ebook img

The combined effects of biotic and abiotic stress on species richness and connectance PDF

15 Pages·2017·1.57 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The combined effects of biotic and abiotic stress on species richness and connectance

RESEARCHARTICLE The combined effects of biotic and abiotic stress on species richness and connectance DevduttKulkarni*,FrederikDeLaender LaboratoryofEnvironmentalEcosystemEcology,ResearchUnitinEnvironmentalandEvolutionaryBiology (URBE),UniversityofNamur,Namur,Belgium *[email protected],[email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 Foodwebstructureandspeciesrichnessarebothsubjecttobiotic(e.g.predationpressure a1111111111 andresourcelimitation)andabioticstress(e.g.environmentalchange).Weinvestigatedthe combinedeffectsofbothtypesofstressonrichnessandconnectance,andontheirrelation- ship,inapredator-preysystem.Tothisend,wedevelopedamathematicaltwotrophiclevel food-webmodeltoinvestigatetheeffectsofbioticandabioticstressonfoodwebconnec- OPENACCESS tanceandspeciesrichness.Wefoundnegativeeffectsoftop-downandbottom-upcontrol Citation:KulkarniD,DeLaenderF(2017)The onpreyandpredatorrichness,respectively.Effectsoftop-downandbottom-upcontrol combinedeffectsofbioticandabioticstresson werestrongerwheninitialconnectancewashighandlow,respectively.Bottom-upcontrol speciesrichnessandconnectance.PLoSONE12 couldeitheraggravateorbuffernegativeeffectsoftop-downcontrol.Abioticstressaffecting (3):e0172828.doi:10.1371/journal.pone.0172828 predatorrichnesshadpositiveindirecteffectsonpreyrichness,butonlywheninitialcon- Editor:AndreaBelgrano,Sveriges nectancewaslow.However,noindirecteffectsonpredatorrichnesswereobservedfollow- lantbruksuniversitet,SWEDEN ingdirecteffectsonpreyrichness.Top-downandbottom-upcontrolselectedforweakly Received:March15,2016 connectedpreyandhighlyconnectedpredators,therebydecreasingandincreasingcon- Accepted:February10,2017 nectance,respectively.Oursimulationssuggestabroadrangeofnegativeandpositiverich- Published:March1,2017 ness-connectancerelationships,therebyrevisitingtheoftenfoundnegativerelationship Copyright:©2017Kulkarni,DeLaender.Thisisan betweenrichnessandconnectanceinfoodwebs.Ourresultssuggestthat(1)initialfood- openaccessarticledistributedunderthetermsof webconnectancestronglyinfluencestheeffectsofbioticstressonrichnessandtheoccur- theCreativeCommonsAttributionLicense,which renceofindirecteffectsonrichness;and(2)theshapeoftherichness-connectancerelation- permitsunrestricteduse,distribution,and shipdependsonthetypeofbioticstress. reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation files. Introduction Funding:DKwasfundedbyapostdoctoral fellowshipfromtheCentred’e´tudesetde Foodwebstructureandspeciesrichnessarebothsubjecttobioticandabioticstress[1–2]. recherchesuniversitairesdeNamur,Universityof Bioticstresscanoccurthroughpredation(top-downcontrolonprey),resourcelimitation Namur,Belgium.FDLwasfundedbytheUniversity (bottom-upcontrolonpredators),orthroughacombinationofboth(mixedcontrol[3]). ofNamur(FSRImpulsionnel48454E1);https:// Whensufficientlystrong,bioticstresscanaffectrichness,e.g.whenhighpredatorrichness www.unamur.be/.Thefundershadnoroleinstudy design,datacollectionandanalysis,decisionto leadstoareductionofpreydiversity[4].Specieslosscanleadtosecondaryextinctions,and