RESEARCHARTICLE The combined effects of biotic and abiotic stress on species richness and connectance DevduttKulkarni*,FrederikDeLaender LaboratoryofEnvironmentalEcosystemEcology,ResearchUnitinEnvironmentalandEvolutionaryBiology (URBE),UniversityofNamur,Namur,Belgium *[email protected],[email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 Foodwebstructureandspeciesrichnessarebothsubjecttobiotic(e.g.predationpressure a1111111111 andresourcelimitation)andabioticstress(e.g.environmentalchange).Weinvestigatedthe combinedeffectsofbothtypesofstressonrichnessandconnectance,andontheirrelation- ship,inapredator-preysystem.Tothisend,wedevelopedamathematicaltwotrophiclevel food-webmodeltoinvestigatetheeffectsofbioticandabioticstressonfoodwebconnec- OPENACCESS tanceandspeciesrichness.Wefoundnegativeeffectsoftop-downandbottom-upcontrol Citation:KulkarniD,DeLaenderF(2017)The onpreyandpredatorrichness,respectively.Effectsoftop-downandbottom-upcontrol combinedeffectsofbioticandabioticstresson werestrongerwheninitialconnectancewashighandlow,respectively.Bottom-upcontrol speciesrichnessandconnectance.PLoSONE12 couldeitheraggravateorbuffernegativeeffectsoftop-downcontrol.Abioticstressaffecting (3):e0172828.doi:10.1371/journal.pone.0172828 predatorrichnesshadpositiveindirecteffectsonpreyrichness,butonlywheninitialcon- Editor:AndreaBelgrano,Sveriges nectancewaslow.However,noindirecteffectsonpredatorrichnesswereobservedfollow- lantbruksuniversitet,SWEDEN ingdirecteffectsonpreyrichness.Top-downandbottom-upcontrolselectedforweakly Received:March15,2016 connectedpreyandhighlyconnectedpredators,therebydecreasingandincreasingcon- Accepted:February10,2017 nectance,respectively.Oursimulationssuggestabroadrangeofnegativeandpositiverich- Published:March1,2017 ness-connectancerelationships,therebyrevisitingtheoftenfoundnegativerelationship Copyright:©2017Kulkarni,DeLaender.Thisisan betweenrichnessandconnectanceinfoodwebs.Ourresultssuggestthat(1)initialfood- openaccessarticledistributedunderthetermsof webconnectancestronglyinfluencestheeffectsofbioticstressonrichnessandtheoccur- theCreativeCommonsAttributionLicense,which renceofindirecteffectsonrichness;and(2)theshapeoftherichness-connectancerelation- permitsunrestricteduse,distribution,and shipdependsonthetypeofbioticstress. reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation files. Introduction Funding:DKwasfundedbyapostdoctoral fellowshipfromtheCentred’e´tudesetde Foodwebstructureandspeciesrichnessarebothsubjecttobioticandabioticstress[1–2]. recherchesuniversitairesdeNamur,Universityof Bioticstresscanoccurthroughpredation(top-downcontrolonprey),resourcelimitation Namur,Belgium.FDLwasfundedbytheUniversity (bottom-upcontrolonpredators),orthroughacombinationofboth(mixedcontrol[3]). ofNamur(FSRImpulsionnel48454E1);https:// Whensufficientlystrong,bioticstresscanaffectrichness,e.g.whenhighpredatorrichness www.unamur.be/.Thefundershadnoroleinstudy design,datacollectionandanalysis,decisionto leadstoareductionofpreydiversity[4].Specieslosscanleadtosecondaryextinctions,and publish,orpreparationofthemanuscript. thustochangesinfoodwebstructureandconnectance[5–6].Abioticstressoccurswhenenvi- ronmentalgradientsexceedtolerancelimits,assuchimpactingfoodwebstructureandcon- Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. nectance[7–13].Abioticstressorsincludetemperaturechangesandtoxicchemicals,which PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 1/15 Effectsofbioticandabioticstressonfoodwebs canleadtoavarietyoflethalandsub-lethaleffects[14].Forinstance,changeintemperature [15]orexposuretotoxicchemicals[16]candirectlyaffectphysiologicalprocessesleadingto effectsondevelopment,reproductionandsurvival.Justlikebioticstressors,directeffectsof abioticstressorscanchangerichness[7–11],causesecondaryspecieslossinmulti-trophic foodwebs[17–19]andleadtotheappearanceordisappearanceoflinksbetweenspecies, therebyaffectingconnectance[12,20].However,despitetheoverwhelmingevidenceofbiotic andabioticstressaffectingrichnessandconnectance,thecombinedeffectsofbothtypesof stressarefarlesswellstudied. Sincethe1970s,speciesrichnessandconnectancehavebeenshowntorelateintimately. Thismeansthatfoodwebscannotbetoocomplex,i.e.cannotcontainmanydirectspecies interactions,andatthesametimehostmanyspecies[21,22].Thisfeatureisreflectedbymany foodwebsandresultsinanegativerelationshipbetweenconnectanceandspeciesrichness:a lowerproportionofthepotentialspeciesinteractionsisrealisedinricherfoodwebs.An importantdriveroftherelationshipbetweenrichnessandconnectance,nexttospatialdynam- ics[23],andthecapacityofspeciestochangetheirinteractionswithotherspecies(e.g.diet shifts[24]),isthediversityofinteractiontypes[25].Thus,bioticstress,thetermusedinthe presentpapertodenoteeffectsofspeciesinteractionsonspeciesrichness,bydefinitionplays animportantroleinshapingtherichness-connectancerelationship.However,effectsofabiotic stressonthisrelationshiparelesswellstudied. Theobjectiveofthepresentpaperistoexaminethecombinedeffectsofbioticandabiotic stressonrichnessandconnectance,andontheirrelationship,inapredator-preysystemrepre- sentingabipartitegraph.Theapproachwefollowconsistsoftheorydevelopmentandmodel- ling.Weproposeasimpletheoreticalframeworktoexplorethecombinedeffectsofbioticand abioticstressonrichnessandconnectanceinbipartitegraphsmakingasetofwell-defined assumptions.Wealsoformalizethisframeworkintoanewmodel,whichdiffersfromexisting food-webmodellingapproaches[26–28]inthreeimportantways.First,themodelisrelatively parameter-sparse:9parameterssufficetodescribehowrichnessandconnectancevaryalong gradientsofbioticandabioticstress,regardlessofthenumberofspeciesincluded.Second,the modelforthefirsttimeunifiestheeffectsthatabioticstressandbioticstresshaveonspecies- levelfitness,assuggestedelsewhere[29–31],byusingthesamemathematicalformulationfor bothtypesofstress.Third,themodelcombinesstochasticity(prevailingintheabsenceof stress)withspeciesselection(prevailingathighbioticand/orabioticstress),acknowledging theimportanceofbothstochasticanddeterministicdriversoffoodwebassembly[32].We presentsimulationswithourmodel,representingafullfactorialdesignofthebioticstressor type(threelevels:top-down;bottom-up;mixedcontrol),abioticstressortype(twolevels: affectingpredatorreproduction;affectingpreyreproduction),andinitialconnectance(two levels:lowandhigh).Undertop-downcontrol,predatorabundanceaffectedpreysurvival. Underbottom-upcontrol,preyabundanceaffectedpredatorreproduction.Undermixed controlbotheffectsoccurred.Usingthismodel,wefirstaskwhetherabioticstresscanindi- rectlyalterdiversitybychangingbioticstresslevels,i.e.ifpredator(prey)richnessdecreases (increases)followingabioticstressonpreyandpredators.Second,weevaluatethecorrespond- ingchangesinconnectanceandtheconsequencesfortherichness-connectancerelationship. Materialsandmethods Theoryandmodeldescription Thetheorywepresentcombinesstochasticprocesseswiththeeffectsofabioticandbiotic stressorsondemographicrates,followingarecentlydevelopedapproach[9].Thestochastic processesarebasedontheneutraltheoryofbiodiversity[33]andassumethatindividualshave PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 2/15 Effectsofbioticandabioticstressonfoodwebs identicalindividual-leveltraits,andthatchangesinrelativeabundanceinalocalcommunity (thecaseweconsiderhere)onlyoccurthroughrandomdeath,reproduction,anddispersal.A versionoftheneutralmodelonlyincludinglocalprocesseshasbeenpreviouslymodifiedto includeabioticstresstakingintoaccountbothintra-andinterspecifictolerancevariability[9]. Inthepresentpaper,weextendedthismodeltoinclude(1)twocommunitiesoccupyingdis- tincttrophiclevels(called‘prey’and‘predators’)(2)effectsofabioticstressonpreyandpreda- torsurvivalandreproductionand(3)effectsofpredationandresourcelimitation(biotic stress)onpreysurvivalandpredatorreproduction,respectively.Immigrationoccursbetween aspatiallynon-explicitmainland(‘meta-community’)andthetwoconsideredlocalcommuni- ties.Itsratedependsonanimmigrationprobabilitymandspecies-specificrelativeabundances inthemainland.Abioticstressisassumedtonotaffectthemainland[9]. Death. Aspeciesjcanloseanindividualthroughdeathintwonon-mutuallyexclusive ways:bychanceandbybioticstress(predation).Effectsofabioticstressondeathratescanbe easilyconsidered,butareleftoutforsimplicity.Deathbychanceforspeciesj(or‘background stochasticdeath’)issimplyN/N,whereN istheabundanceofspeciesjandN=∑N isthe j j j totalnumberofindividualswithintheconsideredcommunity. Deathbypredationcanoccurwhenthecorrespondingbioticstresslevelsexceedthecorre- spondingindividual-levelthresholds.Theprobabilitytodiebypredationiscalculatedby dividingthenumberofindividualsfromspeciesjsusceptibletodeathbypredationbyallindi- vidualsinthecommunity(i.e.allspecies)thataresusceptibletodeathbypredation.Inorder tobesusceptible,c (thecriticalindividual-levelthresholdfordeathbypredation)shouldbe p exceededbythetotalpredatorabundancepred.Thisleadstothefollowingequation: P(deathbychanceorpredationforspeciesj) P½ðc>c Þ [ðpred>c Þ(cid:138)(cid:1)N N P½ðc>c Þ [ðpred>c Þ(cid:138)(cid:1)N ¼P m j p j j þP j (cid:0) P m j p j j n ½P½ðc>c Þ [ðpred>c Þ(cid:138)(cid:1)N(cid:138) n N n ½P½ðc>c Þ [ðpred>c Þ(cid:138)(cid:1)N(cid:138) i¼1 m i p i i i¼1 i i¼1 m i p i i N (cid:1)P j ð1Þ n N i¼1 i where: 1 Pðpred>c Þ ¼1(cid:0) (cid:16) (cid:17) ð2Þ p i 1þ pred spi cp;50;i c andc arethespecies-meanthresholdforspeciesj;s istheslope,representingintra- m,50,i p,50,i pi specifictolerancevariability;c isthecriticalindividual-levelthresholdfordeathbyabiotic m stress.Becausec isspecies-meantolerance,itisnotanindividual-levelparameter.Eq2 p,50,i quantifieshowindividualswithinaspeciesdifferinsensitivitytopredation.Thesloperepre- sentsthesteepnessofthisdistributionand,therefore,intraspecifictolerancevariability[9]. Thevalueof‘pred’dependsonfoodwebtopology,whichcanbeformalisedusingafood web(or‘adjacency’)matrixf.Thisisa(q×q)matrix(qspeciesintotal,includingallpreyand