisleadingqEDM(second)termaretheflavordiagonaltensorchargesgq: T (cid:104)N | JµEM | N(cid:105)(cid:12)(cid:12)(cid:12)q(cid:54)CEPDM,1 = (cid:15)µνκλqν(cid:28)N(cid:12)(cid:12)(cid:12)(cid:12)(cid:16)duγu¯Σκλu+ddγd¯Σκλd+dγss¯Σκλs+...(cid:17)(cid:12)(cid:12)(cid:12)(cid:12)N(cid:29) , lim dγgu +dγgd +dγgs +... . (3) q→0 u T d T s T CONF12 QEDMoperator Θ-term σµνγ5 γµ Q Q σµνγ5 γµ Figure1. CalculatingnEDMrequiresevaluatingtheinteractionoftheemcurrentwiththeneutron. Thecontri- butionofconnectedanddisconnecteddiagramsfromthe(left)qEDMand(right)Θ-term. The connected and disconnected (with u, d, s and c quark loops) Feynman diagrams for the qEDM contribution are shown in Fig. 1 (left). The first lattice results for the qEDM were given in [8] and phenomenologicalconsequencesforaparticularBSMtheory,SplitSUSY,werepresentedinRef.[9]. The key computational challenge to evaluating Eq. (3) is the calculation of the disconnected contri- butionstogq. Thesewereshowntobesmallandnoisy, anddecreasewiththequarkmass[8]. The T errorsinthestrangedisconnectedcontributionweresmallenoughtoyieldthecontinuumlimitesti- mategs = 0.008(9)[8]. InmostpromisingBSMtheories,thenew(cid:8)C(cid:8)PinteractionsareYukawalike, T i.e.,thecouplingsareproportionaltothequarkmass. Consequently,theimpactofthesmallvalueof gs withO(1)error,getsmagnifiedbythequarkmassratio2m /(m +m )=27. Thus,itisimportant T s u d toimprovetheestimateofgs and,forthesamereason,calculategc. T T Contributions from the CEDM and the next order in quark EDM arise due to the change in the action, L −→ L(cid:26)(cid:26)CP . In an ideal world, the best way to calculate these effects would be QCD QCD to simulate the lattice theory using a discretized version of L(cid:26)(cid:26)CP and compute the matrix element (cid:104)N | JµEM | N(cid:105)(cid:12)(cid:12)(cid:12)(cid:26)(cid:26)CP. Thisidealapproachisnotpracticalbecause(cid:8)C(cid:8)QPCDinteractionsarecomplexandlattice simulationsoftheorieswithacomplexactionarenotyetrealistic. Themethodofchoiceistotreatthese(cid:8)C(cid:8)Pinteractionsasperturbationsinthesmallcouplingsdγ q anddG,andexpandthetheoryaboutL (seeSec.3). Then,theleadingtermsthatcontributetothe q QCD nEDM are the matrix elements of the product of the electromagnetic current JEM and the 4-volume µ integraloftheoperators. FortheCEDMoperator,thematrixelementsthathavetobecalculatedare (cid:42) (cid:12) (cid:90) (cid:12) (cid:43) (cid:12) (cid:12) (cid:16) (cid:17) (cid:12) (cid:104)N | JµEM | N(cid:105)(cid:12)(cid:12)(cid:26)(cid:26)CCEPDM = N(cid:12)(cid:12)(cid:12)JµEM d4x[ duGu¯Σνκu+ddGd¯Σνκd+dGs s¯Σνκs+... G˜νκ](cid:12)(cid:12)(cid:12)N , (4) asdiscussedinSec.3. SimilarlyforthenextorderqEDM (cid:42) (cid:12) (cid:90) (cid:12) (cid:43) (cid:104)N | JµEM | N(cid:105)(cid:12)(cid:12)(cid:12)(cid:26)(cid:26)qCEPDM,2 = N(cid:12)(cid:12)(cid:12)(cid:12)JµEM d4x[(cid:16)duFu¯Σνκu+ddFd¯Σνκd+dsFs¯Σνκs+...(cid:17)F˜νκ](cid:12)(cid:12)(cid:12)(cid:12)N .(5) ThissecondqEDMtermhastwoelectromagneticinteractionsandisthereforeexpectedtobesmaller thantheleadingtermgiveninEq.