publish,orpreparationofthemanuscript. thustochangesinfoodwebstructureandconnectance[5–6].Abioticstressoccurswhenenvi- ronmentalgradientsexceedtolerancelimits,assuchimpactingfoodwebstructureandcon- Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. nectance[7–13].Abioticstressorsincludetemperaturechangesandtoxicchemicals,which PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 1/15 Effectsofbioticandabioticstressonfoodwebs canleadtoavarietyoflethalandsub-lethaleffects[14].Forinstance,changeintemperature [15]orexposuretotoxicchemicals[16]candirectlyaffectphysiologicalprocessesleadingto effectsondevelopment,reproductionandsurvival.Justlikebioticstressors,directeffectsof abioticstressorscanchangerichness[7–11],causesecondaryspecieslossinmulti-trophic foodwebs[17–19]andleadtotheappearanceordisappearanceoflinksbetweenspecies, therebyaffectingconnectance[12,20].However,despitetheoverwhelmingevidenceofbiotic andabioticstressaffectingrichnessandconnectance,thecombinedeffectsofbothtypesof stressarefarlesswellstudied. Sincethe1970s,speciesrichnessandconnectancehavebeenshowntorelateintimately. Thismeansthatfoodwebscannotbetoocomplex,i.e.cannotcontainmanydirectspecies interactions,andatthesametimehostmanyspecies[21,22].Thisfeatureisreflectedbymany foodwebsandresultsinanegativerelationshipbetweenconnectanceandspeciesrichness:a lowerproportionofthepotentialspeciesinteractionsisrealisedinricherfoodwebs.An importantdriveroftherelationshipbetweenrichnessandconnectance,nexttospatialdynam- ics[23],andthecapacityofspeciestochangetheirinteractionswithotherspecies(e.g.diet shifts[24]),isthediversityofinteractiontypes[25].Thus,bioticstress,thetermusedinthe presentpapertodenoteeffectsofspeciesinteractionsonspeciesrichness,bydefinitionplays animportantroleinshapingtherichness-connectancerelationship.However,effectsofabiotic stressonthisrelationshiparelesswellstudied. Theobjectiveofthepresentpaperistoexaminethecombinedeffectsofbioticandabiotic stressonrichnessandconnectance,andontheirrelationship,inapredator-preysystemrepre- sentingabipartitegraph.Theapproachwefollowconsistsoftheorydevelopmentandmodel- ling.Weproposeasimpletheoreticalframeworktoexplorethecombinedeffectsofbioticand abioticstressonrichnessandconnectanceinbipartitegraphsmakingasetofwell-defined assumptions.Wealsoformalizethisframeworkintoanewmodel,whichdiffersfromexisting food-webmodellingapproaches[26–28]inthreeimportantways.First,themodelisrelatively parameter-sparse:9parameterssufficetodescribehowrichnessandconnectancevaryalong gradientsofbioticandabioticstress,regardlessofthenumberofspeciesincluded.Second,the modelforthefirsttimeunifiestheeffectsthatabioticstressandbioticstresshaveonspecies- levelfitness,assuggestedelsewhere[29–31],byusingthesamemathematicalformulationfor bothtypesofstress.Third,themodelcombinesstochasticity(prevailingintheabsenceof stress)withspeciesselection(prevailingathighbioticand/orabioticstress),acknowledging theimportanceofbothstochasticanddeterministicdriversoffoodwebassembly[32].We presentsimulationswithourmodel,representingafullfactorialdesignofthebioticstressor type(threelevels:top-down;bottom-up;mixedcontrol),abioticstressortype(twolevels: affectingpredatorreproduction;affectingpreyreproduction),andinitialconnectance(two levels:lowandhigh).Undertop-downcontrol,predatorabundanceaffectedpreysurvival. Underbottom-upcontrol,preyabundanceaffectedpredatorreproduction.Undermixed