predatorspecies).Thefirstkrowsandcolumnsrepresentthekpreyspecies;theremainingq- krowsandcolumnsrepresentpredators.Foreverypredatorjeatingapreyi,a‘1’isplacedat thecorrespondingelementf[i,j].Iforganisedinthisway,‘pred’forspeciesjisthejthelement ofthematrixproductf×n,wherenisthe(q×1)vectorofallqspeciesabundances.Foratop predator,predwillalwaysequalzerosothatEq1simplycollapsestobackgroundmortality (thesecondterminEq1). Reproduction. Aspeciesjcangainanindividualthroughimmigration(seefirstpara- graphof‘Materialandmethods‘)orthroughreproduction.Theprobabilitythatanindividual PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 3/15 Effectsofbioticandabioticstressonfoodwebs fromspeciesjreproducesisgivenbydividingthenumberofindividualsfromspeciesjeligible forreproductionbyallindividualsinthecommunity(i.e.fromallspecies)thatareeligiblefor reproduction.Anindividualiseligibleforreproductionwhenbiotic(resourcelimitation)and abioticstressdonotimpedethis.Bioticstress(resourcelimitation)occurswhenthetotal amountofresource,i.e.thesummeddensitiesofallpreyavailabletoindividualofspeciesj,is lowerthanc (criticalthresholdforreproductionimpairmentbyresourcelimitation).Abiotic f stressoccurswhentheabioticstresslevelcexceedsc (criticalthresholdforreproduction r impairmentbyabioticstress).Thisleadsto: P(anindividualfromspeciesjreproduces) Pððresource>cÞ \ðc<cÞÞ(cid:1)N ¼P f j r j j ð3Þ n ½Pððresource>cÞ \ðc<cÞÞ(cid:1)N(cid:138) i¼1 f i r i i where: 1 Pðresource>cÞ ¼1(cid:0) (cid:16) (cid:17) ð4Þ f i 1þ resource sfi cf;50;i 1 Pðc<cÞ ¼ (cid:16) (cid:17) ð5Þ r i sri 1þ c cr;50;i Again,c andc arethespecies-meanthresholds;s istheslope,representingintra- f,50,i r,50,i ri specificvariability.Becausec andc arespecies-meantolerances,theyarenotindividual-level f r parameters.Eqs4and5quantifyhowindividualswithinaspeciesdifferinsensitivityto resourcelimitationandabioticstressrespectively.Thesloperepresentsthesteepnessofthis distributionandthereforeintraspecifictolerancevariability[9].Resourceissimplythejthele- mentofthematrixproductfTxn,withfandnasinsection‘Death’.Forspeciesthatsufferno resourcelimitation,thisequationsimplifiesto: P(anindividualfromspeciesjreproduces) Pðc<cÞ (cid:1)N ¼P r j j ð6Þ n ½Pðc<cÞ (cid:1)N(cid:138) i¼1 r i i Biodiversitydynamics. Biodiversitydynamicswithinonecommunityweremodelledas: PðN þ1jNÞ¼½1(cid:0) PðdeathÞ(cid:138)(cid:1)½½1(cid:0) m(cid:138)(cid:1)PðreproductionÞþm(cid:1)PðmainlandÞ(cid:138) ð7Þ j j PðN (cid:0) 1jNÞ¼PðdeathÞ(cid:1)½½1(cid:0) m(cid:138)(cid:1)½1(cid:0) PðreproductionÞ(cid:138)þm(cid:1)½1(cid:0) PðmainlandÞ(cid:138)(cid:138) ð8Þ j j withP(mainland)therelativeabundanceofspeciesjinthemainland. NotethatEqs7and8arenotcomplements.Indeed,theabundanceofaspeciescanalso stayconstantwithprobability1−P(N +1|N)−P(N −1|N). j j j j SubstitutingthedifferentprobabilitiesinEqs7and8withthosepresentedinEqs1–3,we cannowspecifybiodiversitydynamicsofonecommunitythatisexperiencingbioticandabi- oticstressasasetoftwoequationsthatgivetheprobabilityofaspeciesjtoincreaseand PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 4/15 Effectsofbioticandabioticstressonfoodwebs decreasewithoneindividual,respectively: " " ## P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N N P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N N PðNþ1jNÞ¼ 1(cid:0) P m j j p j j þP j (cid:0) P m j j p j j (cid:1)P j j j n ½P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N(cid:138) n