(3). Forthisreasonweneglectitscontribution. Finally,thecontri- butionoftheΘ-termrequirescalculatingthematrixelement: (cid:42)(cid:12) (cid:90) (cid:12) (cid:43) (cid:104)N | JEM | N(cid:105)(cid:12)(cid:12)(cid:12)Θ = (cid:12)(cid:12)(cid:12)JEM d4xΘGµνG˜µν(cid:12)(cid:12)(cid:12)n . (6) µ (cid:54)CP (cid:12) µ (cid:12) ThiscorrelationofJ withtopologicalchargeQgivesrisetothe2diagramsshowninFig.1(right). µ EPJWebofConferences   eiε  ududdd             PP  ε   PPPP  ε  ε    PP  ε   ududdd             ududdd             PPε     PPPPεε        PP  ε   ududdd             + ududdd       PP ε  PPPP ε ε   PPss ‐eeεqq   ududdd       ududdd       PP ε  PPPPεε     Ps‐eεq   ududdd        Ps eq  Figure2.CEDMcontributionisthereweightingfactortimesthesumofconnectedanddisconnecteddiagrams. (cid:8) 3 Simulating QCD Including Complex(cid:8)CP CEDM and γ operators 5 TheQCDLagrangianbecomescomplexwiththeadditionofanyCPviolatinginteraction. Arobust cost-effective method for simulating theories with complex actions does not exist. To calculate the contribution of the(cid:8)C(cid:8)P interactions to the nEDM, we work within the framework of the Schwinger sourcemethod. WestartbynotingthatthefermionpartoftheLagrangian,L(cid:26)(cid:26)CP inEq.(1),involves QCD onlyquarkbilinearoperatorsinpresenceoftheqEDMandCEDMinteractions. Thefermionfieldsin thepathintegralcan, therefore, stillbeintegratedout. Thereare, however, twomodificationstothe standard calculations of 3-point functions due to the presence of(cid:8)C(cid:8)P interactions treated as sources. First,theDiracoperator,inthepresenceofsaytheCEDMterm,becomes r r D/ +m− D2+c ΣµνG −→ D/ +m− D2+Σµν(c G +i(cid:15)G˜ ) . (7) sw µν sw µν µν 2 2 Quark propagators calculated with this modified Dirac operator include the insertion of the CEDM operatoratallspace-timepoints.Second,theBoltzmannweightofallgaugeconfigurationsgenerated without the CEDM term in the action need to be modified by reweighting them by the ratio of the determinantsoftheDiracoperatorsforthetwotheories–withandwithout(cid:8)C(cid:8)Pterms: det(D/ +m− rD2+Σµν(c G +i(cid:15)G˜ ) 2 sw µν µν det(D/ +m− rD2+c ΣµνG ) 2 sw µν (cid:20) r (cid:21) = expTrln 1+i(cid:15)ΣµνG˜ (D/ +m− D2+c ΣµνG )−1 (8) µν sw µν 2 (cid:20) r (cid:21) ≈ exp i(cid:15)TrΣµνG˜ (D/ +m− D2+c ΣµνG )−1 . (9) µν sw µν 2 Since the coupling (cid:15) for the CEDM term for all quark flavors is small, we expect the leading order reweightingfactortobeagoodapproximation.This‘reweightingfactor’foreachgaugeconfiguration is,toleadingorder,theintegraloverallspacetimepointsofthevalueofaclosedquarkloopwiththe insertionoftheCEDMoperator. Thereisanadditionalchallenge: TheCEDMoperatorhasanUVdivergentmixingwiththe“γ - 5 operator,qγ q/a2 [10]. Thus,onehasto(i)calculatethematrixelementofthe“γ -operator”,which 5 5 we do in the same way as for the CEDM operator, (ii) calculate a similar reweighting factor, and (iii) handle the 1/a2 divergent mixing. Since the reweighting is an overall phase, and configuration to configuration fluctuations can be large, it is therefore important to demonstrate the quality of the signalinF (0)afterreweightingforboththeCEDMandγ terms. InSec.5,wedescribetheprogress 3 5 CONF12 wehavemadetowardsaddressingthesechallenges.ThereisalsoamixingoftheCEDMoperatorwith theGµνG˜µνoperator. AddressingthismixingispartofthecalculationoftheΘ−termperEq.(6)[10]. The Schwinger source method has allowed us to recast the challenging calculation of 4-point functionsgiveninEq.(4)tothedifficultcalculationof3-pointfunctions[11].TheFeynmandiagrams needed to calculate (cid:104)N|JEM(q)|N(cid:105) in the presence of CEDM and γ interactions are illustrated in µ 5 Fig.2. Startingwithanensembleofgaugeconfigurationsgeneratedwithastandardlatticeaction,for exampletheWilson-cloveraction,thestepsinthecalculationare: • Calculate propagators, labeled P in Fig. 2, using the standard Wilson-clover Dirac operator. We assumeisospinsymmetrysothepropagatorsforuanddquarksarenumericallythesame. • CalculateasecondsetofpropagatorswiththeCEDMtermincludedwithcoefficient(cid:15)intheWilson- clovermatrix: (cid:18) r (cid:19)−1 (cid:18) r (cid:19)−1 D/ +m− D2+c ΣµνG −→ D/ +m− D2+Σµν(c G +i(cid:15)G˜ ) . (10) sw µν sw µν µν 2 2 Thesepropagators,labeledP ,includethefulleffectofinsertingtheCEDMoperatoratallpossible (cid:15) pointsalongthem. Thecostofinversionincreasesbyabout7%withrespectto P,however,using PasthestartingguessintheinversionforP reducesthenumberofiterationsrequiredby20–40% (cid:15) dependingonthequarkmass. TheoverallaveragecostofP isfoundtobeabout80%ofP. (cid:15) • Using Pand P ,construct4kindsofsequentialsources,labeled Pseq, Pseq, Pseq ,and Pseq ,atthe (cid:15) u d −(cid:15),u −(cid:15),d sinktime-slicecorrespondingtotheinsertionofaneutronatzeromomentum.Thesubscriptsuord inPseqandPseq,andsimilarlyinPseq andPseq ,denotetheflavoroftheuncontractedspinorinthe u d −(cid:15),u −(cid:15),d neutronsource. Theminussigninthecoupling,−(cid:15),accountsforthebackwardmovingpropagator. • Ifusingthecoherentsequentialsourcemethod,thenNsourcesatdifferenttime-slicesfortheNdif- ferentcalculationsbeingdonesimultaneouslyonthatconfiguration,areaddedtogether. Sequential propagatorswiththese(coherent)sequentialsourcesarecalculatedbyinvertingtheDiracoperator withandwithouttheCEDMtermasappropriate. The4typesof(coherent)sequentialpropagators areshownbytheblockof4correlationfunctionsintherighthalfofFig.2. • Usingthetwooriginalandthefoursequentialpropagators,calculatetheconnected3-pointfunction. Thesecontractionsgivethefour3-pointfunctionsshownontherightinFig.2. Notethataseparate insertionofJEMisdoneontheuanddquarklines. µ • Calculatethedisconnectedquarkloopwiththeinsertionofelectromagneticcurrentatzeromomen- tumforeachofthequarkflavors,u, d, s, c(andbifneeded)usingtheDiracpropagatorwithand withouttheCEDMterm. • Calculatethecorrelationofthesequarkloopswiththeappropriatenucleon2-pointcorrelationfunc- tions. The4typesofdisconnectedFeynmandiagramsrequiredareillustratedintheleftofFig.2. • TocorrectfortheomissionofthechromoEDMoperatorintheactionduringthegenerationofthe gaugeconfigurations,calculatethevolumeintegralofthequarkloopwiththeCEDMinsertionfor eachflavor. Multiplythesumoftheconnectedanddisconnectedcontributionsbythereweighting factor–exponentialoftheestimateofthe“CEDMloop”fortheconfigurationwiththeappropriate couplingfactori(cid:15). ThisisshownbytheoverallfactorinFig.2. • Repeat the calculation for different values of (cid:15) that bracket the expected numerical values of the couplingsdG forthevariousquarkflavors. q • Repeatthewholecalculationfortheγ -operatorinsteadoftheCEDMoperator. 5 EPJWebofConferences 4 Matrix Elements and Form Factors from 3-point Functions Thematrixelements,definedinEqs.(3),(4)and(6),areextractedfromthevacuumtovacuum3-point correlation function: insertion of the electromagnetic current at times t between the neutron source andsinkoperatorsattime0andT: (cid:88) (cid:104)Ω|N((cid:126)0,0)JµEM((cid:126)q,t)N†((cid:126)p,T)|Ω(cid:105)= uNe−MNt (cid:104)N|JµEM(q)|N(cid:48)(cid:105)e−EN(cid:48)(T−t)u(cid:48)N. (11) N,N(cid:48) whereintherighthandsidewehaveusedtheexpansioninacompletebasisofstates|N(cid:105),|N(cid:48)(cid:105),...that coupletotheneutroninterpolatingoperatorN. WeuseN ≡(cid:15)abc[daTCγ (1+γ )ub]dcwhereC =γ γ 5 4 0 2 isthechargeconjugationmatrix,a, b,carethecolorindices,u, darethequarkflavors,u isthefree N neutronspinorandM istheneutronmass. Inthepresenceof(cid:8)C(cid:8)P,thenucleon2-pointfunctionis N (cid:104)Ω|N((cid:126)0,0)N†((cid:126)p,t)|Ω(cid:105)|limt→∞ = A2uNe−p4tuN = A2e−p4teiαNγ5(i/p+mN)eiαNγ5, (12) wherethephaseangleα arisesduetothe(cid:8)C(cid:8)Pcoupling(cid:15)anddependsonit. Todeterminethedesired N regionoflinearityofαversus(cid:15) weshowtheimaginarypartoftheneutron2-pointfunctioninFig.3. It demonstrates the quality of the signal for α for appropriately small values of (cid:15) on two different ensembles. Fig.4showstheexpectedlinearbehaviorofαversus(cid:15) overarangeofsmall(cid:15). 0.07 -0.10 ε = 0.004 -0.11 ε = 0.004 0.06 γ5 -0.12 α 0.05 γ5 -0.13 α -0.14 0.04 -0.15 0.03 -0.16 0 2 4 6 8 10 12 0 2 4 6 8 10 12 t t 0.07 -0.10 ε = 0.003 -0.11 ε = 0.003 0.06 -0.12 γ5 -0.13 α 0.05 γ5 α -0.14 0.04 -0.15 -0.16 0.03 -0.17 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 t t Figure 3. The phase α extracted from the plateau in the imaginary part of the neutron 2-point function with (cid:15) = 0.004onthea12m310ensemble(top)and(cid:15) = 0.003onthea09m310ensemble(bottom). Theplotsonthe leftarefortheCEDMoperatorandontherightfortheγ mixingoperator. 5 Oncethematrixelementoftheelectromagneticcurrent, JEM(q)definedinEq.2, withinthenu- µ cleon state is extracted using Eq. (11), it is parameterized in terms of four Lorentz covariant form CONF12 Figure4.Linearbehaviorofthephaseαversus(cid:15)withtheinsertionoftheCEDMandtheγ operators. 5 factorsF ,F ,F andF : 1 2 A 3 (cid:34) F (q2) (cid:104)N|JEM(q)|N(cid:105) = u γ F (q2) + iσµν q 2 µ N µ 1 ν 2M N  + (2iMNγ5qµ−γµγ5q2) FAM(q22) + σµν qνγ5 F23M(q2)uN, (13) N N F and F arethestandardDiracandPauliformfactors. Theanapoleformfactor F violatesparity 1 2 A Pandtheelectricdipoleformfactor F violatesPandCP. F isextractedfromthedifferentmatrix 3 3 elementsbyusingdifferentcombinationsofthemomentumtransferq andspinprojections. Thezero µ momentum limit of these form factors gives the charges and dipole moments: the electric charge is F (0)=1andtheanomalousmagneticdipolemomentisF (0)/2M . Thecontributionofthematrix 1 2 N elementofeach(cid:8)C(cid:8)PinteractiondefinedinEqs.