controlbotheffectsoccurred.Usingthismodel,wefirstaskwhetherabioticstresscanindi- rectlyalterdiversitybychangingbioticstresslevels,i.e.ifpredator(prey)richnessdecreases (increases)followingabioticstressonpreyandpredators.Second,weevaluatethecorrespond- ingchangesinconnectanceandtheconsequencesfortherichness-connectancerelationship. Materialsandmethods Theoryandmodeldescription Thetheorywepresentcombinesstochasticprocesseswiththeeffectsofabioticandbiotic stressorsondemographicrates,followingarecentlydevelopedapproach[9].Thestochastic processesarebasedontheneutraltheoryofbiodiversity[33]andassumethatindividualshave PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 2/15 Effectsofbioticandabioticstressonfoodwebs identicalindividual-leveltraits,andthatchangesinrelativeabundanceinalocalcommunity (thecaseweconsiderhere)onlyoccurthroughrandomdeath,reproduction,anddispersal.A versionoftheneutralmodelonlyincludinglocalprocesseshasbeenpreviouslymodifiedto includeabioticstresstakingintoaccountbothintra-andinterspecifictolerancevariability[9]. Inthepresentpaper,weextendedthismodeltoinclude(1)twocommunitiesoccupyingdis- tincttrophiclevels(called‘prey’and‘predators’)(2)effectsofabioticstressonpreyandpreda- torsurvivalandreproductionand(3)effectsofpredationandresourcelimitation(biotic stress)onpreysurvivalandpredatorreproduction,respectively.Immigrationoccursbetween aspatiallynon-explicitmainland(‘meta-community’)andthetwoconsideredlocalcommuni- ties.Itsratedependsonanimmigrationprobabilitymandspecies-specificrelativeabundances inthemainland.Abioticstressisassumedtonotaffectthemainland[9]. Death. Aspeciesjcanloseanindividualthroughdeathintwonon-mutuallyexclusive ways:bychanceandbybioticstress(predation).Effectsofabioticstressondeathratescanbe easilyconsidered,butareleftoutforsimplicity.Deathbychanceforspeciesj(or‘background stochasticdeath’)issimplyN/N,whereN istheabundanceofspeciesjandN=∑N isthe j j j totalnumberofindividualswithintheconsideredcommunity. Deathbypredationcanoccurwhenthecorrespondingbioticstresslevelsexceedthecorre- spondingindividual-levelthresholds.Theprobabilitytodiebypredationiscalculatedby dividingthenumberofindividualsfromspeciesjsusceptibletodeathbypredationbyallindi- vidualsinthecommunity(i.e.allspecies)thataresusceptibletodeathbypredation.Inorder tobesusceptible,c (thecriticalindividual-levelthresholdfordeathbypredation)shouldbe p exceededbythetotalpredatorabundancepred.Thisleadstothefollowingequation: P(deathbychanceorpredationforspeciesj) P½ðc>c Þ [ðpred>c Þ(cid:138)(cid:1)N N P½ðc>c Þ [ðpred>c Þ(cid:138)(cid:1)N ¼P m j p j j þP j (cid:0) P m j p j j n ½P½ðc>c Þ [ðpred>c Þ(cid:138)(cid:1)N(cid:138) n N n ½P½ðc>c Þ [ðpred>c Þ(cid:138)(cid:1)N(cid:138) i¼1 m i p i i i¼1 i i¼1 m i p i i N (cid:1)P j ð1Þ n N i¼1 i where: 1 Pðpred>c Þ ¼1(cid:0) (cid:16) (cid:17) ð2Þ p i 1þ pred spi cp;50;i c andc arethespecies-meanthresholdforspeciesj;s istheslope,representingintra- m,50,i p,50,i pi specifictolerancevariability;c isthecriticalindividual-levelthresholdfordeathbyabiotic m stress.Becausec isspecies-meantolerance,itisnotanindividual-levelparameter.Eq2 p,50,i quantifieshowindividualswithinaspeciesdifferinsensitivitytopredation.Thesloperepre- sentsthesteepnessofthisdistributionand,therefore,intraspecifictolerancevariability[9]. Thevalueof‘pred’dependsonfoodwebtopology,whichcanbeformalisedusingafood web(or‘adjacency’)matrixf.Thisisa(q×q)matrix(qspeciesintotal,includingallpreyand predatorspecies).Thefirstkrowsandcolumnsrepresentthekpreyspecies;theremainingq- krowsandcolumnsrepresentpredators.Foreverypredatorjeatingapreyi,a‘1’isplacedat thecorrespondingelementf[i,j].Iforganisedinthisway,‘pred’forspeciesjisthejthelement ofthematrixproductf×n,wherenisthe(q×1)vectorofallqspeciesabundances.Foratop predator,predwillalwaysequalzerosothatEq1simplycollapsestobackgroundmortality (thesecondterminEq1). Reproduction. Aspeciesjcangainanindividualthroughimmigration(seefirstpara- graphof‘Materialandmethods‘)orthroughreproduction.Theprobabilitythatanindividual PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 3/15 Effectsofbioticandabioticstressonfoodwebs fromspeciesjreproducesisgivenbydividingthenumberofindividualsfromspeciesjeligible forreproductionbyallindividualsinthecommunity(i.e.fromallspecies)thatareeligiblefor reproduction.Anindividualiseligibleforreproductionwhenbiotic(resourcelimitation)and abioticstressdonotimpedethis.Bioticstress(resourcelimitation)occurswhenthetotal amountofresource,i.e.thesummeddensitiesofallpreyavailabletoindividualofspeciesj,is lowerthanc (criticalthresholdforreproductionimpairmentbyresourcelimitation).Abiotic f stressoccurswhentheabioticstresslevelcexceedsc (criticalthresholdforreproduction r impairmentbyabioticstress).Thisleadsto: P(anindividualfromspeciesjreproduces) Pððresource>cÞ \ðc<cÞÞ(cid:1)N ¼P f j r j j ð3Þ n ½Pððresource>cÞ \ðc<cÞÞ(cid:1)N(cid:138) i¼1 f i r i i where: 1 Pðresource>cÞ ¼1(cid:0) (cid:16) (cid:17) ð4Þ f i 1þ resource sfi cf;50;i 1 Pðc<cÞ ¼ (cid:16) (cid:17) ð5Þ r i sri 1þ c cr;50;i Again,c andc arethespecies-meanthresholds;s istheslope,representingintra- f,50,i r,50,i ri specificvariability.Becausec andc arespecies-meantolerances,theyarenotindividual-level f r parameters.Eqs4and5quantifyhowindividualswithinaspeciesdifferinsensitivityto resourcelimitationandabioticstressrespectively.Thesloperepresentsthesteepnessofthis distributionandthereforeintraspecifictolerancevariability[9].Resourceissimplythejthele- mentofthematrixproductfTxn,withfandnasinsection‘Death’.Forspeciesthatsufferno resourcelimitation,thisequationsimplifiesto: P(anindividualfromspeciesjreproduces) Pðc<cÞ (cid:1)N ¼P r j j ð6Þ n ½Pðc<cÞ (cid:1)N(cid:138) i¼1 r i i Biodiversitydynamics. Biodiversitydynamicswithinonecommunityweremodelledas: PðN þ1jNÞ¼½1(cid:0) PðdeathÞ(cid:138)(cid:1)½½1(cid:0) m(cid:138)(cid:1)PðreproductionÞþm(cid:1)PðmainlandÞ(cid:138) ð7Þ j j PðN (cid:0) 1jNÞ¼PðdeathÞ(cid:1)½½1(cid:0) m(cid:138)(cid:1)½1(cid:0) PðreproductionÞ(cid:138)þm(cid:1)½1(cid:0) PðmainlandÞ(cid:138)(cid:138) ð8Þ j j withP(mainland)therelativeabundanceofspeciesjinthemainland. NotethatEqs7and8arenotcomplements.Indeed,theabundanceofaspeciescanalso stayconstantwithprobability1−P(N +1|N)−P(N −1|N). j j j j SubstitutingthedifferentprobabilitiesinEqs7and8withthosepresentedinEqs1–3,we cannowspecifybiodiversitydynamicsofonecommunitythatisexperiencingbioticandabi- oticstressasasetoftwoequationsthatgivetheprobabilityofaspeciesjtoincreaseand PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 4/15 Effectsofbioticandabioticstressonfoodwebs decreasewithoneindividual,respectively: " " ## P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N N P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N N PðNþ1jNÞ¼ 1(cid:0) P m j j p j j þP j (cid:0) P m j j p j j (cid:1)P j j j n ½P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N(cid:138) n N n ½P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N(cid:138) n N i¼1 m i i p i i i¼1 i i¼1 m i i p i i i¼1 i " " # # PðððfTxnÞ >cÞ \ðc<cÞÞ(cid:1)N (cid:1) ð1(cid:0) mÞ(cid:1) P j f j r j j þm(cid:1)P ð9Þ n ½PðððfTxnÞ >cÞ \ðc<cÞÞ(cid:1)N(cid:138) j i¼1 i f i r i i and " # P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N N P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N N PðN(cid:0) 1jNÞ¼ P m j j p j j þP j (cid:0) P m j j p j j (cid:1)P j j j n ½P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N(cid:138) n N n ½P½ðc>c Þ [ððf(cid:2)nÞ >c Þ(cid:138)(cid:1)N(cid:138) n N i¼1 m i i p i i i¼1 i i¼1 m i i p i i i¼1 i " " # # PðððfTxnÞ <cÞ \ðc>cÞÞ(cid:1)N (cid:1) ð1(cid:0) mÞ(cid:1) P j f j r j j þm(cid:1)ð1(cid:0) PÞ ð10Þ n ½PðððfTxnÞ <cÞ \ðc>cÞÞ(cid:1)N(cid:138) j i¼1 i f i r i i Modelsimulations WeimplementedEqs9and10foronecommunityofpreyspeciesandonecommunityof predatorspecies(fourequationsintotal).Preyservedasresourceforpredatorsbutwerethem- selvesnotresourcelimited(asinEq2).Predatorswerenotpredated.Weranthismodelina fullfactorialdesignofthreefactors(typeofabioticstress,typeofbioticstressandinitialcon- nectance)(Table1).Weconsideredthreelevelsofabioticstress:noabioticstressonpreyor predators,abioticstressaffectingpreyreproductiononly,orabioticstressaffectingpredator reproductiononly.Weconsideredthreelevelsofbioticstress:top-downcontrol(predation pressurereducespreysurvival),bottom-upcontrol(resourcelimitationreducespredator reproduction),orboth.Weconsideredtwolevelsofinitialconnectance:low(0.05andhigh (0.20).WecalculatedconnectanceasL/(S ×S ),whereListhenumberoflinks,S is prey pred prey preyrichnessandS ispredatorrichness.Preycannoteatpredatorsorotherpreyandpreda- pred torscannoteatotherpredators.Theaveragenumberoflinksperspeciesforinitialconditions can,therefore,becalculatedas50×50×0.05i.e.125(low)and50×50×0.2i.e.500(high).Inliter- ature,connectanceisgenerallycalculatedfornon-bipartitefoodwebswiththeformulaL/S2, whereListhenumberoflinksandSisthetotalnumberofspecies[26,34–37].Therangeof connectanceusedinoursimulations(0.05–0.2),evenafterrecalculationusingtheformulaL/ S2,correspondstotherangesobtainedinliteraturefornon-bipartitefoodwebs(0.026–0.315 [26],0.061–0.32[35],0.026–0.122[36]and0.016–0.33[38]). Percombinationoffactorlevels,Eqs9and10werenumericallycalculatedandupdatedper timestepforeverypreyspeciesbutonlyperfourtimestepsforeverypredatorspeciestosimu- lateslowercommunitydynamicsforpredators[39].Assuch,theprobabilitiesforabundance increaseanddecreasewereobtainedforeveryspeciesbysolvingEqs9and10,respectively. EventhoughallpreyspeciesusethesameimplementationsofEqs9and10,theirtolerancesto thestressors,theirconnectionstopredators,andtheirrelativeabundanceinthemainlandwill bedifferent.So,species-specificsolutionswillbeobtained.Thesameholdsforpredators.Per timestep(prey)orfourtimesteps(predators),onespecieswasdrawnpercommunityasa weightedsamplewiththeprobabilitygivenbyEq9.Theabundancesofthesetwospecieswere increasedwithone.Next,onespecieswasdrawnpercommunityasaweightedsamplewith theprobabilitygivenbyEq10.Theabundancesofthesetwospeciesweredecreasedbyone. Thisprocedureassumes“zerosumdynamics”i.e.thenumberofindividualspercommunity staysconstantandateachtimestep,1individualpercommunityiskilledandreplacedbya PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 5/15 Effectsofbioticandabioticstressonfoodwebs