N n ½P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N(cid:138) n N i¼1 m i i p i i i¼1 i i¼1 m i i p i i i¼1 i " " # # PðððfTxnÞ >cÞ \ðc<cÞÞ(cid:1)N (cid:1) ð1(cid:0) mÞ(cid:1) P j f j r j j þm(cid:1)P ð9Þ n ½PðððfTxnÞ >cÞ \ðc<cÞÞ(cid:1)N(cid:138) j i¼1 i f i r i i and " # P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N N P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N N PðN(cid:0) 1jNÞ¼ P m j j p j j þP j (cid:0) P m j j p j j (cid:1)P j j j n ½P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N(cid:138) n N n ½P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N(cid:138) n N i¼1 m i i p i i i¼1 i i¼1 m i i p i i i¼1 i " " # # PðððfTxnÞ <cÞ \ðc>cÞÞ(cid:1)N (cid:1) ð1(cid:0) mÞ(cid:1) P j f j r j j þm(cid:1)ð1(cid:0) PÞ ð10Þ n ½PðððfTxnÞ <cÞ \ðc>cÞÞ(cid:1)N(cid:138) j i¼1 i f i r i i Modelsimulations WeimplementedEqs9and10foronecommunityofpreyspeciesandonecommunityof predatorspecies(fourequationsintotal).Preyservedasresourceforpredatorsbutwerethem- selvesnotresourcelimited(asinEq2).Predatorswerenotpredated.Weranthismodelina fullfactorialdesignofthreefactors(typeofabioticstress,typeofbioticstressandinitialcon- nectance)(Table1).Weconsideredthreelevelsofabioticstress:noabioticstressonpreyor predators,abioticstressaffectingpreyreproductiononly,orabioticstressaffectingpredator reproductiononly.Weconsideredthreelevelsofbioticstress:top-downcontrol(predation pressurereducespreysurvival),bottom-upcontrol(resourcelimitationreducespredator reproduction),orboth.Weconsideredtwolevelsofinitialconnectance:low(0.05andhigh (0.20).WecalculatedconnectanceasL/(S ×S ),whereListhenumberoflinks,S is prey pred prey preyrichnessandS ispredatorrichness.Preycannoteatpredatorsorotherpreyandpreda- pred torscannoteatotherpredators.Theaveragenumberoflinksperspeciesforinitialconditions can,therefore,becalculatedas50×50×0.05i.e.125(low)and50×50×0.2i.e.500(high).Inliter- ature,connectanceisgenerallycalculatedfornon-bipartitefoodwebswiththeformulaL/S2, whereListhenumberoflinksandSisthetotalnumberofspecies[26,34–37].Therangeof connectanceusedinoursimulations(0.05–0.2),evenafterrecalculationusingtheformulaL/ S2,correspondstotherangesobtainedinliteraturefornon-bipartitefoodwebs(0.026–0.315 [26],0.061–0.32[35],0.026–0.122[36]and0.016–0.33[38]). Percombinationoffactorlevels,Eqs9and10werenumericallycalculatedandupdatedper timestepforeverypreyspeciesbutonlyperfourtimestepsforeverypredatorspeciestosimu- lateslowercommunitydynamicsforpredators[39].Assuch,theprobabilitiesforabundance increaseanddecreasewereobtainedforeveryspeciesbysolvingEqs9and10,respectively. EventhoughallpreyspeciesusethesameimplementationsofEqs9and10,theirtolerancesto thestressors,theirconnectionstopredators,andtheirrelativeabundanceinthemainlandwill bedifferent.So,species-specificsolutionswillbeobtained.Thesameholdsforpredators.Per timestep(prey)orfourtimesteps(predators),onespecieswasdrawnpercommunityasa weightedsamplewiththeprobabilitygivenbyEq9.Theabundancesofthesetwospecieswere increasedwithone.Next,onespecieswasdrawnpercommunityasaweightedsamplewith theprobabilitygivenbyEq10.Theabundancesofthesetwospeciesweredecreasedbyone. Thisprocedureassumes“zerosumdynamics”i.e.thenumberofindividualspercommunity staysconstantandateachtimestep,1individualpercommunityiskilledandreplacedbya PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 5/15 Effectsofbioticandabioticstressonfoodwebs Table1. Modelparametersintheirinitialstate. Description Parameter Level Values Totalnumberofspecies(Constant) n Community 100(50predators;50prey) Numberofindividuals:multipleofn(Variable) N Community n×5 Levelofabioticstressor(Constant) c Community 0or100 Lowerandupperlimitsofuniformdistributionofimmigrationrate(Variable) m ;m Individual 1E-01;1.5E-01(low),2E-01;3E-01(high) min max Lowerandupperlimitsofcriticalreproductionthreshold(Variable) c ;c Individual 5E1;1.5E2 rmin rmax Lowerandupperlimitsoffoodlimitationandpredationthresholds(c values c ;c ; Individual 1E-10;1E-10;10;40(top-downcontroland f fmin fmax constantandc valuesvariablefortop-downcontrol;c valuesvariableandc predationpressure,nofoodlimitation) p f p valuesconstantforbottom-upcontrol)[39] c ;c 10;40;1E10;1E10(bottom-upcontroland pmin pmax foodlimitation,nopredationpressure) Lowerandupperlimitsoftheslopeofthestressresponsefunction(Constant) minslope; Individual 3;3 [42] maxslope Initialconnectance(Initialconnectanceisconstant;realisedconnectanceis Connectance Community Low(0.05)High(0.2) variable)[23,35,36,38] doi:10.1371/journal.pone.0172828.t001 “new”individual.Becausethemodelisdynamic,communitycompositionandabundanceof bothpreyandpredatorschangeovertime.Thisimpliesthatthelevelsofbioticstressalso changeovertime,whileabioticstressisconstantthroughtime. Percombination,themodelwasrun(i.e.theprobabilitieswerecalculated)for15000time steps,using5000iterations.These5000iterationsdifferedinthespecies-meantolerances (Table1).Initialspeciesabundances(andthereforeinitialrichness)wereequalacrossallcom- binationsanditerations.Food-weblinksweresetatrandomwiththeinitialconnectanceas theonlyconstraint.Linksbetweentwospeciesdisappearwhenoneofthespeciesgoesextinct locallybutreappearwhenthisspeciesrecolonizesthelocalcommunityfollowinganimmigra- tionevent.Nonewlinksarecreated.Foreverycombinationanditerationwecalculatedthe finalpreyandpredatorrichnessaswellasfinalconnectance.ThemodelwascodedinPython (2.7.10). Toassesstherobustnessofthesimulationstotheselectedimmigrationprobabilitym,we performedallsimulationsfortwodifferentvaluesofm(Table1).Allfigureswereprepared usingR[40].Statisticaltestswerenotusedtointerpretmodelsimulationresultsashasbeen recommendedrecently[41]. Results Becauseresultswerequalitativelysimilarbetweenlower(Figs1–4)andhigherimmigration probabilitiesm(S1–S4Figs),onlytheformeraredescribedanddiscussedbelow. Richness Preyrichness. Intheabsenceofabioticstress,preyrichnessunderbottom-upcontrolcan beconsideredareference(unstressed)situation,sincepreyalsodonotexperienceanybiotic stressunderbottom-upcontrol.Thus,preyrichnessisonlydeterminedbydispersallimitation. Comparedtothisreference,top-downandmixedcontroldecreasedpreyrichness(Fig1). Mixedcontrolcausedreductionsofpreydiversitythatweremoreseverewheninitialconnec- tancewaslow. Whenabioticstressaffectedprey,preyrichnesswasreduced,butonlyinabsenceofbiotic stressonprey(bottom-upcontrol).Whenabioticstressaffectedpredators,preyrichness increasedundertop-downcontrol,butonlyatlowinitialconnectance.Athighinitialconnec- tance,noindirecteffectonpreyrichnesswasobserved. PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 6/15 Effectsofbioticandabioticstressonfoodwebs Fig1.Preyrichnessunderstress.Bioticstress(top-down,bottom-upormixedcontrol)andabioticstress(none,AS onprey,ASonpredators)atlowandhighinitialconnectance. doi:10.1371/journal.pone.0172828.g001 Predatorrichness. Inabsenceofabioticstress,predatorrichnessundertop-downcontrol canbeconsideredanunstressedsituation,sincepredatorsalsodonotexperienceanybiotic stressundertop-downcontrol.Thus,bottom-upcontrolreducedpredatorrichnessanddidso mostwheninitialconnectancewaslow.Mixedcontrolhadnocleareffectonpredatorrichness (Fig2). Adirectnegativeeffectofabioticstressonpredatorrichnesswasfound,butthiseffectwas onlypronouncedinabsenceofbioticstressonpredators(top-downcontrol),regardlessofini- tialconnectance.Whenabioticstressaffectedpreyandbottom-upcontrolprevailed,asmall negativeindirecteffectonpredatorrichnessoccurredbutonlyathighinitialconnectance. Connectance Whetherornotabioticstresswaspresent,connectancewasalwayslowerundertop-down thanunderbottom-upcontrol(Fig3).Connectancewaslowestundermixedcontrolatlow initialconnectancecomparedtotop-downandbottom-upcontrolbuthigherthanthatunder top-downcontrolathighinitialconnectance.Overall,abioticstressdidnotmarkedlychange connectance.Onlywhenabioticstressaffectedpredatorswasconnectancehigher(lower) undertop-downcontrolwheninitialconnectancewaslow(high). Inabsenceofabioticstress,top-downcontroldecreasedthenumberofpredatorsperprey (S5Fig)whilebottom-upcontrolslightlyincreasedthenumberofpreyperpredator.Mixed controldecreasedthenumberofpredatorsperpreyaswellthenumberofpreyperpredator andbothwereverylowatlowinitialconnectance. Bothtypesofabioticstressreducedthenumberofpreyperpredatorunderbottom-upcon- trol(S6Fig).Undertop-downcontrol,abioticstressaffectingpredatorsreducedthenumber PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 7/15 Effectsofbioticandabioticstressonfoodwebs Fig2.Predatorrichnessunderstress.Bioticstress(top-down,bottom-upormixedcontrol)andabioticstress (none,ASonprey,ASonpredators)atlowandhighinitialconnectance. doi:10.1371/journal.pone.0172828.g002 Fig3.Connectanceunderstress.Bioticstress(top-down,bottom-upormixedcontrol)andabioticstress(none,AS onprey,ASonpredators)atlowandhighinitialconnectance. doi:10.1371/journal.pone.0172828.g003 PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 8/15 Effectsofbioticandabioticstressonfoodwebs Fig4.Therelationshipbetweenconnectanceandtotalrichness(preyandpredatorstogether)understress. Bioticstress(top-down,bottom-upormixedcontrol)andabioticstress(none,ASonprey,ASonpredators)atlowand highinitialconnectance. doi:10.1371/journal.pone.0172828.g004 ofpredatorsperprey(S7Fig).Undermixedcontrol,abioticstressdidnotchangethenumber ofpreyandpredatorsperpredatorandprey,respectively(S6andS7Figs). Relationshipbetweenconnectanceandrichness Theshapeoftherelationshipbetweenconnectanceandtotalrichness(allspecies,including predatorsandprey)wasstronglyinfluencedbyinitialconnectanceandthetypeoffood-web control,butwasrobusttothetwotypesofabioticstressconsideredhere.Atlowinitialconnec- tance,irrespectiveofthepresenceorabsenceofabioticstress,connectanceremainedconstant underbottom-upcontrolandshowedaweakpositiverelationshipundertop-downandmixed controlswithincreasingtotalrichness.Athighinitialconnectance,wefoundapositivesatu- ratingrelationshipbetweenconnectanceandrichnessundertop-downandmixedcontrol (Fig4). PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 9/15 Effectsofbioticandabioticstressonfoodwebs Discussion Preyrichness Abioticandbioticstress(top-downcontrol)haddirectnegativeeffectsonpreyrichness, whichconfirmsempiricalfindings[43–45]andresultsfromarecentmeta-analysis[4],respec- tively.Effectsofbioticstressonpreyrichnessweremoresevereunderhighthanunderlowini- tialconnectance,becausepreywerebydefinition–onaverage–connectedtomorepredators underhighinitialconnectance.Theeffectsofmixedcontrolonpreyrichnessillustratesthat bottom-upcontrolcanaggravateorbuffernegativeeffectsoftop-downcontrolonpreyrich- ness,dependingonwhetherinitialconnectanceisloworhigh,respectively. Foodwebinteractionsareknowntocauseindirecteffectsofabioticstressonthedensity ofnon-targetcommunities[17],butindirecteffectsonrichnesshavebeenlesswellstudied [4].Empiricalstudiesthathavemanipulatedpredatordiversitydoexist[26,46–48], butit isoftendifficulttomanipulatediversitywithoutmanipulatingdensitysothatisolating effectsofrichnessfromdensityeffectsbecomesdifficult.Inourtheoreticalstudy,we wereabletoonlymanipulatepredatorrichnessbecausethemodelpostulatesaconstant sizeofthepredatorcommunity.Ourresultsthereforeillustrateindirecteffectsonprey diversity(Figs1and2)thatareonlyduetoabioticstressaffectingpredatordiversityand notdensity. Connectanceisconsideredaproxyforresistanceoffood-webstoindirecteffectsondensity [5,26].Foodwebswithlowconnectanceareextremelysensitiveandmorepronetoselective lossofhighlyconnectednodesthanfoodwebswithhighconnectance[26].Ourresultssuggest thatconnectancealsoincreasesresistanceagainstindirecteffectsonrichnessbecausewefind thathigherinitialconnectanceincreasedresistanceofpreydiversitytoindirecteffectsofabi- oticstressonpredators. Wedidnotfindindirecteffectsonpreyrichnessundermixedcontrol(Fig1).Whenabiotic stressaffectedpredators,thesubsequentincreaseinpreyrichnessresultedinahighernumber ofpreyspeciesavailabletopredators,whichapparentlyresultedinastabilizingfeed-back mechanism.Thisshowsthatundermixedcontrol,ourframeworkpredictsnon-additive effectsofbioticandabioticstressinbipartitegraphs. Predatorrichness Abioticandbioticstress(bottom-upcontrol)decreasedpredatorrichness,whichcorresponds toempiricalfindings[49].Effectsofbioticstresswasmorepronouncedatlowthanathighini- tialconnectance(Fig2)becausepredatorshavefewerfeedingoptionsatlowerinitialconnec- tanceandthusexperiencehigherbioticstress.Empiricalresults[50]forbottom-upcontrolon predatordensitysuggestsimilarmechanisms.Theeffectsofmixedcontrolonpredatorrich- nessillustratethatthenegativeeffectsofbottom-upcontrolonpredatorrichnessare(partly) offsetbyfeedbackmechanismsfromtop-downcontroloffewerpredatorspeciesonprey.This mechanismoccurredregardlessofinitialconnectance. Wedidnotfindstrongsupportforindirecteffectsofabioticstressonpredatorrichness (Fig2).Underbottom-upcontrol,abioticstressonpreyonlyslightlyreducedpredatorrich- nessandonlywheninitialconnectancewashigh.Thiscanbeexplainedbythefactthatbot- tom-upcontrolselectsforpredatorsfeedingonmultiplepreyspecies.Becausetheprobability tobeconnectedtoatolerantprey(thatcancompensatefordensitylossofsensitivepreyspe- cies)increaseswiththenumberofpreyspeciesinthediet,bottom-upcontroleffectively reducestheprobabilityforindirecteffects. PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 10/15
Description: