ebook img

The composition of spider assemblages varies along reproductive and architectural gradients in the shrub Byrsonima intermedia (Malpighiaceae) PDF

2011·2.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The composition of spider assemblages varies along reproductive and architectural gradients in the shrub Byrsonima intermedia (Malpighiaceae)

2011.TheJournalofArachnology39:537-540 SHORT COMMUNICATION Thecomposition ofspider assemblagesvaries alongreproductive and architectural gradientsIn theshrub Byrsonima intermedia (Malpighiaceae) AugustoCesardeAquinoRibas: GraduatePrograminEcologyandConservation,UniversidadeFederaldeMatoGrosso do Sul, Campo Grande, MS, Brazil. E-mail: [email protected] AntonioDomingosBrescovit: LaboratoriodeArtropodes,InstituteButantan,Av.VitalBrasil, 1500,Butanta,SaoPaulo, SP, Brazil JosueRaizer: SchoolofBiologicalandEnvironmentalSciences,UniversidadeFederaldaGrande Dourados,Dourados, MS, Brazil Abstract. Thepresenceofbuds,flowers,andfruitsincreasesstructuralcomplexityinplants,butcanalsoattractpotential preyforpredators,thusdeterminingfaunisticcomposition. To understandhowaspiderassemblagelivingintheshrub Byrsonimaintermedia(Malpighiaceae)varieswithhabitatstructureintermsofreproductiveelementsandheightofplant, wecollectedspiderspecimensandmeasuredbud,flower,fruit,andleafmassesof44plants,aswellastheirheight.Spider familycomposition was found to depend on habitat structure, followinga pattern offamilyturnover occurringalong gradientsofreproductiveplantelementsandheight,regardlessofplantbiomass.Theridiidaeoccurredinsampleswiththe major proportions ofbuds and flowers, while Oxyopidae occurred only in samples with major proportions offruits. Multiplelinear regression revealed thestrongrelation between thecomposition in reproductiveplantelementsand the compositioninfamiliesofspidersandarelationbetweenshrubheightandspiderfamilycomposition.Theseresultshelpus tounderstandthetemporaldynamicsbetweenstructuralcomplexityofvegetationandspiderassemblages,becauseduring plantphenologytheproportionsofreproductiveelementsarealsovarying. Keywords: Araneae,assemblagecomposition,assemblagediversity,habitatstructure,habitatheterogeneity,reproductive phenology The influence ofplant structural traits on microhabitat selection Data were collected from an area of the Brazilian savanna has been demonstrated for spiders around the world. The spiders’ (“cerrado stricto sensu”) in Campo Grande, Mato Grosso do Sul, preferencesforparticularmicrohabitatsresultinvariationofspider southwestern Brazil (Embrapa Gado de Corte, 20°26'36.6"S, diversityrelatedtoboththestructureofvegetativeparts(Halajetal. 54°43'30.6"W). The area, now undergoing regeneration, harbors a 2000;Souza2005)andthepresenceofreproductivestructures(Souza largenumberofB. intermediaspecimenswithasynchronicflowering. &Modena2004;Souza&Martins2004). The species has entomophilous flowers that last for one day on Inflorescence-bearing branches are structurally distinct from averageanddevelopintoadrupe(Oliveiraetal.2007). vegetative branches and may constitute microhabitats that offer a From 17 October to 4 December 2008, a total of 44 shrubs range ofattractive traits forspiders. Floral structuresmay provide (typically sixeach week) was sampled. To randomize thechoice of refuge from predators and harsh environmental conditions, facili- shrubs,thepostsofanadjoiningfencewerenumbered. Afencepost tating camouflaging for prey capture and serving as breeding sites andaperpendiculardistanceinmeters(integersfrom0to 100)were (Johnson 1995). Abundanceofpotential prey forspiders is high in thenchosenbydraw.Fencepostanddistancedeterminedaspotfrom budsandflowers,asthesestructuresareoftenvisitedbyherbivores whichthenearestB. intermediashrubwasselected.Whileuncut,the and pollinating insects (Louda 1982). Furthermore, fruits attract plants were individually wrapped in plastic bags of 100 1 capacity, insects andmay depend on these tocomplete their lifecycles (e.g., then cut at ground level using pruning shears before taken to the Kolesik et al. 2005; Burkhardt et al. 2009). Plant phenological laboratory, whereeach shrub (mean height = 1.24 m, SD = 0.25; variationisthereforeexpectedtodeterminevariationsinthestructure biomass = 461.2 g, SD = 252.3)was inspected forthepresenceof ofspiderassemblages. arthropods. The spiders thus collected were stored for identifica- The presence and succession ofreproductive elements ofplants tion at the family level. Voucher specimens were deposited in the mask theeffects ofplant structural complexity on spiderdiversity, ArachnidacollectionofInstitutoButantanofSaoPaulo, Brazil. because reproductive structures not only modify plant architecture Afterremovalofthearthropods,allthebuds, flowers,fruits, and (bychangingbiomassspatialarrangement),butalsoamplifythelocal leavesfromeachshrubwerecollected,andthefreshmassofeachof preyavailability, beingattractivetospidersformany reasons(e.g., thesetypesofstructurewasweighedusingabalanceof0.01gprecision Finke&Denno2006;Schmidt&Rypstra2010). rightaftertheremovalofthearthropodsinthesamedayofsampling. We desired to know ifthe relative amount ofeach reproductive AsB.intermediaisaspecieswithanasynchronousfloweringperiod element (buds, flowers and fruits), height (plant architecture), and (Filho & Lomonaco 2006). The44 plant specimenswere randomly biomass (habitat size) ofthe shrub Byrsonima intermedia A. Juss grouped,takingintoaccount thefrequencyofspiderfamilies,mean (Malpighiaceae)mightexplainvariationinthecompositionofspider plantheight,andtotalbiomassofshrubs,leaves,buds,flowers,and assemblages.Thearchitectureofthisshrubspeciesvarieswithheight fruits,resultingin 11 samplesoffourspecimenseach,allowingusto (Oliveiraetal.2007),becausethetallerthespecimen,thefurtherapart makeordinationsofthevariableswithoutlosingtherelationbetween itsbranchesarearranged,facilitatingtheconstructionofwiderwebs. them. 537 538 THEJOURNALOFARACHNOLOGY -1IbIlllll Fruits iiiIIIIIIII Flowers il.illI-..B Buds lllliilllll Leave NMDSordinatedsamples -0.3 -0.2 -0.1 0.0 0.1 0.2 Reproductive elements composition B Oxyopidae Araneidae Sparassidae Anyphaenidae Miturgidae III Dictynidae Salticidae Thomisidae Theridiidae NMDSordinatedsamples -0.1 0.0 0.1 0.2 Figure 1.- Ordinationsofthesamplesbynon-metricmultidimen- sional scaling (NMDS). (A) Phenological variation: ordination Plant height obtained using relative biomass ofleaves, buds, llowers and fruits — csinpoimBdpyeorrssioftnaimioiDlnii:aesi.onrledniiniaetdiioanspoebctiamiennesd(Muaslipnigghriealcaetaieve).f(rBe)quSepnidceyroffamitlhye mvaoldFueielgs.uroeNftM2h.DeSdPeaprsetcniodarleesntrfevograrreirsaeslbialotenivaenpdlforNtesqMueDonfcSietsshceoorfemsuslpotifidperlerleaftairmveieglrimeeasssssiaeorsne of reproductive elements (A) and height of Byrsonima intermedia (Malpighiaceae) shrubs (B) are the independent variables. Lines Ordination by non-metric multidimensional scaling (NMDS) was represent the linear function obtained in the multiple regres- employedtorepresentthevariationinrelativeamountsofleaves,buds, sionmodel. (lowers, and fruits across plant samples. Weconsidered the relative biomassofvegetativestructures(leaves)and reproductivestructures (buds, flowers, and fruits), employing a Bray-Curtis dissimilarity families. Rsoftware(R DevelopmentCoreTeam2010)wasusedfor matrixforthisordination. NMDSwasalsoused torepresentspider dataanalysis.Thevegansoftwarepackage(Oksansenetal.2010)was family composition. A Bray-Curtis dissimilarity matrix based on additionallyemployedfordiversitycalculationsandforordinations. relativefrequencieswasalsoemployedforthispurpose. Ordination of B. intermedia samples using the relative mass of Amultiplelinearregressionmodelwasusedtoevaluatetheeffectsof leaves, buds, flowers, and fruits usingNMDS (n = 11, = 0.94) reproductiveplantelements(NMDSscores),height,andbiomassonthe revealed variation in composition of the reproductive elements diversity(Shannon index)andcomposition(NMDSscores)ofspider (Fig. IA). Samples with more buds remained on the left in the RIBASETAL.—SPIDERASSEMBLAGESIN SHRUBS 539 gradientofordination,whileflowersdecreasedand fruits increased protectionduetopredationonherbivores),isnecessarytounderstand alongthisgradient.Leaveswereabundantinallsamplesthroughout the structure ofa spider assemblage and help to predict potential thisgradient,irrespectiveofreproductiveelements. responses to indirect interactions between spiders and plants A total of 195 spiders from nine families was collected from 44 (Wootton2002).Itcanbeconcludedthatspidercompositiondepends shrubs. Salticidae(62specimens),Anyphaenidae(33),andThomisi- on habitat structure, with a pattern of family turnover occurring dae(21)werethemostabundantfamilies.AmeanShannon’sindexof alonggradientsofcompositionofreproductiveelementsandheight, 1.49wasfoundforfamilydiversity,rangingfrom0.67to 1.86forthe irrespectiveofplantbiomass. h1e1igshatm,palnesdbainodmavsarsyiinngarmualntdiopmlelyrewgirtehssiroenprmoodducetliv(/e;=pla1n1t;Ee"le=me2n.t6s3,; ACKNOWLEDGMENTS R- = 0.68;P=0.35). WethankF.O.Roque,J.C.Voltolini,S.Pekarandtwoanonymous Sampleordination by NMDS {n = 11; = 0.73) usingrelative reviewersfortheirhelpfulsuggestionsandcomments.V.L. Landeiro frequenciesofspideroccurrence,revealedagradientinspiderfamily provided R functions for the graphs in Fig. 1. This research was composition (Fig. IB). Spiders ofthe family Salticidae were found supportedbythe FUNDECT, agovernmental foundation ofMato throughout this gradient; Theridiidae and Thomisidae were more Grossodo Sul State(process 23/200.327/2008 and 23/200.384/2008) likely to occur at the beginning of the gradient; Araneidae and and by Conselho Nacional do Desenvolvimento Cientifico e Oxyopidae, at the end. Other families occurred in intermediate Tecnologico(CNPqgrant301776/2004-0toADB). portionsofthegradient. 2ceviart0Pfn.ah0eloun0reg0enmAd=I4tia4cmpnl)hefr;teo,itsefd0ianrsrh.lSsoNtwusi0teonomisip1tsMutuu)titsis(lg,dzohooDbtheafnhbiadroS=apuaef&Noqltvasmfueses1soMaMan.ocsrnnr6aobcoDebes8tetrriomep;tigeaStvbretrrostiteolaneaifndtsag=fotssuisgborndecivcresioe2o2oet.oshur0nsib7(cme0mnopv7Fers4aeidmi;ewti)sdgaowb,.Pesefsdteerobluehtde2r(ie=erh)lfnPom.eeaimcec0nm(s=apno.oo«iprst0mmftlie3sspp0=hdysc),.ooeeeeo5scrsanxm71sioiltn3pBp1itmt).;dlaotipsi.aensRotoohiridTniu"senanthndtiieciiutygo=tdoeroeshfirfeinrt6ots0fma,an.8({iroei6thSnsedf%n8vopdipo;=atiiarutoorhdnoyzFfieu^eg0dpaer.rtuerd=3rhsceh8k&aeetep;avnso4iirseovs.fvgtoaMa7weehald(=r9olmtsu;liebldcopa3idltteltwP.anhgaiaie4neanegvnor6ta=ad,etnes;,r FFBiaulrrsactitBBhikeonabuyoiahrtr,o,robapaltr.lp,oorhstRoolrLdaoigF.lpe.tgnoiyoRsueC,innrc.ln.mae6maeARtano8i.&ngi.cn:c,snoei2igisen2TdlL,s,&tsa9a..ers-eFNarJve2.).dnnaaCe3,ielc.ddD2eqL-d.eipuietLinDleLihmaaapIrnoetaSv.fhiom.AiToinlu.oE&nrglt(2nfmahRR0JiiaaG-u0unuAcn.bssP8eecoesi.Talnc.el.anBctUi.ceteSsp(eRra:pt2OaMoniniE0tceeafadaa0h)clsele6C:pCocr,.rioslAeIengo.fvBTimafhgreVes.aiaigEacSzsateartDti2octoi.l0caego-.a10itaHfa6g9aiiesB1ot.(lv)rt:ee.ela8esdBoz7erewib(-nwmelDrf9seriiipea8fta.ln.nuishnloitcm(etzshJniePaHeoip.ayassaiunmanyccrdrceaednvheasanecoaeflroot)rsserpudutoiim-essatef transiqaocerrado-vereda.Acta Botanica Brasiliense20:719-725. a&erlcehMmieatnrettcsit,nusrierr2ae0ss0p4ae;cftuiFnvacertiioaofn&tootfaLlsiizpmelaainn2tf0l0bu8ie)on,mcaetsshsih.sabSiiintnvacetestcvioagmarptiliaeotxniionteyvian(lSupoalutazenadt Finpkree,daDti.oLn.:&implRi.cFa.tiDonesnnfoo.rp2r0e0y6.supSppraetisaslionreafnugdetrforpohmicicnatsrcaagdueisl.d dthiesreigsaolradtiendgetfhfeectvaroifatairocnhidtuecetutroebbiyomamsesa,suwrhiincghswhrausbachehiigehvtedanbdy GonOceaclovleosg-iSaou1z4a9,:26T.5,-27P5..M. Omena, J.C. Souza & G.Q. Romero. takingintoaccountthemultipleregressionmodel.Tallershrubshave 2008. Trait-mediated effects on flowers: artificial spiders deceive rmeoprreesebnrtasncthheesamaonudntthoefsehaabrietatmoarvaeilasbplreeafdorosupti,dewrsh.ereas biomass Halpaojl,liJ.n,atDo.rsW.anRdosdsec&reaAs.eR.plMaontldfeintnkeess..2E0c0o0l.oIgmyp8o9r:t2a4n0c7e-2o4f1h3a.bitat Several studies have demonstrated associations between plants structure to the arthropod food-web in Douglas-fir canopies. aVansdcosnpicdeelrlso,s-mNoesttoo2f0t0e5n),ofbsuitngallesospeocfiemsul(tJiophlenssopnec1i9e9s5;(HRaloamjeretoa&l. HofOeirk,osH.90&:13A9.-D1.52B.rcscovit. 2001. Speciesand guild structureofa 2000;Raizer&Amaral2001;Souza&Martins2004).Thesestudies Neotropical spider assemblage (Arancae) from Reserva Ducke. corroboratetheassumptionthathabitatarchitecturaltraitsdefinethe Amazonas, Brazil.Andrias 15:99-119. compositionofspiderspecies. Johnson. S.R. 1995. Observations ofhabitat use by Sarinda hentzi EachcomponentofthephenologyofB. intermediacan represent (Araneae, Salticidae) in Northeastern Kansas. Journal ofArach- e(iRtohemreraon&inVcraesacsoencoerllaosd-eNcerteoas2e00i5n).spIindetrheapbruensdenatncsetudayn,dthdeivaedrsdietdy Kolneosliok,gyP2.3,:7R1.-J7.4.Adair & G. Eick. 2005. Nine new species of effects ofleaf, bud, flower, and fruit biomass on spideroccurrence Da.sineitra (Diptera: Cecidomyiidae) from flowers of Australian revealed a pattern offamily turnover in whichTheridiidae occured Acacia(Mimosaceae).SystematicEntomology30:454^79. in samples with the major proportions ofbuds and flowers, while Louda, S.M. 1982. Inflorescence spiders: a cost/benefit analysis for Oxyopidaeoccurredonlyinsampleswithmajorproportionsoffruits. thehostplant,Ilaplopappnsvenetii.sBlake(Asteraceae).Oecologia This pattern suggests that niche partitioning is dependent on the 55:185-191. reproductivephenologyofB. intermedia,morespecificallydependent Oksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, R.B. O’Hara, onthecompositionofreproductiveelements. G.L. Simpson, P. Solymos, M.H.H. Stevens&H. Wagner. 2010. This response seen in the structure of the spider assemblage Vegan: Community Ecology Package. R package version 1.17-4. possibly influences the indirect interactions between spiders and Onlineathttp://www.R-project.org reproductive success (e.g., fruit-set and seed set) ofplants (Louda Oliveira,M.l.B.,C.A.Polido,L.C.Costa&W.S.Fava.2007.Sistema 1982; Goncalves-Souza et al. 2008; Romero et al. 2008). Different reprodutivo e polinizaqao de Byrsoiuitia intermedia A. Juss. componentsofthereproductivestageofplantsareexpectedtohave (Malpighiaceae)emMatoGrossodoSul,Brasil.RevistaBrasileira differenteffectsontheattractionofspidersofeachfamily(Souza& Biociencias5:756-758. Martins 2004; Romero & Vasconcellos-Neto 2005), and general R DevelopmentCoreTeam.2010. R:ALanguageandEnvironment patternssuchasthosedescribedinthisstudyareadditiveresponses forStatistical Computing. R Foundation forStatistical Comput- resultingfromthesefamily-levelpatterns.Notonlyknowledgeofthe ing,Vienna,Austria.Onlineathttp://www.R-project.org effect of each reproductive component of plant, but also of the Raizer,J.&M.E.C.Amaral.2001.Doesthestructuralcomplexityof interaction between these components (e.g., decreased plant cross aquatic macrophytes explain the diversity of associated spider pollination due to spiders predating on pollinators and fruit assemblages?JournalofArachnology29:227-237. 540 THEJOURNALOFARACHNOLOGY Romero, G.Q., J.C. Souza & J. Vasconcellos-Neto. 2008. Anti- Souza,A.L.T. &R.P. Martins.2004. Distributionofplant-dwelling herbivoreprotection bymutualistic spidersand theroleofplant spiders:inflorescencesversusvegetativebranches.AustralEcology glandulartrichomes. Ecology89:3105-3115. 29:342-349. Romero, G.Q. & J. Vasconcellos-Neto. 2005. The effects ofplant Souza, A.L.T. & E.S. Modena. 2004. Distribution of spiders on structure on the spatial and microspatial distribution of a differenttypesofinflorescencesintheBrazilianPantanal.Journal bromeliad-livingjumping spider (Salticidae). Journal ofAnimal ofArachnology32:345-348. Ecology74:12-21. Wootton, J.T. 2002. Indirect effects in complex ecosystems: recent Schmidt,J.M.&A.L.Rypstra.2010.Opportunisticpredatorprefers progress and future challenges. Journal of Sea Research 48: habitat complexitythat exposes preywhile reducingcannibalism 157-172. andintraguildencounters.Oecologia 164:899-910. Souza,A.L.T. 2005. Foliagedensityofbranchesanddistributionof plant-dwellingspiders. Biotropica37:416-420. Manuscriptreceived19December2010, revised18August2011.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.