Table1. Modelparametersintheirinitialstate. Description Parameter Level Values Totalnumberofspecies(Constant) n Community 100(50predators;50prey) Numberofindividuals:multipleofn(Variable) N Community n×5 Levelofabioticstressor(Constant) c Community 0or100 Lowerandupperlimitsofuniformdistributionofimmigrationrate(Variable) m ;m Individual 1E-01;1.5E-01(low),2E-01;3E-01(high) min max Lowerandupperlimitsofcriticalreproductionthreshold(Variable) c ;c Individual 5E1;1.5E2 rmin rmax Lowerandupperlimitsoffoodlimitationandpredationthresholds(c values c ;c ; Individual 1E-10;1E-10;10;40(top-downcontroland f fmin fmax constantandc valuesvariablefortop-downcontrol;c valuesvariableandc predationpressure,nofoodlimitation) p f p valuesconstantforbottom-upcontrol)[39] c ;c 10;40;1E10;1E10(bottom-upcontroland pmin pmax foodlimitation,nopredationpressure) Lowerandupperlimitsoftheslopeofthestressresponsefunction(Constant) minslope; Individual 3;3 [42] maxslope Initialconnectance(Initialconnectanceisconstant;realisedconnectanceis Connectance Community Low(0.05)High(0.2) variable)[23,35,36,38] doi:10.1371/journal.pone.0172828.t001 “new”individual.Becausethemodelisdynamic,communitycompositionandabundanceof bothpreyandpredatorschangeovertime.Thisimpliesthatthelevelsofbioticstressalso changeovertime,whileabioticstressisconstantthroughtime. Percombination,themodelwasrun(i.e.theprobabilitieswerecalculated)for15000time steps,using5000iterations.These5000iterationsdifferedinthespecies-meantolerances (Table1).Initialspeciesabundances(andthereforeinitialrichness)wereequalacrossallcom- binationsanditerations.Food-weblinksweresetatrandomwiththeinitialconnectanceas theonlyconstraint.Linksbetweentwospeciesdisappearwhenoneofthespeciesgoesextinct locallybutreappearwhenthisspeciesrecolonizesthelocalcommunityfollowinganimmigra- tionevent.Nonewlinksarecreated.Foreverycombinationanditerationwecalculatedthe finalpreyandpredatorrichnessaswellasfinalconnectance.ThemodelwascodedinPython (2.7.10). Toassesstherobustnessofthesimulationstotheselectedimmigrationprobabilitym,we performedallsimulationsfortwodifferentvaluesofm(Table1).Allfigureswereprepared usingR[40].Statisticaltestswerenotusedtointerpretmodelsimulationresultsashasbeen recommendedrecently[41]. Results Becauseresultswerequalitativelysimilarbetweenlower(Figs1–4)andhigherimmigration probabilitiesm(S1–S4Figs),onlytheformeraredescribedanddiscussedbelow. Richness Preyrichness. Intheabsenceofabioticstress,preyrichnessunderbottom-upcontrolcan beconsideredareference(unstressed)situation,sincepreyalsodonotexperienceanybiotic stressunderbottom-upcontrol.Thus,preyrichnessisonlydeterminedbydispersallimitation. Comparedtothisreference,top-downandmixedcontroldecreasedpreyrichness(Fig1). Mixedcontrolcausedreductionsofpreydiversitythatweremoreseverewheninitialconnec- tancewaslow. Whenabioticstressaffectedprey,preyrichnesswasreduced,butonlyinabsenceofbiotic stressonprey(bottom-upcontrol).Whenabioticstressaffectedpredators,preyrichness increasedundertop-downcontrol,butonlyatlowinitialconnectance.Athighinitialconnec- tance,noindirecteffectonpreyrichnesswasobserved. PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 6/15 Effectsofbioticandabioticstressonfoodwebs Fig1.Preyrichnessunderstress.Bioticstress(top-down,bottom-upormixedcontrol)andabioticstress(none,AS onprey,ASonpredators)atlowandhighinitialconnectance. doi:10.1371/journal.pone.0172828.g001 