Report The Combined Landscape of Denisovan and Neanderthal Ancestry in Present-Day Humans Highlights Authors d Denisovanadmixtureintomodernhumansoccurredafter SriramSankararaman, Neanderthaladmixture SwapanMallick,NickPatterson, DavidReich d ThereismoreDenisovanancestryinSouthAsiansthan expectedfromcurrentmodels Correspondence [email protected](S.S.), d Denisovanancestryhasbeensubjecttopositiveand [email protected](D.R.) negativeselectionafteradmixture In Brief d Maleinfertilitymostlikelyoccurredaftermodernhuman interbreedingwithDenisovans Sankararamanetal.presentamapof DenisovanandNeanderthalancestryin 120diversepopulationsandshowthat Denisovanadmixturepost-dated Neanderthaladmixture.SouthAsians havemoreDenisovanancestrythan expected.Therewasselectionbothfor andagainstarchaicancestry. HybridizationwithDenisovanswas probablyassociatedwithreducedmale fertility. Sankararamanetal.,2016,CurrentBiology26,1–7 May9,2016ª2016ElsevierLtdAllrightsreserved http://dx.doi.org/10.1016/j.cub.2016.03.037 Pleasecitethisarticleinpressas:Sankararamanetal.,TheCombinedLandscapeofDenisovanandNeanderthalAncestryinPresent-DayHumans, CurrentBiology(2016),http://dx.doi.org/10.1016/j.cub.2016.03.037 Current Biology Report The Combined Landscape of Denisovan and Neanderthal Ancestry in Present-Day Humans SriramSankararaman,1,2,*SwapanMallick,3,4,5NickPatterson,4andDavidReich3,4,5,* 1DepartmentofComputerScience,UniversityofCalifornia,LosAngeles,LosAngeles,CA90095,USA 2DepartmentofHumanGenetics,UniversityofCalifornia,LosAngeles,LosAngeles,CA90095,USA 3DepartmentofGenetics,HarvardMedicalSchool,Boston,MA02115,USA 4BroadInstituteofMITandHarvard,Cambridge,MA02142,USA 5HowardHughesMedicalInstitute,HarvardMedicalSchool,Boston,MA02115,USA *Correspondence:[email protected](S.S.),[email protected](D.R.) http://dx.doi.org/10.1016/j.cub.2016.03.037 SUMMARY mentsandthusthedateofadmixture.ThedateofNeanderthal admixturehasbeenestimated[3–5],buttherehasbeennostudy Some present-day humans derive up to (cid:1)5% [1] thathasestimatedthedateofDenisovanadmixture. of their ancestry from archaic Denisovans, an To estimate the date of Denisovan admixture, we exploited evenlargerproportionthanthe(cid:1)2%fromNeander- the fact that sites at which Denisovans carry a derived allele thals[2].Wedevelopedmethodsthatcandisambig- not seen in both the Altai Neanderthal and a large panel of uate the locations of segments of Denisovan and sub-SaharanAfricansarehighlylikelytoderivefromDenisovan introgression[6].Wesimilarlyidentifysiteslikelytoderivefrom Neanderthal ancestry in present-day humans and Neanderthalintrogression.Withineachclass,wefitanexponen- applied them to 257 high-coverage genomes from tialfunctiontothedecayoflinkagedisequilibriumwithgenetic 120diversepopulations,amongwhichwere20indi- distance. The inverse of the decay constant translates to the vidualOceanianswithhighDenisovanancestry[3].In averagedateofgeneflowingenerations(SupplementalExperi- Oceanians,theaveragesizeofDenisovanfragments mental Procedures, ‘‘Estimating the date of archaic gene flow is larger than Neanderthal fragments, implying a intoOceanianpopulations’’).InOceanians,therateofdecayat more recent average date of Denisovan admixture sitesinformativeofDenisovanancestryisestimatedtobeslower in the history of these populations (p = 0.00004). than the rate at sites informative of Neanderthal ancestry We document more Denisovan ancestry in South (p=0.00004forthenullhypothesisofthetwodatesbeingequal, Asia than is expected based on existing models basedonatwo-sidedtestusingblockjackknife)(Figure1).We of history, reflecting a previously undocumented cautionthatthenominaldateestimateof1,000±8generations agoforDenisovanadmixtureand1,121±16generationsagofor mixturerelatedtoarchaichumans(p=0.0013).Deni- Neanderthal admixture are likely to be biased. One source of sovan ancestry, just like Neanderthal ancestry, has biasarisesfromthefactthaterrorsinthegeneticmapcanpro- beendeleterious onamodernhuman