(3),(4), and(6)totheelectricdipolemomentofthe neutronisgivenbyd =lim F (q2)/2M . n q2→0 3 n 5 Status of Numerical Calculations So far, we have performed numerical calculations on two 2+1+1-flavor HISQ ensembles generated by the MILC collaboration [14]. The first, labeled a12m310, has a = 0.12 fm and M = 310 MeV π andthesecond,labeleda09m310,hasa=0.09fmand M =310MeV.Thecorrelationfunctionsare π constructedusingWilson-cloverfermions. Onthea12m310(a09m310)ensemblewehaveanalyzed 400 (270) configurations with 64 measurements on each configuration. The ensembles used and our strategy for the calculation of 2- and 3-point functions with this clover-on-HISQ approach are describedinRef.[12]. In Fig. 5, we show the data for F from the connected diagrams in the presence of the CEDM 3 term, and in Fig. 6, the data for F in the presence of the γ term. The data are presented for three 3 5 values of the source-sink separation t = 8,10 and 12. The excited-state contamination in the sep matrix elements, and thus in F , is removed by taking the t →∞ limit. These figures show that 3 sep anacceptablesignal-to-noiseratiocanbeobtainedtoestimate F withO(1)errors,ourfirstgoalfor 3 theCEDMcalculations. Therearetheoreticalreasonstoexpectthattheconnectedcontributionoftheγ operatoris,with 5 smallcorrections,proportionaltothatoftheCEDMoperator[13]. InFig.7,weshowtheratioofthe twocontributionsandfindthatthisexpectationisactuallyrealized. EPJWebofConferences 1 1 1 1 0.5 0.5 0.5 0.5 U, d-uF3-0 .05 D, d-uF3-0 .05 U, d-uF3-0 .05 D, d-uF3-0 .05 -1-.15 ttssteesppe==p=11802 q2=1 -1-.15 ttssteesppe==p=11802 q2=1 -1-.15 tttssseeeppp===111024 q2=1 -1-.15 tttssseeeppp===111024 q2=1 -4 -2 0 2 4 -4 -2 0 2 4 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 τ - tsep/2 τ - tsep/2 τ - tsep/2 τ - tsep/2 1 1 1 1 0.5 0.5 0.5 0.5 U, d-uF3-0 .05 D, d-uF3-0 .05 U, d-uF3-0 .05 D, d-uF3-0 .05 -1-.15 ttssteesppe==p=11802 q2=4 -1-.15 ttssteesppe==p=11802 q2=4 -1-.15 tttssseeeppp===111024 q2=4 -1-.15 tttssseeeppp===111024 q2=4 -4 -2 0 2 4 -4 -2 0 2 4 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 τ - tsep/2 τ - tsep/2 τ - tsep/2 τ - tsep/2 Figure5. IllustrationofthesignalinF withtheinclusionoftheCEDMterm. Thedatainthetoprowarefor 3 (cid:126)p=(1,0,0)×2π/Lainthefollowingorder:insertiononuanddquarksforthea12m310ensemblefollowedby insertiononuanddquarksforthea09m310ensemble.Theplotsinthesecondrowareinthesameorderexcept with(cid:126)p=(2,0,0)×2π/La. 1 1 1 1 U, , d-uγF53- 00 ..055 ttssteesppe==p=11802 D, , d-uγF53- 00 ..055 ttssteesppe==p=11802 U, , d-uγF53- 00 ..055 tttssseeeppp===111024 q2=1 D, , d-uγF53- 00 ..055 tttssseeeppp===111024 q2=1 -1 q2=1 -1 q2=1 -1 -1 -1.5 -1.5 -1.5 -1.5 -4 -2 0 2 4 -4 -2 0 2 4 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 τ - tsep/2 τ - tsep/2 τ - tsep/2 τ - tsep/2 1 1 1 1 U, , d-uγF53- 00 ..055 ttssteesppe==p=11802 D, , d-uγF53- 00 ..055 ttssteesppe==p=11802 U, , d-uγF53- 00 ..055 tttssseeeppp===111024 D, , d-uγF53- 00 ..055 tttssseeeppp===111024 -1 q2=4 -1 q2=4 -1 q2=4 -1 q2=4 -1.5 -1.5 -1.5 -1.5 -4 -2 0 2 4 -4 -2 0 2 4 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 τ - tsep/2 τ - tsep/2 τ - tsep/2 τ - tsep/2 Figure 6. Illustration of the signal in F with the inclusion of the γ term. The data in the top row are for 3 5 (cid:126)p=(1,0,0)×2π/Lainthefollowingorder:insertiononuanddquarksforthea12m310ensemblefollowedby insertiononuanddquarksforthea09m310ensemble.Theplotsinthesecondrowareinthesameorderexcept with(cid:126)p=(2,0,0). Toconclude, thedata sofarshowthatan acceptablesignal-to-noiseratiocanbe obtainedinthe connected contributions to F for both the CEDM and γ operator insertion. We also find that The 3 5 ratio of the connected contribution of the γ to CEDM term is a constant. This implies that the 5 mixingoftheγ termwiththeCEDMtermcanbecastaspartofthemultiplicativerenormalizationof 5 theCEDMoperator. ControllingitsO(1/a2)UVdivergentcoefficientisahurdleforlatticetheories thatrespectchiralsymmetry(domainwalloroverlapfermions)andthosethatdon’tsuchasWilson- clover fermions. Work to address the full mixing of the CEDM operator and the calculation of the disconnecteddiagramsandthereweightingfactorsisunderprogress. CONF12 6 6 6 6 U, , d-uU, d-uγF / F533-- 42024 q2=1 ttssteesppe==p=11802 D, , d-uD, d-uγF / F533-- 42024 q2=1 ttssteesppe==p=11802 U, , d-uU, d-uγF / F533-- 42024 tttssseeeppp===111024 q2=1 D, , d-uD, d-uγF / F533-- 42024 tttssseeeppp===111024 q2=1 -6 -6 -6 -6 -4 -2 0 2 4 -4 -2 0 2 4 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 τ - tsep/2 τ - tsep/2 τ - tsep/2 τ - tsep/2 6 6 6 6 U, d-uF3 24 q2=4 tstespe=p=180 D, d-uF3 24 q2=4 tstespe=p=180 U, d-uF3 24 q2=4 tttssseeeppp===111024 D, d-uF3 24 q2=4 tttssseeeppp===111024 U, , d-uγF / 53-- 420 D, , d-uγF / 53-- 420 U, , d-uγF / 53-- 420 D, , d-uγF / 53-- 420 -6 -6 -6 -6 -4 -2 0 2 4 -4 -2 0 2 4 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 τ - tsep/2 τ - tsep/2 τ - tsep/2 τ - tsep/2 Figure7. Theratiooftheconnectedcontributionoftheγ termtotheCEDMtermintheF formfactor. The 5 3 restisthesameasinFig.5. Acknowledgments We thank the MILC Collaboration for providing the 2+1+1-flavor HISQ ensembles. Simulations were carried out on computer facilities of (i) Institutional Computing at Los Alamos National Lab; (ii)theUSQCDCollaboration,whicharefundedbytheOfficeofScienceoftheU.S.Departmentof Energy; (iii) the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ThecalculationsusedtheChromasoftwaresuite[15]. Worksupported bytheU.S.DepartmentofEnergyandtheLANLLDRDprogram. References [1] C.Bennettetal.,Astrophys.J.Suppl.148,1-27(2003). [2] E.W.KolbandM.S.Turner,Front.Phys.69,1-547(1990). [3] P.Coppi,eConfC040802,L017(2004). [4] A.D.Sakharov,PismaZh.Eksp.Teor.Fiz.532–35(1967). [5] M.KobayashiandT.Maskawa,Prog.Theor.Phys.49652-657(1973). [6] H.Nunokawa,etal.,Prog.Part.Nucl.Phys.60,338-402(2008). [7] A.D.Dolgov,Phys.Rept.222,309–386(1992). [8] T.Bhattacharya,etal.,Phys.Rev.D92,094511(2015). [9] T.Bhattacharya,etal.,Phys.Rev.Lett,115212002(2015). [10] T.Bhattacharya,etal.,Phys.Rev.D92,114026(2015). [11] T.Bhattacharya,etal.,PoSLATTICE2015,238(2016). [12] T.Bhattacharya,etal.,Phys.Rev.D94,054508(2016). [13] T.Bhattacharya,etal.,PoSLATTICE2016,001(2016). [14] A.Bazavov,etal.,Phys.Rev.D92,114026(2015). [15] R.G.EdwardsandB.Joo,Nucl.Phys.Proc.Suppl.140832-837(2005).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.