Predatorrichness. Inabsenceofabioticstress,predatorrichnessundertop-downcontrol canbeconsideredanunstressedsituation,sincepredatorsalsodonotexperienceanybiotic stressundertop-downcontrol.Thus,bottom-upcontrolreducedpredatorrichnessanddidso mostwheninitialconnectancewaslow.Mixedcontrolhadnocleareffectonpredatorrichness (Fig2). Adirectnegativeeffectofabioticstressonpredatorrichnesswasfound,butthiseffectwas onlypronouncedinabsenceofbioticstressonpredators(top-downcontrol),regardlessofini- tialconnectance.Whenabioticstressaffectedpreyandbottom-upcontrolprevailed,asmall negativeindirecteffectonpredatorrichnessoccurredbutonlyathighinitialconnectance. Connectance Whetherornotabioticstresswaspresent,connectancewasalwayslowerundertop-down thanunderbottom-upcontrol(Fig3).Connectancewaslowestundermixedcontrolatlow initialconnectancecomparedtotop-downandbottom-upcontrolbuthigherthanthatunder top-downcontrolathighinitialconnectance.Overall,abioticstressdidnotmarkedlychange connectance.Onlywhenabioticstressaffectedpredatorswasconnectancehigher(lower) undertop-downcontrolwheninitialconnectancewaslow(high). Inabsenceofabioticstress,top-downcontroldecreasedthenumberofpredatorsperprey (S5Fig)whilebottom-upcontrolslightlyincreasedthenumberofpreyperpredator.Mixed controldecreasedthenumberofpredatorsperpreyaswellthenumberofpreyperpredator andbothwereverylowatlowinitialconnectance. Bothtypesofabioticstressreducedthenumberofpreyperpredatorunderbottom-upcon- trol(S6Fig).Undertop-downcontrol,abioticstressaffectingpredatorsreducedthenumber PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 7/15 Effectsofbioticandabioticstressonfoodwebs Fig2.Predatorrichnessunderstress.Bioticstress(top-down,bottom-upormixedcontrol)andabioticstress (none,ASonprey,ASonpredators)atlowandhighinitialconnectance. doi:10.1371/journal.pone.0172828.g002 Fig3.Connectanceunderstress.Bioticstress(top-down,bottom-upormixedcontrol)andabioticstress(none,AS onprey,ASonpredators)atlowandhighinitialconnectance. doi:10.1371/journal.pone.0172828.g003 PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 8/15 Effectsofbioticandabioticstressonfoodwebs Fig4.Therelationshipbetweenconnectanceandtotalrichness(preyandpredatorstogether)understress. Bioticstress(top-down,bottom-upormixedcontrol)andabioticstress(none,ASonprey,ASonpredators)atlowand highinitialconnectance. doi:10.1371/journal.pone.0172828.g004 ofpredatorsperprey(S7Fig).Undermixedcontrol,abioticstressdidnotchangethenumber ofpreyandpredatorsperpredatorandprey,respectively(S6andS7Figs). Relationshipbetweenconnectanceandrichness Theshapeoftherelationshipbetweenconnectanceandtotalrichness(allspecies,including predatorsandprey)wasstronglyinfluencedbyinitialconnectanceandthetypeoffood-web control,butwasrobusttothetwotypesofabioticstressconsideredhere.Atlowinitialconnec- tance,irrespectiveofthepresenceorabsenceofabioticstress,connectanceremainedconstant underbottom-upcontrolandshowedaweakpositiverelationshipundertop-downandmixed controlswithincreasingtotalrichness.Athighinitialconnectance,wefoundapositivesatu- ratingrelationshipbetweenconnectanceandrichnessundertop-downandmixedcontrol (Fig4). PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 9/15 Effectsofbioticandabioticstressonfoodwebs Discussion Preyrichness Abioticandbioticstress(top-downcontrol)haddirectnegativeeffectsonpreyrichness, whichconfirmsempiricalfindings[43–45]andresultsfromarecentmeta-analysis[4],respec- tively.Effectsofbioticstressonpreyrichnessweremoresevereunderhighthanunderlowini- tialconnectance,becausepreywerebydefinition–onaverage–connectedtomorepredators underhighinitialconnectance.Theeffectsofmixedcontrolonpreyrichnessillustratesthat bottom-upcontrolcanaggravateorbuffernegativeeffectsoftop-downcontrolonpreyrich- ness,dependingonwhetherinitialconnectanceisloworhigh,respectively. Foodwebinteractionsareknowntocauseindirecteffectsofabioticstressonthedensity ofnon-targetcommunities[17],butindirecteffectsonrichnesshavebeenlesswellstudied [4].Empiricalstudiesthathavemanipulatedpredatordiversitydoexist[26,46–48], butit isoftendifficulttomanipulatediversitywithoutmanipulatingdensitysothatisolating effectsofrichnessfromdensityeffectsbecomesdifficult.Inourtheoreticalstudy,we wereabletoonlymanipulatepredatorrichnessbecausethemodelpostulatesaconstant sizeofthepredatorcommunity.Ourresultsthereforeillustrateindirecteffectsonprey diversity(Figs1and2)thatareonlyduetoabioticstressaffectingpredatordiversityand notdensity. Connectanceisconsideredaproxyforresistanceoffood-webstoindirecteffectsondensity [5,26].Foodwebswithlowconnectanceareextremelysensitiveandmorepronetoselective lossofhighlyconnectednodesthanfoodwebswithhighconnectance[26].Ourresultssuggest thatconnectancealsoincreasesresistanceagainstindirecteffectsonrichnessbecausewefind thathigherinitialconnectanceincreasedresistanceofpreydiversitytoindirecteffectsofabi- oticstressonpredators. Wedidnotfindindirecteffectsonpreyrichnessundermixedcontrol(Fig1).Whenabiotic stressaffectedpredators,thesubsequentincreaseinpreyrichnessresultedinahighernumber ofpreyspeciesavailabletopredators,whichapparentlyresultedinastabilizingfeed-back mechanism.Thisshowsthatundermixedcontrol,ourframeworkpredictsnon-additive effectsofbioticandabioticstressinbipartitegraphs. Predatorrichness Abioticandbioticstress(bottom-upcontrol)decreasedpredatorrichness,whichcorresponds toempiricalfindings[49].Effectsofbioticstresswasmorepronouncedatlowthanathighini- tialconnectance(Fig2)becausepredatorshavefewerfeedingoptionsatlowerinitialconnec- tanceandthusexperiencehigherbioticstress.Empiricalresults[50]forbottom-upcontrolon predatordensitysuggestsimilarmechanisms.Theeffectsofmixedcontrolonpredatorrich- nessillustratethatthenegativeeffectsofbottom-upcontrolonpredatorrichnessare(partly) offsetbyfeedbackmechanismsfromtop-downcontroloffewerpredatorspeciesonprey.This mechanismoccurredregardlessofinitialconnectance. Wedidnotfindstrongsupportforindirecteffectsofabioticstressonpredatorrichness (Fig2).Underbottom-upcontrol,abioticstressonpreyonlyslightlyreducedpredatorrich- nessandonlywheninitialconnectancewashigh.Thiscanbeexplainedbythefactthatbot- tom-upcontrolselectsforpredatorsfeedingonmultiplepreyspecies.Becausetheprobability tobeconnectedtoatolerantprey(thatcancompensatefordensitylossofsensitivepreyspe- cies)increaseswiththenumberofpreyspeciesinthediet,bottom-upcontroleffectively reducestheprobabilityforindirecteffects. PLOSONE|DOI:10.1371/journal.pone.0172828 March1,2017 10/15

Description:
combined effects of both types of stress on richness and connectance, and on their Biotic stress can occur through predation (top-down control on prey), Lu X, Gray C, Brown LE, Ledger ME, Milner AM, MondragСn RJ, et al.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.