geneticback- ducesystematicunderestimatesofdatesinferredbasedonlink- ground, as reflected by its depletion near genes. age disequilibrium; however, as both types of ancestry have Finally, the reduction of both archaic ancestries is beendecayinginthesamepopulation,thiswillbiastheinference especially pronounced on chromosome X and near of Denisovan and Neanderthal admixture dates in exactly the genes more highly expressed in testes than other sameway,andhencewillnotcontributetoanartifactualinfer- tissues (p = 1.2 3 10(cid:3)7 to 3.2 3 10(cid:3)7 for Denisovan ence of one date being more recent than the other. A second and2.2310(cid:3)3to2.9310(cid:3)3forNeanderthalancestry source of bias can arise due to extreme demographic events even after controlling for differences in level of since admixture [4]. We carried out coalescent simulations to selective constraint across gene classes). This sug- explorethispossibilityandfoundthataslowerlinkagedisequilib- rium decay provides unambiguous evidence of more recent gests that reduced male fertility may be a general admixture,eventakingintoaccountbiasesarisingduetoplau- feature of mixtures of human populations diverged sibledifferencesinthedemographichistoryofDenisovansand by>500,000years. Neanderthals (Supplemental Experimental Procedures, ‘‘Simu- lations’’;TableS1).Further,weverifiedthattheobservationof RESULTSANDDISCUSSION a more recent date of Denisovan admixture is unchanged when we fit a two-pulse model of admixture (we obtained TheDateofDenisovanAdmixtureintotheAncestorsof nominal date estimates of 986 and 21,808 generations for Oceanians Denisovan admixture and 1,197 and 90,262 generations for Inordertodetectsegmentsofarchaicancestryinmodernhu- Neanderthaladmixture).Toobtainaroughestimateofthedate mans, it is important to know the size scale of these ancestry ofDenisovanadmixture—cognizantofthefactthatforOcean- segments,whichinturnreflectsthenumberofgenerationsdur- ians we do not have the information needed to fully correct ingwhichrecombinationhasthechancetobreakuptheseseg- for uncertainty in the genetic map—we calibrated to previous CurrentBiology26,1–7,May9,2016ª2016ElsevierLtdAllrightsreserved 1 Pleasecitethisarticleinpressas:Sankararamanetal.,TheCombinedLandscapeofDenisovanandNeanderthalAncestryinPresent-DayHumans, CurrentBiology(2016),http://dx.doi.org/10.1016/j.cub.2016.03.037 Figure 1. More Recent Date of Denisovan thanNeanderthalAdmixture Averagelinkagedisequilibrium(Lewontin’sD)asa functionofdistanceinOceaniansforSNPsinfor- mativeofNeanderthal(red)andDenisovan(blue) ancestry.TheDenisovadecayisslower,implying amorerecentdate.SeealsoTableS1. in South Asians, both in the Himalayan region and in South and Central India (Figure 2A). The highest estimate is in Sherpas(0.10%),whohaveaDenisovan point estimate about one-tenth of that seen in Papuans (1.12%) (Table S3). Although this is notable in light of the likely Denisovan origin of the EPAS1 allele that confers high-altitude adapta- tion in Tibetans [12, 13], EPAS1 is not sufficient to explain the observation as Sherpashavethehighestpointestimate even without chromosome 2, on which EPAS1 resides. To determine whether thepeakofDenisovanancestryinSouth Asia is significant, we tested whether estimates of the date of Neanderthal admixture, under the the Denisovan ancestry proportion in diverse mainland Eur- simplifyingassumptionthatthedateofNeanderthaladmixture asians can be explained by differential proportions of non- in the history of New Guineans is the same as the 50,000– West Eurasian ancestry (as it is already known that there is 60,000 years ago estimated for a radiocarbon-dated Upper more Denisovan ancestry in East Eurasians than in West Paleolithic Siberian [3]. Rescaling by1,000/1,121,weestimate Eurasians [6]). For each Eurasian population X, we computed 44,000–54,000yearsagoforDenisovanadmixture. an allele frequency correlation statistic that is proportional to easternnon-Africanancestry(Figure2B;SupplementalExperi- DenisovanandNeanderthalIntrogressionMaps mental Procedures, ‘‘Modeling the variation in Denisovan TostudytheimpactoftheDenisovanandNeanderthaladmix- ancestry across populations’’). We regressed the proportion ture events simultaneously, we developed methods that allow of confidently inferred Denisovan ancestry against this sta- us to distinguish these two sources of archaic ancestry. We tistic. Although the proportion of Denisovan ancestry in these appliedthesemethodstotheSimonsGenomeDiversityProject populations is correlated with non-West Eurasian ancestry (SGDP) dataset: 257 high-quality genomes from 120 non- (r =0.832,blockjackknifep=3.6310(cid:3)10forthecorre- Pearson African populations, including 20 Oceanian individuals from lation coefficient being non-zero), South Asian groups as a populations knownto have high Denisovan admixture (unpub- whole have significantly more Denisovan ancestry than ex- lished data; Supplemental Experimental Procedures, ‘‘Data pected (block jackknife Z score for residuals = 3.2, p = Processing’’). 0.0013 by a two-sided test for the null hypothesis that the For each individual, we inferred archaic ancestry segments Denisovan ancestry estimate in South Asians is predicted by across the autosomes (chromosomes 1–22) and chromosome their proportion of non-West Eurasian ancestry; Figure 2B; X (our method did not allow us to test for archaic ancestry on Supplemental Experimental Procedures, ‘‘Modeling the varia- chromosome Y because the archaic genomes are from fe- tioninDenisovanancestryacrosspopulations’’).Thesignalre- males). Figure 2A plots the estimates of the proportion of mains significant (Z = 3.1) when we remove from the analysis confidentlyinferredDenisovanancestryonamap,andTable1 fivepopulationsthathaveancestryverydifferentfromthema- tabulates the results for six population pools (Table S2 tabu- jority of South Asians (Tibetan, Sherpa, Hazara, Kusunda, and lates the results for each population). Denisovan ancestry in Onge); however, the signals are non-significant for Central Oceanians is greater than in other non-Africans [1] (Table 1). Asians (Z = 1.2) and Native Americans (Z = 0.1). Taken Both Neanderthal and Denisovan ancestry are greater in together, the evidence of Denisovan admixture in modern hu- eastern non-Africans than in West Eurasians [6–10] (Supple- manscouldintheorybeexplainedbyasingleDenisovanintro- mental Experimental Procedures, ‘‘Variation in the genome- gression into modern humans,followed by dilution to different wideproportionsofarchaicancestry’’;TableS3).Wereplicate extentsinOceanians,SouthAsians,andEastAsiansbypeople previous findings of substantial Denisovan ancestry in New withlessDenisovanancestry.Ifdilutiondoesnotexplainthese GuineansandAustralians,aswellasinpopulationsthatharbor patterns,however,aminimumofthreedistinctDenisovanintro- admixtures of New Guinean ancestry [11]. However, we were gressions into the ancestors of modern humans must have surprised to detect a peak of Denisovan ancestry estimates occurred. 2 CurrentBiology26,1–7,May9,2016 Pleasecitethisarticleinpressas:Sankararamanetal.,TheCombinedLandscapeofDenisovanandNeanderthalAncestryinPresent-DayHumans, CurrentBiology(2016),http://dx.doi.org/10.1016/j.cub.2016.03.037 Figure2. VariationinDenisovanAncestryProportion (A)ProportionofthegenomeinferredtobeDenisovaninancestryindiversenon-Africans.ThecolorscaleisnotlineartoallowsaturationofthehighDenisova proportionsinOceania(brightred)andbettervisualizationofthepeakofDenisovaproportioninSouthAsia. (B)ProportionofthegenomeconfidentlyinferredtobeDenisovaninancestryinmainlandEurasiansplottedagainsttherateofallelesharingofeachsamplewith non-WestEurasiansasmeasuredbyanf4statistic.Errorbars(1SE)wereobtainedfromablockjackknife.TheDenisovanancestryestimatesinSouthAsiansare systematicallyaboveexpectation(fittedtrendline)(p=0.0013). SeealsoTableS3. TilingPathofDenisovanandNeanderthalAncestry correlations at large spatial scales among the Neanderthal InferredfromModernGenomes maps and weaker correlations between the Neanderthal and TheunionofdetectedDenisovanhaplotypesspans257Mbin Denisovanmaps(Figure3B). Oceanians(SupplementalExperimentalProcedures,‘‘Coverage of archaic haplotypes’’). The union of Neanderthal haplotypes RegionswithElevatedProportionsofArchaicAncestry spans 673 Mb over all non-Africans, which is smaller than the We scanned all maps for windows with elevated proportions 1.1 Gb found in 1000 Genomes Project phase 1 data [14], of archaic ancestry (average marginal probability R 0.30 mostlikelyduetothefactthatthetotalnumberofnon-Africans over a 100 kb window based on a published threshold [4]; genomes analyzed here is smaller. The positions of archaic Supplemental Experimental Procedures, ‘‘Genomic regions ancestry are correlated across populations, with the strongest with elevated archaic ancestry’’; Table S4). We identified 238 CurrentBiology26,1–7,May9,2016 3 Pleasecitethisarticleinpressas:Sankararamanetal.,TheCombinedLandscapeofDenisovanandNeanderthalAncestryinPresent-DayHumans, CurrentBiology(2016),http://dx.doi.org/10.1016/j.cub.2016.03.037 Table1. Genome-wideEstimatesofArchaicAncestry NeanderthalAncestry(%) DenisovanAncestry(%) Population Individuals Autosomes X Autosomes X America 29 1.37±0.11 0.26±0.18 0.05±0.01 0.00±0.00 CentralAsia 27 1.40±0.12 0.23±0.18 0.05±0.01 0.00±0.00 EastAsia 50 1.39±0.11 0.32±0.28 0.06±0.02 0.00±0.01 Oceania 26 1.54±0.12 0.42±0.36 0.85±0.43 0.18±0.17 SouthAsia 48 1.19±0.11 0.40±0.26 0.06±0.03 0.01±0.03 WestEurasia 77 1.06±0.12 0.18±0.19 0.02±0.01 0.00±0.00 WeestimatedtheprobabilityofNeanderthalandDenisovanancestryforeachphasedgenomeineachpopulation.WereportthemeanandSDofthe proportionofconfidentlyinferredarchaicalleles(marginalprobability>50%)acrossdiploidindividualswithineachpopulation.Thehighestpoint estimateofNeanderthalancestryisinOceania,andalthoughthisestimateissignificantlyhigherthanthatinWestEurasia(Z=3.9),consistentwith previousreports[7,8],itisnothigherthanthatinEastAsia(Z=0.7).SeealsoTableS2. windowswithelevatedNeanderthalancestryinapoolofallnon- ancestry with B-statistics’’; Table S6), as does Denisovan Africansand48withelevatedDenisovanancestryinOceanians. ancestryinOceanians(r =0.26,TableS6),mostlikelyre- Spearman Regions with elevated archaic ancestry may represent loci flectinggreaterselectionagainstNeanderthalancestryinlowB where archaic alleles have experienced positive selection, but statistic regions [14–17]. Power to detect archaic ancestry is aformaltestischallengingduetothefactthatarchaicalleles, elevatedclosetoregionsoflinkedselectionduetoareduction onaverage,donotevolveneutrally[14–17].Wealsotestedfor in the rates of incomplete lineage sorting caused bythe lower setsofgenesthathaveamongthe5%highestarchaicancestry effectivepopulationsizeintheseregions[14],sotheseresults (hypergeometric test implemented in FUNC [18]; we report are not artifacts of reduced power. Thus, similar processes p<0.05aftermultipletestingcorrection;SupplementalExperi- appeartohaveworkedtoremoveNeanderthalandDenisovan mental Procedures, section S4). Genes involved in keratin ancestryneargenes. filamentformationrelatedtoskinandhairareenrichedforNean- derthal ancestry, generalizing the results of previous analyses Archaic-ModernAdmixtureWasMostLikelyAssociated thatwerelimitedtoEuropeansandEastAsians[14,15].Genes withReducedMaleFertility involvedinphospholipidtransporteractivityrelatedtofatmeta- Ourstudyprovidesnewevidenceinsupportofthehypothesis bolismandintrace-aminereceptoractivityrelatedtodetecting thatreducedmalefertilitymaybeacommonfeatureofadmix- subtlescentsaresignificantlyenrichedforDenisovanancestry ture between human populations diverged by at least a half (TableS5). millionyears,ahypothesisthatwaspreviouslysuggestedbased on genetic patterns associated with the hybridization between DesertsofArchaicAncestry Neanderthalsandmodernhumans[14,21].Weshowthatqual- Someofthemoststrikingfeaturesoftheintrogressionmapsare itativelysimilarsignalsareassociatedwithDenisovanadmixture. the archaic ancestry deserts: windows longer than 10 Mb at Onelineofevidenceforreducedfertilityinmalehybridsisthat which the archaic ancestry proportion is <1/1000 (Figure 3A; theproportionofarchaicancestryinmodernhumansissignifi- Supplemental Experimental Procedures, ‘‘Analysis of genomic cantlyreducedonchromosomeXcomparedtotheautosomes. regionsdeficient inarchaic ancestry’’). Weidentified 18Nean- Thisissuggestiveofreducedmalefertilityaslocicontributingto derthalancestrydesertsinapoolofallnon-Africanindividuals thisphenotypeareconcentratedonchromosomeXinhybridsof and 63 Denisovan deserts in Oceanians. Four windows (1:99– otherspecies[22].WeconfirmanextremereductionofNeander- 112 Mb, 3:78–90 Mb, 7:108–128 Mb, and 13:49–61 Mb) are thal ancestry on chromosome X (16%–34% of the autosomes both Neanderthal andDenisovan ancestry deserts.The desert dependingonthepopulation)[14]andfindaquantitativelysimilar onchromosome7containstheFOXP2gene,whichhasbeenhy- reductionofDenisovanancestry(21%oftheautosomesinOce- pothesizedtohavearoleinenablingmodernhumanspeechand anians)(Table1). language [19] and has been identified as a desert in previous The second line of evidence in support of the hypothesis of mapsinEuropeansandEastAsians.Ourfindingthatthisregion reducedfertilityinhybridsisthatthereisareductionofarchaic isalsoadesertofDenisovanancestrystrengthenstheevidence ancestry in genes that are disproportionately expressed in thatthemodernhumanversionofthisgenemaybecriticalfor testes, a known characteristic of male hybrid fertility [22]. To modernhumanbiology[14,15]. testforthissignalinourdata,weanalyzedasetofgeneshaving a significantly higher expression level in testes than any of 15 ArchaicAncestryIsReducedintheGenomicRegions otherstissuesinanRNAsequencingdataset[23].Wedetecta MostConstrainedbySelection statisticallysignificantdepletionofDenisovan(p=1.21310(cid:3)7 Wetestedtherelationshipbetweenarchaicancestryandregions in Oceanians) and Neanderthal (p = 2.1 3 10(cid:3)3 in Oceanians) of strong linked selection as measured by a B statistic [20]. ancestryinthesegenesrelativetothegenesintheothertissues Neanderthal ancestry decreases in proximity to functional ele- (Table S7; Supplemental Experimental Procedures, ‘‘Associa- mentsinallpopulations(r =0.25–0.29;Figure3C;Sup- tion of Denisovan ancestry with tissue-specific expression’’). Spearman plemental Experimental Procedures, ‘‘Correlation of archaic Weconsideredthepossibilitythattheseobservationscouldbe 4 CurrentBiology26,1–7,May9,2016 Pleasecitethisarticleinpressas:Sankararamanetal.,TheCombinedLandscapeofDenisovanandNeanderthalAncestryinPresent-DayHumans, CurrentBiology(2016),http://dx.doi.org/10.1016/j.cub.2016.03.037 Figure3. Fine-ScaleMapsofDenisovanandNeanderthalIntrogression (A)Non-overlapping100kbwindowsthathavenon-zeroinferredarchaicancestryineachofsixpopulations(blue,Denisova;red,Neanderthal).Intheinnermost rings,weplotdeserts(windows>10Mb).SeealsoTablesS4andS5. (B)Correlationofconfidentlyinferredarchaicancestry(Neanderthalancestryinsixnon-AfricanpopulationsandDenisovanancestryinOceanians)across populationsinnon-overlappingwindowsofsize100kb,1Mb,and10Mb. (C)WeplotthemedianoftheproportionofDenisovanandNeanderthalancestrywithinquintilesofaBstatisticmeasuringintensityoflinkedselection(lowB indicatestheregionsmostaffectedbylinkedselection).SeealsoTablesS6andS7. CurrentBiology26,1–7,May9,2016 5 Pleasecitethisarticleinpressas:Sankararamanetal.,TheCombinedLandscapeofDenisovanandNeanderthalAncestryinPresent-DayHumans, CurrentBiology(2016),http://dx.doi.org/10.1016/j.cub.2016.03.037 explained by stronger linked selection at testes-expressed AssessingtheAccuracyofArchaicSegmentInference genes than at random places in the genome. However, when DiscriminatingbetweenNeanderthalandDenisovanancestralcomponentsin we correlate this pattern to B statistics (which are sensitive to populationsthathaveboth,suchasOceanians,ischallengingbecauseNean- derthalsandDenisovansaremoresimilartoeachotheronaveragethaneither linkedselection[20]),wefindthatthegenesetsthataredispro- istomodernhumans[1,6].Toassesstheaccuracyofourinferences(Supple- portionally expressed in liver, heart, and skeletal muscle have mental Experimental Procedures, ‘‘Empirical estimate of the accuracy of evenloweraverageBstatisticsthanthegenesmostexpressed archaicancestryestimates’’;FigureS1),wedevisedastatisticalprocedure in testes, and yet they do not show a depletion in archaic thatusespreviousgenome-wideestimatesofarchaicancestrytoestimate ancestry(TableS7).Wealsoconsideredthepossibilitythatthe theprobabilitythattheCRFinfersDenisovan(orNeanderthal)ancestrywhen B statistic might not fully capture the degree of selective thetrueancestryisNeanderthal,Denisovan,ormodernhuman.Forexample, theinferredproportionofNeanderthalancestryinAfricanhunter-gatherers constraintatthegenesdisproportionatelyexpressedintestes. whomostlikelyhavenegligible amountsallowsustoestimate therateof However, when we use logistic regression to control for mea- misclassificationofmodernhumanancestryasNeanderthal.Similarly,thein- suresofselectiveconstraint,wefindthatthesignificantreduc- ferredproportionofDenisovanancestryinWestEurasianswhohavenegligible tion is observed not only when we control for B statistic at amountsallowsustoestimatetherateofmisclassificationofnon-Denisovan eachgene(p=4.4310(cid:3)7forDenisovans;p=2.8310(cid:3)3for ancestryasDenisovan.Thisprocedureenablesustoestimatethefalsediscov- Neanderthals).Itisalsoobservedwhenwecontrolforadirect eryrate(FDR)foranancestry(theprobabilitythatsegmentsassignedtoagiven ancestryaremisclassified;SupplementalExperimentalProcedures,‘‘Empir- estimateofthedegreeofselectiveconstraint:thegeneticdiver- icalestimateoftheaccuracyofarchaicancestryestimates’’;FigureS1).In sityobservedempiricallyateachgeneinsub-SaharanAfricans Oceanians,atathresholdof0.50ontheCRFprobabilities,theFDRis3%for (p=3.2310(cid:3)7forDenisovans;p=2.9310(cid:3)3forNeanderthals; Denisovanancestryand15%forNeanderthalancestry.Ourprocedurealsoen- Supplemental Experimental Procedures, ‘‘Association of Deni- ablesustoestimatethefractionoftruearchaicancestrythatwedetect.We sovanancestrywithtissue-specificexpression’’). detect24%oftrueDenisovanand72%oftrueNeanderthalsegments.The relativelylowpowertodetecttrueDenisovansegmentsislikelytoreflectthe factthattheSiberianDenisovangenomethatweusefordetectingtheseseg- Conclusions mentsisknowntobedeeplydivergentfromtheDenisovanpopulationthat Ithasbeensuggestedthattheempiricallyobservedreductionin introgressedintotheancestorsofOceanians(muchmoredivergentthanthe NeanderthalancestryinEuropeansandEastAsiansnearfunc- AltaiNeanderthalgenomeisfromtheintrogressingNeanderthalpopulation)[6]. tionallyimportantregionscouldbeexplainedbyagreaterload ofweaklydeleteriousallelesinNeanderthalsduetothesmaller ACCESSIONNUMBERS population size of Neanderthals since separation, followed by Therawdataanalyzedfor277ofthesamplesanalyzedhereareavailable purgingofdeleteriousNeanderthalallelesinthemixedpopula- through the EBI European Nucleotide Archive under accession numbers tion[16,17].Sincewehaveshownthatsimilarpatternsareasso- EBI-ENA:PRJEB9586andERP010710.Aversionofthegenotypedatawe ciatedwiththeDenisovanintrogressionevent,itseemsplausible analyzed that is small enough to download by FTP is available at http:// that similar evolutionary forces operated to remove Denisovan reich.hms.harvard.edu/pub/datasets/sgdp/. The remaining 23 samples are ancestry segments. However, the model of a greater load of onlyavailabletoresearcherswhoprovideasignedletteraffirmingthatthey deleterious mutations in archaic humans cannot explain the willabidebyspecificrestrictionsforusingthesamples,andtheycanbeac- cessedbywritingtoD.R. observedreductionofbothNeanderthalandDenisovanancestry neargenesthataredisproportionatelyexpressedintestes,sug- SUPPLEMENTALINFORMATION gestingthatmalehybridsterilitymayhavebeenassociatedwith bothintrogressions.Animportantdirectionforfutureresearchis SupplementalInformationincludesSupplementalExperimentalProcedures, tounderstandtherelativeimportanceofpurgingofslightlydele- one figure, and seven tables and can be found with this article online at terious alleles, as well as reduced fertility in hybrid males, in http://dx.doi.org/10.1016/j.cub.2016.03.037. changingthecontentofgenomesintheaftermathoftheinter- AUTHORCONTRIBUTIONS breedingthatoccurredbetweenmodernandarchaichumans. S.S.andS.M.performedanalyses.N.P.andD.R.supervisedthestudy.S.S. EXPERIMENTALPROCEDURES andD.R.wrotethemanuscript. InferringSegmentsofArchaicAncestry ACKNOWLEDGMENTS Todeterminethepositionsofarchaicancestrysegments,weappliedamachine- learningalgorithmknownasaconditionalrandomfield(CRF)[24].Theinputdata D.R.wassupportedbyNIHgrantGM100233andbyNSFgrantHOBCS- consistsofthespatialdistributionacrossthegenomeofderivedallelesatsites 1032255and isaHoward Hughes Medical Institute investigator. S.S. was informativeaboutarchaicancestry(includingtheNeanderthal-andDenisova- supportedinpartbyNIHgrant5K99GM111744-02and4R00GM111744-03. informativesites).TheCRFsearchesforrunsofsuchallelesoverthesizescale expectedforarchaicintrogression.Themethodweuseischangedinimportant Received:February26,2016 wayscomparedtotheCRFpreviouslyimplementedtosolvethesimplerprob- Revised:March10,2016 lemofdetectingNeanderthalancestry(SupplementalExperimentalProcedures, Accepted:March17,2016 ‘‘AnimprovedprocedurefordeconvolvingNeanderthalandDenisovanances- Published:March28,2016 tries’’)[14].NotonlydoweusedifferentclassesofSNPs,butwealsodonot exploitthehaplotype-basedinformationusedbythepreviouslyreportedCRF, REFERENCES aswefoundthatitleadstoabiasintheinferredproportionsofDenisovan ancestryinmainlandEurasiansthathaveproportionsofDenisovanancestry 1.Reich,D.,Green,R.E.,Kircher,M.,Krause,J.,Patterson,N.,Durand,E.Y., of(cid:1)1/1000.ThisbiasarisesduetothepreviouslydescribedCRFbeingopti- Viola,B.,Briggs,A.W.,Stenzel,U.,Johnson,P.L.,etal.(2010).Genetic mizedforarchaicadmixtureproportionsof(cid:1)1/100;wefoundthatthislederro- history of an archaic hominin group from Denisova Cave in Siberia. neouslytosimilarinferencesofDenisovanancestryinHanandFrench[6]. Nature468,1053–1060. 6 CurrentBiology26,1–7,May9,2016 Pleasecitethisarticleinpressas:Sankararamanetal.,TheCombinedLandscapeofDenisovanandNeanderthalAncestryinPresent-DayHumans, CurrentBiology(2016),http://dx.doi.org/10.1016/j.cub.2016.03.037 2.Green,R.E.,Krause,J.,Briggs,A.W.,Maricic,T.,Stenzel,U.,Kircher,M., 13.Jeong, C., Alkorta-Aranburu, G., Basnyat, B., Neupane, M., Witonsky, Patterson,N.,Li,H.,Zhai,W.,Fritz,M.H.,etal.(2010).Adraftsequenceof D.B.,Pritchard,J.K.,Beall,C.M.,andDiRienzo,A.(2014).Admixturefacil- theNeandertalgenome.Science328,710–722. itatesgeneticadaptationstohighaltitudeinTibet.Nat.Commun.5,3281. 3.Fu,Q.,Li,H.,Moorjani,P.,Jay,F.,Slepchenko,S.M.,Bondarev,A.A., 14.Sankararaman, S., Mallick, S., Dannemann, M., Pru¨fer, K., Kelso, J., Johnson, P.L., Aximu-Petri, A., Pru¨fer, K., de Filippo, C., et al. (2014). Pa¨a¨bo,S.,Patterson,N.,andReich,D.(2014).Thegenomiclandscape Genome sequence of a 45,000-year-old modern human from western ofNeanderthalancestryinpresent-dayhumans.Nature507,354–357. Siberia.Nature514,445–449. 15.Vernot,B.,andAkey,J.M.(2014).ResurrectingsurvivingNeandertalline- 4.Sankararaman,S.,Patterson,N.,Li,H.,Pa¨a¨bo,S.,andReich,D.(2012). agesfrommodernhumangenomes.Science343,1017–1021. The date of interbreeding between Neandertals and modern humans. 16.Juric,I.,Aeschbacher,S.,andCoop,G.(2015).Thestrengthofselection PLoSGenet.8,e1002947. against Neanderthal introgression. BioRxiv, doi: http://dx.doi.org/10. 5.Seguin-Orlando, A., Korneliussen, T.S., Sikora, M., Malaspinas, A.S., 1101/030148. Manica,A.,Moltke,I.,Albrechtsen,A.,Ko,A.,Margaryan,A.,Moiseyev, 17.Harris,K.,andNielsen,R.(2015).ThegeneticcostofNeanderthalintro- V.,etal.(2014).Paleogenomics.GenomicstructureinEuropeansdating gression.BioRxiv,doi:http://dx.doi.org/10.1101/030148. backatleast36,200years.Science346,1113–1118. 18.Pru¨fer, K., Muetzel, B., Do, H.H., Weiss, G., Khaitovich, P., Rahm, E., 6.Pru¨fer,K.,Racimo,F.,Patterson,N.,Jay,F.,Sankararaman,S.,Sawyer, Pa¨a¨bo,S.,Lachmann,M.,andEnard,W.(2007).FUNC:apackagefor S.,Heinze,A.,Renaud,G.,Sudmant,P.H.,deFilippo,C.,etal.(2014). detectingsignificantassociationsbetweengenesetsandontologicalan- The complete genome sequence of a Neanderthal from the Altai Mountains.Nature505,43–49. notations.BMCBioinformatics8,41. 19.Lai,C.S.,Fisher,S.E.,Hurst,J.A.,Vargha-Khadem,F.,andMonaco,A.P. 7.Wall,J.D.,Yang,M.A.,Jay,F.,Kim,S.K.,Durand,E.Y.,Stevison,L.S., (2001).Aforkhead-domaingeneismutatedinaseverespeechandlan- Gignoux,C.,Woerner,A.,Hammer,M.F.,andSlatkin,M.(2013).Higher guagedisorder.Nature413,519–523. levels of neanderthal ancestry in East Asians than in Europeans. Genetics194,199–209. 20.McVicker,G.,Gordon,D.,Davis,C.,andGreen,P.(2009).Widespread 8.Meyer,M.,Kircher,M.,Gansauge,M.T.,Li,H.,Racimo,F.,Mallick,S., genomic signatures of natural selection in hominid evolution. PLoS Schraiber,J.G.,Jay,F.,Pru¨fer,K.,deFilippo,C.,etal.(2012).Ahigh- Genet.5,e1000471. coverage genome sequence from an archaic Denisovan individual. 21.Currat,M.,andExcoffier,L.(2011).Strongreproductiveisolationbetween Science338,222–226. humansandNeanderthalsinferredfromobservedpatternsofintrogres- 9.Vernot,B.,andAkey,J.M.(2015).Complexhistoryofadmixturebetween sion.Proc.Natl.Acad.Sci.USA108,15129–15134. modernhumansandNeandertals.Am.J.Hum.Genet.96,448–453. 22.Presgraves,D.C.(2008).SexchromosomesandspeciationinDrosophila. 10.Skoglund,P.,andJakobsson,M.(2011).ArchaichumanancestryinEast TrendsGenet.24,336–343. Asia.Proc.Natl.Acad.Sci.USA108,18301–18306. 23.Derrien,T.,Johnson,R.,Bussotti,G.,Tanzer,A.,Djebali,S.,Tilgner,H., 11.Reich,D.,Patterson,N.,Kircher,M.,Delfin,F.,Nandineni,M.R.,Pugach, Guernec, G., Martin, D., Merkel, A., Knowles, D.G., et al. (2012). The I.,Ko,A.M.,Ko,Y.C.,Jinam,T.A.,Phipps,M.E.,etal.(2011).Denisova GENCODEv7catalogofhumanlongnoncodingRNAs:analysisoftheir admixture and the first modern human dispersals into Southeast Asia genestructure,evolution,andexpression.GenomeRes.22,1775–1789. andOceania.Am.J.Hum.Genet.89,516–528. 24.Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random 12.Huerta-Sa´nchez,E.,Jin,X.,Asan,Bianba,Z.,Peter,B.M.,Vinckenbosch, fields:probabilisticmodelsforsegmentingandlabelingsequencedata. N.,Liang,Y.,Yi,X.,He,M.,Somel,M.,etal.(2014).Altitudeadaptationin InProceedingsoftheEighteenthInternationalConferenceonMachine Tibetans caused by introgression of Denisovan-like DNA. Nature 512, Learning, C.E. Brodley, and A.P. Danyluk, eds. (Morgan Kaufmann 194–197. Publishers),pp.282–289. CurrentBiology26,1–7,May9,2016 7 Current Biology, Volume 26 Supplemental Information The Combined Landscape of Denisovan and Neanderthal Ancestry in Present-Day Humans Sriram Sankararaman, Swapan Mallick, Nick Patterson, and David Reich 0 0 1. l lll lll lll l lllllllllllllllllllll 1. 0.8 0.8 lllllllllllllll l l 6 6 Precision 40. Precision 40. 0. 0. 2 2 0. 0. West Eurasia Neandertal East Asia Denisova 0 0 0. 0. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Recall Recall (a) (b) Figure S1: Empirical precision-recall curves for archaic local ancestry inference (related to main text Experimental Procedures). (a) Empirical precision-recall curve of the modified method for inferring Neanderthal local ancestry in West Eurasian and East Asian populations. (b) Empirical precision-recall curve of the modified method for inferring Neanderthal and Denisovan local ancestry in Oceanian (Australians, Papuans and Bougainville Islanders) populations. The method is a modification ofthepreviouslyproposedCRF[S1]toimprovetheabilitytodeconvolvethecontributionsofNeanderthal and Denisovan ancestries (described in Section ).
Description: