nutrients Article The Combined Intervention with Germinated Vigna radiata and Aerobic Interval Training Protocol Is an Effective Strategy for the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD) and Other Alterations Related to the Metabolic Syndrome in Zucker Rats GaryfalliaKapravelou1,RosarioMartínez1,ElenaNebot1 ID,MaríaLópez-Jurado1, PilarAranda1,FranciscoArrebola2 ID,SamuelCantarero3,MilagrosGalisteo4 andJesusM.Porres1,* 1 DepartmentofPhysiology,InstituteofNutritionandFoodTechnology,CentreforBiomedicalResearch, InstituteofHealthandSport,UniversityofGranada,18071Granada,Spain;[email protected](G.K.); [email protected](R.M.);[email protected](E.N.);[email protected](M.L.-J.);[email protected](P.A.) 2 DepartmentofHistology,InstituteofNeurosciences,CentreforBiomedicalResearch,UniversityofGranada, 18071Granada,Spain;[email protected] 3 CentrodeInstrumentaciónCientífica,UniversityofGranada,CampusUniversitariodeFuentenuevas/n, 18071Granada,Spain;[email protected] 4 DepartmentofPharmacology,SchoolofPharmacy,UniversityofGranada,CampusUniversitariodeCartuja s/n,18071Granada,Spain;[email protected] * Correspondence:[email protected];Tel.:+34-958-240737 Received:24April2017;Accepted:14July2017;Published:19July2017 Abstract: Metabolicsyndrome(MetS)isagroupofrelatedmetabolicalterationsthatincreasetherisk ofdevelopingnon-alcoholicfattyliverdisease(NAFLD).Severallifestyleinterventionsbasedon dietarytreatmentwithfunctionalingredientsandphysicalactivityarebeingstudiedasalternative orreinforcementtreatmentstothepharmacologicalonesactuallyinuse. Inthepresentexperiment, the combined treatment with mung bean (Vigna radiata), a widely used legume with promising nutritionalandhealthbenefitsthatwasincludedintheexperimentaldietasrawor4day-germinated seed flour, and aerobic interval training protocol (65–85% VO max) has been tested in lean and 2 obeseZuckerratsfollowinga2×2×2(2phenotypes,2dietaryinterventions,2lifestyles)factorial ANOVA(AnalysisofVariance)statisticalanalysis.GerminationofV.radiataoveraperiodoffourdays originatedasignificantproteinhydrolysisleadingtotheappearanceoflowmolecularweightpeptides. The combination of 4 day-germinated V. radiata and aerobic interval training was more efficient compared to raw V. radiata at improving the aerobic capacity and physical performance, hepatic histologyandfunctionality,andplasmalipidparametersaswellasrevertingtheinsulinresistance characteristicoftheobeseZuckerratmodel. Inconclusion,thejointinterventionwithlegumesprouts andaerobicintervaltrainingprotocolisanefficienttreatmenttoimprovethealterationsofglucose andlipidmetabolismaswellashepatichistologyandfunctionalityrelatedtothedevelopmentof NAFLDandtheMetS. Keywords: non-alcoholic fatty liver disease; metabolic syndrome; Vigna radiata; legume protein hydrolyzate;aerobicintervaltraining;diet;germination;obesity;exercise;liverhistology Nutrients2017,9,774;doi:10.3390/nu9070774 www.mdpi.com/journal/nutrients Nutrients2017,9,774 2of22 1. Introduction Metabolicsyndrome(MetS)isagroupofmetabolicalterationscharacterizedbycentralobesity, dyslipidemia,elevatedplasmaglucose,insulinresistance,elevatedbloodpressure,pro-thromboticand pro-inflammatorystate[1]. PatientswithMetSarealsomoresusceptibletodeveloptype2diabetes mellitus and suffer increased risk of developing cardiovascular disease. In addition, their hepatic morphologyandfunctionalitycanbeadverselyaffectedleadingtothedevelopmentofNonAlcoholic FattyLiverDisease(NAFLD).Suchdiseasehasbeenhistoricallyregardedasthelivermanifestationof MetSalthoughrecentstudieshaveconcludedthatisoneofthemajorriskfactorsthatstronglydetermines itsprogression[2,3]. HepaticmorphologyandfunctionalityinNAFLDisadverselyaffectedandcan becategorizedinfourdifferentstagesstartingfromasimplesteatosis(liverfatdepositionandmild inflammation),thedevelopmentofNonalcoholicsteatohepatitis(NASH)thatincludessteatosisplus inflammationandhepatocyte“ballooning”,theappearanceoffibrosisand,insomecases,canleadtothe laststageofhepatocellularcarcinoma(HCC)[4].AlthoughtheexactmechanismsleadingtoNAFLDare notyetcompletelyunderstood,insulinresistance,hormonessecretedfromtheadiposetissue,nutritional factors,gutmicrobiotaandgeneticandepigeneticfactorshavebeendescribedtoplayamajorrole[5]. The development of strategies for the prevention and treatment of MetS includes changes in lifestyle such as caloric restriction, low fat and low glycemic index diets, consumption of foods rich inbeneficial bioactiveingredients, andregularphysical activity[1,6]. In this regard, legumes exhibit a variety of health effects related to their antioxidant, hypoglycemic, and hypolipidemic properties [7,8] due to the specific characteristics of legume proteins, carbohydrates and lipids, and also from several non-nutritional compounds like polyphenols, phytic acid or α-galactoside oligosaccharides. Germination and fermentation are alternative biotechnological treatments that render protein preparations with important degree of hydrolysis and bioactive compounds with beneficialhealthactions[9,10]. Theresultingbioactivepeptidesmayactaspotentialphysiological modulators of metabolism, given that they inhibit the activity of angiotensin converting enzyme and show antioxidant and bile acid-binding properties [11], thus showing promising potential as functionalingredients. Vignaradiataisawidelyusedlegumeforhumanconsumptionthatexhibits aninterestingcompositionofnutrientsandbioactivecompounds[12,13]. Suchnutritivevaluecan besignificantlyimprovedbytechnologicalprocessinglikesprouting[14]. Infact,V.radiatasprouts areusuallycommercializedtotakepartinnumeroushealthydishesthatarebecomingincreasingly popularforthegeneralconsumer. TheeffectsofdifferenttypesofexerciseonthetreatmentofMetShavebeenstudiedconcerning the cardiovascular risk, and high-intensity aerobic interval training has been reported to be more effectiveatreducingsuchriskinratswithMetSthanmoderate-intensitycontinuoustrainingdid[15]. Withregardtolivermetabolism,severalauthorshavestudiedthebeneficialeffectsofmoderateor vigorousintensityexerciseondifferentaspectsofNAFLD[6,16]. Differentinvivoexperimentalmodelshavebeenusedtotestthebeneficialeffectsofdietand exercise on several parameters of MetS. Among them, the obese Zucker rat is a widely accepted animalexperimentalmodeltostudythemultifactorialeffectsofdietandexerciseonMetSassociated conditions. This rat strain is known to present a genetic defect in leptin receptor that causes the development of hyperphagia leading to obese phenotype [17], and shares many similarities with humansaffectedbyMetS.[18]. Wehavepreviouslydemonstratedthebeneficialeffectsofanaerobic interval training (AIT) protocol on NAFLD, insulin resistance and other features related to the developmentofMetSintheobeseZuckerratmodel[6]. The aim of this study was to assess the effects on glucose and lipid metabolism parameters, aswellasonliverhistologyandfunctionality,exhibitedbyanoveljointinterventioncombiningthe consumptionof4day-germinatedV.radiataasdietarysourceofbioactivecompoundsandhydrolyzed protein obtained using natural methods, together with an AIT protocol. Such joint intervention (dietplusexercise)intheabovementionedexperimentalanimalmodeloftheobeseZuckerratwasan efficientstrategytoimprovetheNAFLDconditionrelatedtothedevelopmentofMetS. Nutrients2017,9,774 3of22 2. MaterialsandMethods 2.1. VignaradiataSeedsandGerminationProcess VignaradiataL.(LaAsturiana,León)seedswereobtainedfromacommercialestablishmentand powdered(0.18mmsieve)forsampleanalysis. Sproutingwasdoneinseedspreviouslysterilized by immersion in sodium hypochlorite for 3 min and washed out with sterilized, type-2 water to eliminateanytracesofsodiumhypochlorite. Theseedswerethenleftsoakinginwaterduring8h anddistributedintraysoversheetsoffilterpaperwheretheywereleftcoveredindarkness,at30◦C, during4days. Afterthisperiod,sproutedV.radiataseedswerecollected,milledandlyophilized. Once lyophilized,thesproutsweremilledagaintoafinepowder(0.18mmsieve)forsampleanalysisand dietpreparation. 2.2. CompositionAnalysisofRawandGerminatedV.radiataFloursandExperimentalDiets Moisturecontentoftheraw(RVR)and4day-germinated(GVR)V.radiatafloursandexperimental dietswasdeterminedbydryingtoconstantweightinanovenat105±1◦C.TotalNwasdetermined accordingtoKjeldahl’smethod. CrudeproteinwascalculatedasN×6.25. InsolubleNandsoluble proteinandnon-proteinNofthelegumefloursweremeasuredasdescribedbyKapravelouetal.[7]. Samples(0.5g)werethriceextractedwith10mLof0.02NNaOHduring45minandthethreeextracts pooled. Insolublematerialwasremovedbycentrifugationat3000rpmfor20min. Thesupernatant wasmixedwith20mLof30%trichloroaceticacidandthemixturestirredfor15minat4◦C.Protein was removed by centrifugation at 3000 rpm for 15 min. Total N was measured in the insoluble material(insolubleN),proteinpellet(proteinN)andsupernatant(nonproteinN).Totalfatcontent wasdeterminedbygravimetryoftheetherextractafteracidhydrolysisofthesample. Ashcontent wasmeasuredbycalcinationat450◦Ctoaconstantweight. 2.3. SodiumDodecylSulfate-PolyacrylamideGelElectrophoresis(SDS-PAGE) WasdoneaccordingtothemethodofLaemmli[19]. Thefinalconcentrationofacrylamideinthe runninggelwas14%. EqualamountsofN(2.0µg)wereloadedineachlane. Thegelswerefixedand stainedwithCoomassiebrilliantblueR-250(EZBlue, Sigma, St. Louis, MO,USA).Themixtureof molecularweightmarkersranged8–220KDa(ColorBurstTM,Sigma,St. Louis,MO,USA). 2.4. MassSpectrophotometry AnUltraPerformanceLiquidChromatography(UPLC)(AcquityHClass,WatersCorporation, Manchester, UK) coupled by quadrupole-time-of-flight mass spectrometry (Synap G2, Waters Corporation, Manchester, UK) was employed for all high-resolution mass spectrometry analysis. Priortomassspectrometryanalysis,allpowderedsamples(100mg)wereextractedwith10mLof acidifiedwater(pH2),andfilteredthrough0.22µmnylondiskfilters(Millipore,Billerica,MA,USA). 10µLofthefinalsolutionwereinjectedintothechromatograph. Analyticalseparationofpeptides andproteinswasperformedonanAcquityBEH300C4analyticalcolumn(100mm×2.1mminternal diameter, 1.7 µm; Waters Corporation, Manchester, UK). A mobile phase consisting in a gradient programcombiningdeionizedwaterwith0.1%ofacidformicassolventAandacetonitrilewith0.1% ofacidformicassolventBwasused. Theinitialconditionswere95%Aand5%B.Alineargradient wasthenestablishedtoreach95%(v/v)ofBat15min. Totalruntimewas25minandpost-delaytime 5min. Mobilephaseflowratewas0.4mL/min. Afterchromatographicseparation,ahigh-resolutionmassspectrometryanalysiswascarriedout inpositiveelectrosprayionization(ESI+ve). Thegasusedfordesolvation(800L/h)andCone(25L/h) washigh-puritynitrogen. Spectrawererecordedoverthemass/charge(m/z)range50–1200. Nutrients2017,9,774 4of22 2.5. AnimalsandExperimentalDesign Forty male obese homozygous (fa/fa) (O) and 40 lean heterozygous (fa/+) (L) Zucker rats (aged5weeks) with an initial mean body weight of 137 ± 2.5 and 120 ± 1.6 g, respectively, were allocatedtoeightdifferentexperimentalgroups(fourobeseandfourleangroups,n=10ratseach) within2differentexperimentsRVRandGVR(rawvs.4day-germinatedV.radiatadietaryinterventions). Two of the experimental groups in each experiment (an obese and a lean one) performed aerobic intervalexercise(E)accordingtoanestablishedtrainingprotocol(OE,LE)whilethetworemaining wereconsideredassedentary(S)groups(OS,LS).Theexperimentlastedfor8weeks,duringwhichthe animalswerehousedinawellventilated,thermostaticallycontrolledroom(21±2◦C).Areversed12:12 light/darkcyclewasimplementedsotheanimalswouldperformthetrainingprotocolindarkness. Throughoutthetrial,animalshadfreeaccesstotype2waterandconsumedtheexperimentaldiet (Table1)adlibitum. Foodintakewasrecordeddailywhereasbodyweightwasmeasuredonceaweek. Attheendofexperimentalperiod,aglucosetolerancetestwasperformed48hafterthelasttraining sessionbyoralglucoseoverload. Theanimalswereallowedtorecoverfor48hpriorbeingfastedfora further8h,anesthetizedwithxylazine/ketamineandsacrificed. Bloodwascollectedbypunctureof theabdominalaorta(withheparinasanticoagulant)andcentrifugedat1458×gfor15mintoseparate plasmathatwassubsequentlyfrozeninliquidnitrogenandstoredat−80◦C.Theliverwasextracted, weighed,photographedformacroscopicstudies,dividedintovariousportionsandimmediatelyfrozen inliquidnitrogenandstoredat−80◦C.AllexperimentswereundertakenaccordingtoDirectional GuidesRelatedtoAnimalHousingandCare[20]andallprocedureswereapprovedbytheAnimal ExperimentationEthicsCommitteeoftheUniversityofGranada,Spain(ProjectReferenceAGR4658). 2.6. ExperimentalDiet TheexperimentaldietswereformulatedfollowingtheguidelinesoftheAmericanInstituteof Nutrition(AIN-93M)[21],inordertomeetthenutritionalrecommendationsofadultrats[22],with whey(30%)andRVRorGVR(70%)asproteinsources,toreacha12%proteinlevel(Table1). A0.5% methioninewasaddedtofulfilthespecificneedsthatthelaboratoryratshaverespectingthisspecific aminoacid. Thepercentageofdietaryfibreaddedinthedietwasestablishedat10%andwasprovided mainlyfromRVRorGVRflourwhileasmallamountofcellulosewasaddedinordertoachievethe 10%level. Thepercentageoffatwassetat4%,usingsunfloweroilwithoutanyadditionofsaturated fatorothercholesterolsource. Table1.Compositionofrawand4day-germinatedV.radiatafloursandexperimentaldietformulation. V.radiataFlour RVR GVR Moisture(g/kg) 83.0 88.4 TotalN(g/kgDM) 34.4 42.0 InsolubleN(%) 12.9 9.4 SolubleProteinN(%) 81.6 50.9 SolubleNonProteinN(%) 5.5 39.7 Totalfat(g/Kg) 17.0 14.6 Ash(g/kgDM) 37.1 43.4 DietFormulation(g/kg) RVR GVR RawV.radiata 367 - GerminatedV.radiata - 333 WheyProtein 56 56 Sucrose 100 100 Cellulose 11 21 Methionine 5 5 SunflowerOil 40 40 Mineralpremix 35 35 Vitaminpremix 10 10 Cholinebitartrate 2.5 2.5 Starch 427 411 RVR,RawV.radiata;GVR,4day-germinatedV.radiata;DM,drymatter. Nutrients2017,9,774 5of22 2.7. ExerciseProtocol TheexercisegroupsfollowedaprotocolofAITfivedaysaweekduringtheeightweeksofthe experimentalperiod. ThetrainingprotocolhasbeenpreviouslydescribedbyKapravelouetal.[6],and wasperformedinamotorizedtreadmillspeciallydesignedforrats(PanlabTreadmillsforfiverats,LE 8710R).Allsessionswereperformedduringthedarkcycleoftheanimals(activeperiod). Oneweek before the start of the study, the animals were adapted to the training procedures through a low intensityrunningprotocoleverydayfor20mininthetreadmillat18m/min. Therunningsessionsof 1hstartedwitha10minwarmupat40%VO max,andconsistedofsuccessive4minexerciseperiods 2 at65–80%ofVO max,followedby3minrecoveryperiodsat50–65%ofVO max. Theintensitiesand 2 2 lengthofthetrainingweregraduallyincrementedeveryweek(Table2). Toestablishthevelocitythat wouldcorrespondtotheVO maxofeachrat,amaximalincrementaltestwasperformedatthestart 2 ofthestudy. Afinalincrementaltestwasperformed96hpriortheendofthestudytotestthemaximal aerobiccapacityandphysicalperformanceachievedbytheanimalsasaresultoftheintervention. ThemaximalincrementaltestwascarriedoutfollowingtheprotocoldescribedbyWisløffetal.[23] andClementeetal.[24]withslightmodifications. Lactateconcentrationsweremeasuredattheendof theincrementaltestinbloodobtainedfromtheanimals’tail(LactatePro,Arkray,TheNetherlands). Table2.Detailsoftheaerobicintervaltraining(AIT)protocol. Week(5Days/Week) WorkTime(min/Day) %VO max 2 50%→3min 1 45(cid:48) 65%→4min 55%→3min 2 50(cid:48) 70%→4min 60%→3min 3 50(cid:48) 75%→4min 60%→3min 4 55(cid:48) 75%→4min 65%→3min 5–8 60(cid:48) 80%→4min VO2max,maximaloxygenconsumption. 2.8. Blood,PlasmaandLiverBiochemicalAnalysis Fasting blood glucose and glucose tolerance test were performed by oral glucose overload followingtheprotocoldescribedbyPrietoetal.[25]. Bloodglucoseconcentrationfromtheanimals’ tailwasrecordedatperiods0,15,30,90and120minaftertheglucoseoverloadingestion(BREEZE®2, BayerHealthcareAG,Leverkusen,Germany),andtheareaunderthecurve(AUC)wasdetermined. Biochemicalparametersoflipidmetabolism,andliverfunctionalityweremeasuredinplasmausing aShenzhenMindrayBS-200ChemistryAnalyzer(ShenzhenMindrayBio-MedicalElectronics,CO., LTD. Nanshan, Shenzhen, China) at the Bioanalysis Unit of the Scientific Instrumentation Centre (BiomedicalResearchPark,UniversityofGranada,Granda,Spain). Aportionofliverwaslyophilized inordertodeterminethepercentageofwater. Hepaticlipidswereextractedfromthefreeze-driedliver portionusingthemethoddescribedbyFolchetal.[26]withslightmodifications[7]. Theextracted lipidsweredissolvedin1mLof96%hexanetomeasuretriglycerideandtotal-cholesterolcontent (Spinreact,S.A.,Girona,Spain). 2.9. MacroscropicandMicroscopicLiverStudy Liverareaofthemacroscopicimagewasestimatedinalltheliverimagesoftheeightexperimental groupsassayedbymorphometricstudyusingthesoftwareImageProPlus6.0(MediaCybernetics,Inc., Rockville,MD,USA).Aportionofliverwasfixedin10%phosphate-bufferedformalin,dehydratedin ethanol,embeddedinparaffin,andsectionedforhistologicalexaminationusinghematoxylin-eosin Nutrients2017,9,774 6of22 (HE), and Masson’s trichrome (MT) staining for general microscopy morphology and fibrosis development,respectively. Fourdifferentpreparationsofeachstainingwereanalyzedforeachanimal, and10animalswereevaluatedineachexperimentalgroup(n=40samplespergroup). Histological alterations were evaluated according to the following grading score: -, non-existent; +, mild; ++, mild/moderate;+++,moderate;++++,abundant;+++++,severe. 2.10. LiverProteinExpressionAnalyses Liver samples were homogenized in 20 mM Tris HCl buffer containing 0.1% Igepal, 100 mM Ethyleneglycol-bis(2-aminoethylether)-N,N,N(cid:48),N(cid:48)-tetraaceticacid,andacocktailofproteaseinhibitors (Sigma,St. Louis,MO,USA).Liverhomogenateswerecentrifugedat13,000×gfor45min,at4◦Cand supernatantswerealiquotedandstoredat−80◦C,untilfurtheruseforwesternblotanalysis. Protein concentrationwasmeasuredbythemethodofLowryetal.[27]. Equalamountsoftotalproteinfor eachsamplewereloadedperwell,subjectedto12%SDS-PAGE,andelectrophoreticallytransferredto nitrocellulosemembranes(Schleicher&Schuell,Dassel,Germany)bywettransferat100Vfor1h using a Mini Trans-Blot cell system (Bio-Rad Laboratories, Hercules, CA, USA). Membranes were blockedusing5%non-fatdrypoweredmilkdissolvedinTris-BufferedsalineTween-20(TBST)for 90minatroomtemperature(RT).Theprimaryantibodiesfor5(cid:48)-AMP-activatedproteinkinase(AMPK) and phosphorylated-AMPK (pAMPK) (Cell Signaling Technology, Inc., Danvers, MA, USA) were usedaccordingtothemanufacturerrecommendeddilutions(1:1000)andwereincubatedovernight at4◦C.Themembraneswerethenwashedthreetimesfor10minwithTBST,beforeincubationfor 2 h at RT with secondary peroxidase conjugated goat anti-rabbit antibody (Sigma, St. Louis, MO, USA)dilutedat1:2000in5%skim-milkpowder–TBST.Membraneswerewashedasbefore,andthe boundantibodieswerevisualizedbyanECLProsystem(PerkinElmer,Boston,MA,USA)usinga FujifilmLuminescentAnalyzerLAS-4000miniSystem(Fujifilm,Tokyo,Japan). pAMPKexpression wasdeterminedinrelationtoAMPKexpression. Resultswereexpressedinrelativedensityunits. 2.11. StatisticalAnalyses Time-repeatedmeasurementanalysiswasappliedtoweeklyfoodintakeandbodyweightgain data as well as to blood glucose content after an oral glucose overload in order to analyze within subjecteffects(time)orwithingroupeffects(phenotypeorAITprotocol)ontheaboveparameters. The effect of phenotype (lean vs. obese corresponding to a fa/+ or fa/fa genotype), AIT protocol, and dietary intervention with RVR or GVR on final body weight, aerobic capacity and physical performance, plasma and liver biochemical parameters, hepatic antioxidant enzyme activity, and proteinexpressionwasanalyzedby2×2×2factorialANOVAwithphenotype(leanvs. obese),AIT protocol(sedentaryvs. exercise)anddietaryintervention(RVRvs. GVR)asmaintreatments. Theuse ofa2×2×2factorialANOVAisbasedonthepotentialinteractionsamongthethreeinterventions assayed(phenotype,exercise,anddiet)beingsignificantinourstatisticalmodelinadditiontosingle effectsofexerciseordietarytreatmentineachofthetwophenotypestested. Toreinforcethepotential integrativestrengthofthestatisticalmodelimplemented,theR2statistichasbeenincludedinthetables asameasureofgoodnessoffitofthemodel,giventhatthecoefficientofdeterminationindicatesthe proportionofvariabilityinadatasetthatcanbeaccountedbythestatisticalmodel. Resultsaregiven asmeanvaluesandpooledstandarderrorofthemean. Bonferroni’stestwasusedtodetectdifferences betweentreatmentmeans. TheanalyseswereperformedwithSAS,version9.0(SASInstituteInc., Cary,NC,USA),andthelevelofsignificancewassetatp<0.05. 3. Results 3.1. ChemicalAnalysis Thecompositionintotal,insoluble,solubleproteinandnon-proteinN,fat,andashcontentofRVR andGVRflours,togetherwiththeformulationandproximatecompositionofthedifferentexperimental Nutrients 2017, 9, 774 7 of 21 3. Results 3.1. Chemical Analysis The composition in total, insoluble, soluble protein and non-protein N, fat, and ash content of Nutrients2017,9,774 7of22 RVR and GVR flours, together with the formulation and proximate composition of the different experimental diets is presented in Table 1. With regard to RVR flour, 81.6% of the total N content cdoierrtessipsopnrdeseedn ttoe dsoinluTbaleb lper1o.teWini tNh,r weghaerrdeatos R5.V5%R flcoorurre,s8p1o.6n%deodf ttoh esotloutballeN noconn-pternottecionr Nre,s apnodn d1e2d.9%to csoorlurebslpeopnrdoetedi ntoN i,nwsohluerbelaes N5.. 5G%ercmorirneastpioonn dperdocteosss oclauubsleedn ao n7--pforoldte iinncNre,aasen din1 t2h.9e% cocnotrernets poof nsodleudbtleo ninosno-lpurboleteNin. GNe, rmanidn aati o1n.4p raoncde s1s.c6a-fuosledd dae7c-rfeoaldsei nincr etahsee lienvtehles coofn itnensotloufbsloel uabnlde nsoonlu-pblreo tpeirnotNei,na nNd rae1sp.4eactnidve1l.y6.- fGoledrmdeincraetaiosne incatuhseelde vae ls1.o2f-fionlsdo luinbclreeaansed sino luabshle cporontteeinnt Nwriethspouect tiavfefelyc.tiGnegr mtoitnaal tifoant ccoamuspeodsaiti1o.2n-.f oldincreaseinashcontentwithoutaffectingtotalfatcomposition. FFiigguurree 11 sshhoowwss tthhee cchhaannggeess iinn tthhee SSDDSS--PPAAGGEE ppaatttteerrnn ooff pprrootteeiinnss eexxttrraacctteedd ffrroomm RRVVRR aanndd GGVVRR fflloouurrss.. GGeerrmmiinnaattiioonn pprorocceessssc acuasuesdeda rae dreudctuioctnioinn dine ndseitnysoitryt hoer dthisea pdpiseaaprapnecaeraonfcme aoinf pmraoitnei nprboatnedins baannddtsh eansdu bthseeq suuebnsteaqpupeenat raapnpceeaorfaancsem oefa ar somfleoawr omf ololewcu mlaorlewceuilgahr twperiogtheitn pbroantedins. bands. FFiigguurree 11.. DDeetetecctitoionn pprorocecesssesse sofo fVV. r.ardaidaitaat aprportoetieni ndidgiegsetisotnio nbyb gyegrmerimnaintiaotnio pnropcreoscse.Bssa.nBdan pdatpteartnte rinn SinDSSD-PSA-PGAEG. EM.,M m,omleoclueclaurl awrewigehigt hmtmarakrekrse;r s1;, 1r,arwaw VV. .rardadiaitaat apprrooteteinin eexxttrraacct;t ;22,, 44 ddaayy--ggeerrmmiinnaatteedd pprrootteeiinn eexxttrraacctt.. TThhee aammoouunntt ooff KKjjeellddaahhll--NN llooaaddeeddp peerrl alanneew waass2 2.0.0µ µgg..T Thheefi fgiguurerei sisr erpeprerseesnetnattaivtieveo fo3f 3in idnedpeepnednednetnat naanlaylsyesse.s. Figure 2A shows a chromatogram and a mass spectrum (Retention time 13.27 min) of RVR Figure2Ashowsachromatogramandamassspectrum(Retentiontime13.27min)ofRVRprotein. protein. Consistent with the complexity of the sample, a wide range of chromatographic peaks were Consistentwiththecomplexityofthesample,awiderangeofchromatographicpeaksweredetected. detected. The presence of proteins was proved by high-resolution mass spectrometry as it is Thepresenceofproteinswasprovedbyhigh-resolutionmassspectrometryasitisindicatedinthe indicated in the mass spectrum example at 13.27 min. A typical protein profile for mass mass spectrum example at 13.27 min. A typical protein profile for mass spectrometry was clearly spectrometry was clearly obtained, due to the detection of multiple-charged ions provided by electro obtained,duetothedetectionofmultiple-chargedionsprovidedbyelectrosprayionizationofproteins spray ionization of proteins present in the sample. In comparison to the former results, a presentinthesample. Incomparisontotheformerresults,achromatogramandamassspectrumdata chromatogram and a mass spectrum data of GVR protein are presented in Figure 2B. A simpler ofGVRproteinarepresentedinFigure2B.Asimplerchromatogramwasachieved,showinga36% chromatogram was achieved, showing a 36% reduction in the area under the chromatogram that reductionintheareaunderthechromatogramthatmatchedthedisappearanceorconsistentdecrease matched the disappearance or consistent decrease in the area of major peaks, and the minor intheareaofmajorpeaks,andtheminorappearanceofnewchromatographicpeaksat0.985,1.202, appearance of new chromatographic peaks at 0.985, 1.202, and 1.883 min, respectively. The typical and1.883min,respectively. Thetypicalproteinprofileformassspectrometrywasobtainedinthe protein profile for mass spectrometry was obtained in the major peak (13.03 min), whereas the majorpeak(13.03min),whereastheappearanceofmono-chargedionsthatinvolvedthepresenceof appearance of mono-charged ions that involved the presence of smaller molecules such as amino smallermoleculessuchasaminoacidsorpeptidescharacterizedthesmallerpeaks(0.985,1.202,and acids or peptides characterized the smaller peaks (0.985, 1.202, and 1.883 min) that ranged 1.883min)thatrangedmass/charge(m/z)of93–893. mass/charge (m/z) of 93–893. Nutrients2017,9,774 8of22 Nutrients 2017, 9, 774 8 of 21 _12_2014_Radiata Cruda centroide 1: TOF MS ES+ 13.71 TIC 100 CHROMATOGRAM 12.96 3.45e6 % 9.189.46 14.30 6.40 7.21 14.98 0.74 7.77 11.26 0 Time 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 122014Radiata4Dcentroide 1:TOFMSES+ 01_12_2014_Radiata Cruda centroide 1731 (13.270) 1: TOF MS ES+ 923.9736 4.68e4 860.3442 831.6954 891.0739 MASS SPECTRUM 805.0110 924.0551 924.1409 779.8365 756.1319 % 997.9050 756.0447 997.9890 738.3999 1084.5829 725.4885 1133.7701 1187.6343 1247.1577 1312.6609 0 m/z 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 (A) 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 01_12_2014_Radiata 4D centroide 1: TOF MS ES+ 100 13.34 TIC 4.10e6 CHROMATOGRAM 13.78 % 14.77 0.72 6.40 9.20 11.59 0 Time 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 01122014Rdit Hid li d t id 1TOFMSES+ 01_12_2014_Radiata 4D centroide 127 (0.985) 1: TOF MS ES+ 120.0801 1.40e5 MASS SPECTRUM0.985 min % 166.0858 121.0831 93.0692 103.0539 136.0638149.0591 167.0886 255.9820 268.1024 310.1294 0 m/z 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 01_12_2014_Radiata 4D centroide 155 (1.202) 1: TOF MS ES+ 188.0697 1.22e5 MASS SPECTRUM1.202 min % 0 113.9623118.0656 144.0810466.0592159.0911 170.0596 18199.007.037180205.0966 m/z 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 01_12_2014_Radiata 4D centroide 244 (1.883) 1: TOF MS ES+ 364.1235 2.44e4 311.0760 MASS SPECTRUM1.885 min 189.0525 % 369.0791 747.1093 0 161.0588 20273.10.604571226299.30.7096242 312.0793 409.1111451.1223 539.1160547.1054407.6014 651.1074667.0817 720.1509 774580..11101127 845.0733 893.20m1/2z 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 (B) Figure 2. (A) Chromatogram of raw V. radiata protein and Mass Spectrum of major peak (13.270 min) Figure2.(A)ChromatogramofrawV.radiataproteinandMassSpectrumofmajorpeak(13.270min) of chromatogram; (B) Chromatogram of 4 day-germinated V. radiata protein after hydrolysis and ofchromatogram;(B)Chromatogramof4day-germinatedV.radiataproteinafterhydrolysisandMass Mass Spectrum of hydrolysis-derived peaks (0.985, 1.202, and 1.885 min, respectively) of Spectrumofhydrolysis-derivedpeaks(0.985,1.202,and1.885min,respectively)ofchromatogram. chromatogram. Nutrients2017,9,774 9of22 Nutrients 2017, 9, 774 9 of 21 33..22.. BBiioollooggiiccaall AAnnaallyyssiiss 33..22..11.. FFoooodd IInnttaakkee aanndd BBooddyy WWeeiigghhtt GGaaiinn TThhee eeffffeeccttss ooff pphheennootytyppe,e ,AAITI Tprportootcooclo alnadn ddiedtaiertya rtryeatrtmeaetmnte wntithw RitVhRR VorR GoVrRG oVnR woenekwlye feokoldy fionotadkein atankde wanedekwlye ebkoldyyb wodeyigwhte iggahint gaarien parreespenretseedn itne dFiinguFrieg u3r. eB3o.thB optahrpamareatmerest ewrserwe earfefeacftfeedct ebdy bpyhepnhoetnypotey wpeitwh ihthighheigrh vearluveaslu feosufnodu nind tihnet hoebeosbee gserogurposu pwshwenh ecnomcopmarpeadr ewditwh itthhet hleeanle aonneosn. eAs. Asigsnigifnicifiacnat netffeefcfet cotfo tfhteh eAAITI Tpprortootcooclo lwwasa saalsloso oobbsseervrveedd, ,leleaaddiningg ttoo ddeeccrreeaasseedd vvaalluueess ooff ffoooodd iinnttaakkee ((FFiigguurree 33AA)) aanndd bbooddyy wweeiigghhtt ggaaiinn ((FFiigguurree 33BB)) iinn tthhee ggrroouuppss tthhaatt uunnddeerrwweenntt tthhee eexxeerrcciissee ttrraaiinniinngg pprroottooccooll wwhheenn ccoommppaarreedd ttoo tthheeiirr sseeddeennttaarryy ccoouunntteerrppaarrttss.. SSuucchh rreedduucciinngg eeffffeeccttss ooff eexxeerrcciissee oonn ffoooodd iinnttaakkee aanndd wweeiigghhtt ggaaiinn wweerree mmoorree pprroonnoouunncceedd inin oobbeessee ththaann inin lelaeann pphhenenotoytpype,e t,htuhsu srerseuslutilntign gini na astasttaisttiisctaicl ailnitnertearcaticotnio nbebtweteweene tnheth eexeexrceirscei sientienrtveervnetinotnio anndan tdhet hpehpenhoetnyoptey poef roaftsra (tps =( p0.=0205.0 a2n5da np d< p0.<0000.10,0 r0e1s,preecsptievcetliyv)e. ly). 26 26 24 24 ke (g/d)2202 ke (g /d)2202 nta nta kly food i1168 kly food i1168 Wee14 Wee14 12 12 10 10 W1 W2 W3 W4 W5 W6 W7 W1 W2 W3 W4 W5 W6 W7 RVRLS RVRLE RVROS RVROE GVRLS GVRLE GVROS GVROE Phenotype Effect: P<0.001 Exercise Effect: P=0.007 Diet Effect: P<0.001 Phenotype Exercise: P=0.025 (A) 8 8 7 7 Weekly body weight gain (g/d) 23456 Weekly body weight gain (g/d)23456 1 1 0 0 W1 W2 W3 W4 W5 W6 W7 W8 W1 W2 W3 W4 W5 W6 W7 W8 RVRLS RVRLE RVROS RVROE GVRLS GVRLE GVROS GVROE Phenotype Effect: P<0.001 ExerciseEffect: P=0.006 DietEffect: P<0.001 Phenotype×Exercise: P<0.001 Phenotype×Diet: P=0.001 (B) Figure 3. Effect of dietary treatment with raw or 4 day-germinated V. radiata and aerobic interval Figure3. Effectofdietarytreatmentwithrawor4day-germinatedV.radiataandaerobicinterval training protocol on food intake (A) and body weight gain (B) of lean and obese Zucker rats. (A) trainingprotocolonfoodintake(A)andbodyweightgain(B)ofleanandobeseZuckerrats.(A)Weekly Weekly food intake (g DM/day); (B) Weekly body weight gain (g/day). DM, dry matter, RVR, raw V. foodintake(gDM/day);(B)Weeklybodyweightgain(g/day).DM,drymatter,RVR,rawV.radiata, radiata, GVR, 4 day-germinated V. radiata. Groups: LS, Lean (fa/+) sedentary rats, LE, Lean (fa/+) rats GVR, 4 day-germinated V. radiata. Groups: LS, Lean (fa/+) sedentary rats, LE, Lean (fa/+) rats performing aerobic interval exercise, OS, Obese (fa/fa) sedentary rats, OE, Obese (fa/fa) rats performingaerobicintervalexercise,OS,Obese(fa/fa)sedentaryrats,OE,Obese(fa/fa)ratsperforming performing aerobic interval exercise. W, week. Values are means ± SEM depicted by vertical bars (n = aerobicintervalexercise.W,week.Valuesaremeans±SEMdepictedbyverticalbars(n=10). 10). Nutrients2017,9,774 10of22 Withregardtothedietarytreatment,GVRledtolowerfoodintakeandbodyweightgainwhen comparedtoRVRdiet,althoughtheeffectsonweightgainweremorepronouncedintheobesewhen comparedtotheleananimals,thusgivingrisetoasignificantphenotype×dietinteraction(p=0.001). 3.2.2. AerobicCapacityandPhysicalPerformance Theeffectsofphenotype,AITprotocol,anddietarytreatmentonaerobiccapacityandphysical performanceofZuckerratsundergoingamaximaloxygenconsumptionincrementaltest,together with the effects on hematic parameters related to aerobic capacity are shown in Table 3. With the exceptionofVO max,allparametersrelatedtoaerobiccapacityandphysicalperformancederived 2 fromamaximaloxygenconsumptionincrementaltestweresignificantlyaffectedbyphenotypeand exercise. Bloodlactatecontentwas2-foldhigherinsedentaryobeseratscomparedtotheleangroups, whileitwasonly1.3–1.5-foldhigherinobesetrainedratsfedGVRandRVR,respectively(p<0.001for bothphenotypeandexerciseeffect). Significanteffectsofphenotypeandexercisewerealsoobserved inrunningtime,maximalspeedanddistancerunthatwerelowerinobesecomparedtoleananimals andimprovedsubstantiallyinbothgroupsasaresultoftheAITprotocol(allp<0.001)Furthermore, asignificanteffectofexercisewasobservedonVO maxthatincreasedinbothphenotypes(p<0.001), 2 although the effects were more pronounced in lean compared to obese animals, thus resulting in significant phenotype × exercise interaction (p < 0.001). Regarding the inclusion of RVR or GVR in the experimental diets, running time, maximal speed and distance run were enhanced by the GVRcomparedtoRVRdiet,withmorepronouncedeffectsinleananimals. Allthese,gaveriseto significantdieteffect(p<0.001)anddiet×phenotypeinteractions(p=0.001andp<0.001forrunning time and distance run, respectively). In addition, the parameters related to physical performance weredifferentiallyaffectedbyexercisedependingonthetypeofdietconsumed. Inthisregard,the enhancingeffectofexerciseinbothleanandobeseanimalswasgreatestinratsfedGVR,thusresulting insignificantdiet×exerciseinteraction(allp<0.001). TheAITprotocolassayedtendedtoincreaseall thehematicparametersrelatedtoaerobiccapacity(Table3). Suchenhancingeffectvariedbetween leanandobeseratsinmostoftheparametersstudied,andgaverisetosignificanteffectofexerciseand phenotype×exerciseinteraction. 3.2.3. PlasmaParametersofGlucoseandLipidMetabolism Theeffectsofphenotype,AITprotocol,anddietarytreatmentonbloodandplasmabiochemical parametersrelatedtoglucoseandlipidmetabolismareshowninFigure4andTable4. Asignificant effect of phenotype was observed on all the parameters analyzed that were higher in obese when comparedtoleanrats. TheAITprotocolassayedcausedasignificantreductioninbloodglucoseand AUC,aswellasinplasmalipidparameters,withamorepronouncedeffectinobeseanimals,giving risetoasignificantphenotype × exerciseinteraction. AUCvalueswerealsolowerinanimalsfed theGVRwhencomparedtoRVRdiet,andsuchdietaryeffectwasmodulatedbyphenotype,thus resultinginsignificantphenotype×dietinteraction(p<0.001). Likewise,dietsignificantlyaffected theinfluenceofexerciseonAUC,withalessevidenteffectinGVRcomparedtoRVR,resultingina significantdiet×exerciseinteraction. Alltheseeffectswerereflectedindifferenttrendsofevolutionin bloodglucosevaluesafteranoralglucoseoverloadinGVRcomparedtoRVR(Figure4),withlower levels of peak blood glucose and time to return to basal levels by the obese animals in the former dietarytreatment.
Description: