ebook img

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modeling of the luminosity and colour dependence in the Data Release 10 PDF

0.65 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modeling of the luminosity and colour dependence in the Data Release 10

Mon.Not.R.Astron.Soc.000,000–000(0000) PrintedMay8,2014 (MNLATEXstylefilev2.2) The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modeling of the luminosity and colour dependence in the Data Release 10 4 1 0 2 Hong Guo1,2⋆, Zheng Zheng1, Idit Zehavi2, Haojie Xu1, Daniel J. Eisenstein3, David y H. Weinberg4,5, Neta A. Bahcall6, Andreas A. Berlind7, Johan Comparat8, Cameron K. a M McBride3, Ashley J. Ross9, Donald P. Schneider10,11, Ramin A. Skibba12, Molly E. C. Swanson3, Jeremy L. Tinker13, Rita Tojeiro9, David A. Wake14,15 7 1DepartmentofPhysicsandAstronomy,UniversityofUtah,UT84112,USA O] 2DepartmentofAstronomy,CaseWesternReserveUniversity,OH44106,USA 3Harvard-SmithsonianCentreforAstrophysics,60GardenSt.,Cambridge,MA02138,USA C 4DepartmentofAstronomy,OhioStateUniversity,Columbus,OH43210,USA . 5CentreforCosmologyandAstro-ParticlePhysics,OhioStateUniversity,Columbus,OH43210,USA h 6DepartmentofAstrophysicalSciences,PrincetonUniversity,PeytonHall,Princeton,NJ08540,USA p 7DepartmentofPhysicsandAstronomy,VanderbiltUniversity,Nashville,TN37235,USA o- 8AixMarseilleUniversite´,CNRS,LAM(Laboratoired’AstrophysiquedeMarseille)UMR7326,13388,Marseille,France r 9InstituteofCosmology&Gravitation,DennisSciamaBuilding,UniversityofPortsmouth,Portsmouth,PO13FX,UK t 10DepartmentofAstronomyandAstrophysics,ThePennsylvaniaStateUniversity,UniversityPark,PA16802,USA s a 11InstituteforGravitationandtheCosmos,ThePennsylvaniaStateUniversity,UniversityPark,PA16802,USA [ 12CentreforAstrophysicsandSpaceSciences,UniversityofCalifornia,9500GilmanDrive,SanDiego,CA92093,USA 13CentreforCosmologyandParticlePhysics,NewYorkUniversity,NewYork,NY10003,USA 2 14DepartmentofAstronomy,UniversityofWisconsin-Madison,475N.CharterStreet,Madison,WI,53706,USA v 15DepartmentofPhysicalSciences,TheOpenUniversity,MiltonKeynesMK76AA,UK 9 0 0 May8,2014 3 . 1 0 ABSTRACT 4 WeinvestigatetheluminosityandcolourdependenceofclusteringofCMASSgalaxiesinthe 1 Sloan Digital Sky Survey-IIIBaryon Oscillation SpectroscopicSurveyTenth Data Release, v: focusing on projected correlation functions of well-defined samples extracted from the full i catalog of ∼ 540,000 galaxies at z ∼ 0.5 covering about 6,500 deg2. The halo occupa- X tiondistributionframeworkisadoptedtomodelthemeasurementsonsmallandintermediate r scales (from0.02to 60h−1Mpc), infer the connectionof galaxiesto darkmatter halosand a interprettheobservedtrends.WefindthatluminousredgalaxiesinCMASSresideinmassive halos of mass M∼1013–1014h−1M⊙ and more luminous galaxies are more clustered and hostedbymoremassivehalos.Thestrongsmall-scaleclusteringrequiresafractionofthese galaxies to be satellites in massive halos, with the fraction at the level of 5–8 per cent and decreasingwithluminosity.Thecharacteristicmassofahalohostingonaverageonesatellite galaxyabovealuminositythresholdisaboutafactor8.7largerthanthatofahalohostinga centralgalaxyabovethesamethreshold.Atafixedluminosity,progressivelyreddergalaxies aremorestronglyclusteredonsmallscales,whichcanbeexplainedbyhavingalargerfrac- tionofthesegalaxiesintheformofsatellitesinmassivehalos.Ourclusteringmeasurements onscalesbelow0.4h−1Mpcallowustostudythesmall-scalespatialdistributionofsatellites insidehalos.Whiletheclusteringofluminosity-thresholdsamplescanbewelldescribedby aNavarro-Frenk-White(NFW)profile,thatofthereddestgalaxiesprefersasteeperormore concentratedprofile.Finally,we also usegalaxysamplesof constantnumberdensityatdif- ferentredshiftstostudytheevolutionofluminousredgalaxies,andfindtheclusteringtobe consistentwithpassiveevolutionintheredshiftrangeof0.5.z .0.6. Key words: galaxies: distances and redshifts—galaxies: halos—galaxies: statistics— cosmology:observations—cosmology:theory—large-scalestructureofuniverse 2 Guo etal. 1 INTRODUCTION intheCMASSsamplewasalsofoundtoberoughlyconsistentwith passiveevolutionpredictions. Galaxy luminosity and colour, the two readily measurable quan- While G13 presented the clustering measurements based on tities, encode important information about galaxy formation and theDR9sample,inthispaperwemoveastepforwardtoperform evolutionprocesses.Theclusteringofgalaxiesasafunctionoflu- theHODmodelingtoinfertheconnectionbetweengalaxiesandthe minosity and colour helps reveal the role of environment in such hostingdarkmatterhalos,usingtheclusteringmeasurementsfrom processes.Thedependenceofclusteringonsuchgalaxyproperties theDR10data.Whiteetal.(2011)presentedthefirstHODmodel- isthereforeafundamentalconstraintontheoriesofgalaxyforma- ingresultforanearlyCMASSsample(fromthefirstsemesterof tion,anditisalsoimportantwhenattemptingtoconstraincosmo- data).Now withDR10, thesurvey volumeismore than11times logicalparameterswithgalaxyredshiftsurveys,sincethedifferent larger than that in Whiteetal. (2011), which allows us to study typesofgalaxiestracetheunderlyingdarkmatterdistributiondif- thedetailedrelationbetweentheproperties(specificallyluminos- ferently. Inthispaper, wepresent themodeling of theluminosity ityandcolour)oftheCMASSgalaxiesandtheirdarkmatterhalos. and colour dependent clustering of massive galaxies in theSloan WebuildonsimilarstudiesfortheSDSSMAINsamplegalaxies DigitalSkySurvey-III(SDSS-III;Eisensteinetal.2011). atz 0.1(Zehavietal.2011)andluminousredgalaxies(LRGs)at A fundamental measure of clustering is provided by mea- z 0∼.3(Zhengetal.2009),extendingthemnowtohigherredshifts suring galaxy two-point correlation functions (2PCFs). Galaxy (z∼0.5) andforgalaxiesatthehigh-massendofthestellarmass clustering provides a powerful approach to characterize the fun∼ction.GiventhekeyroleoftheCMASSgalaxiesasalarge-scale distribution of galaxies and probe the complex relation be- structureprobe,itisalsoimportanttounderstandindetailhowthe tween galaxies and dark matter. More luminous and red- CMASSgalaxiesrelatetotheunderlyingdarkmatterhalosforop- der galaxies are generally observed, in various galaxy sur- timallyutilizingthemforconstrainingcosmologicalparameters. veys, to have higher clustering amplitudes than their fainter With about a factor of two increase in survey volume from and bluer counterparts (e.g. Davis&Geller 1976; Davisetal. DR9toDR10,theDR10dataproducemoreaccuratemeasurements 1988; Hamilton 1988; Lovedayetal. 1995; Benoistetal. 1996; ofthe2PCFs,andthusbetterconstraintsonHODparameters.After Guzzoetal. 1997; Norbergetal. 2001, 2002; Zehavietal. 2002, applying a fibre-collision correction, with the method developed 2005, 2011; Budava´rietal. 2003; Madgwicketal. 2003; Lietal. andtestedinGuo,Zehavi,&Zheng(2012),weobtaingoodmea- 2006; Coiletal. 2006, 2008; Meneuxetal. 2006, 2008, 2009; surementsofthe2PCFsdowntoscalesof 20h−1kpc,withthe Wangetal. 2007; Wakeetal. 2008, 2011; Swansonetal. 2008; helpofthelargersurveyareaofDR10.This∼leadstothepossibility Ross&Brunner2009;Ross,Percival,&Brunner2010;Rossetal. of determining the small-scale galaxy distribution profiles within 2011; Skibba&Sheth 2009; Skibbaetal. 2013; Lohetal. 2010; halos,andwealsopresenttheresultsofsuchastudy. Christodoulouetal.2012;Bahcall&Kulier2013;Guoetal.2013, The paper is organized as follows. In Section 2, we briefly 2014). describe the CMASS DR10 sample and the clustering measure- Theclusteringdependenceofgalaxiesontheirluminosityand mentsfortheluminosityandcoloursamples.TheHODmodeling colourcanbetheoreticallyunderstoodthroughthehalooccupation methodispresentedinSection3.Wepresentourmodelingresults distribution(HOD)modeling(seee.g.Jing,Mo,&Boerner1998; inSection4andgiveasummaryinSection5. Peacock&Smith 2000; Seljak 2000; Scoccimarroetal. 2001; Throughoutthepaper,weassumeaspatiallyflatΛCDMcos- Berlind&Weinberg 2002; Berlindetal. 2003; Zhengetal. 2005, mology (the same as in G13), with Ω = 0.274, h = 0.7, m 2009; Miyatakeetal. 2013) or the conditional luminosity func- Ωbh2 =0.0224,ns=0.95,andσ8 =0.8. tion(CLF)method(Yang,Mo,&vandenBosch2003;Yangetal. 2005). In HOD modeling, two determining factors that affect the clusteringarethehostdarkmatterhalomass,M,andthesatellite fractionfsat.Theemergingexplanationfortheobservedtrendsis thatmoreluminousgalaxiesaregenerallylocatedinmoremassive 2 DATAANDMEASUREMENTS halos,whileforgalaxiesofthesameluminosity,redderonestend 2.1 BOSSGalaxiesandLuminosityandColourSubsamples tohave ahigher fraction inthe formof satellitegalaxies inmas- sivehalos(e.g.Zehavietal.2011).Residinginmoremassivehalos The SDSS-III BOSS selects galaxies for spectroscopic observa- leads to a stronger clustering of galaxies on large scales, whilea tionsfromthefive-bandSDSSimagingdata(Fukugitaetal.1996; highersatellitefractionresultsinstrongersmall-scaleclustering. Gunnetal.1998,2006;Yorketal.2000).A detailedoverview of In this paper, we investigate the colour and luminosity de- theBOSSsurveyisgivenbyBoltonetal.(2012)andDawsonetal. pendent galaxy clustering measured from the SDSS-III Baryon (2013), and the BOSS spectrograph is described in Smeeetal. Oscillation Spectroscopic Survey (BOSS; Dawsonetal. 2013) (2013). BOSS is targeting 1.5 million galaxies and 150,000 Data Release 10 (DR10; Andersonetal. 2013; Ahnetal. 2014). quasars covering about 10,000deg2 of the SDSS imaging area. The SDSS-IIIBOSS survey is providing a large sample of lumi- About 5 per cent of the fibres are devoted to more than 75,000 nousgalaxiesthatwillallowastudyofthegalaxy-haloconnection ancillary targets probing a wide range of different types of ob- andtheevolutionof massivegalaxies(withatypical stellarmass jects(Dawsonetal.2013).InoneBOSSancillaryprogram,fibre- of1011.3h−1M ).Bycarefullyaccountingfortheeffectofsam- collided galaxies in the BOSS sample were fully observed in a pleselectionsto⊙constructnearlycompletesubsamples,Guoetal. small area. Wewill present their clustering resultsinanother pa- (2013)(hereafterG13)investigatedtheluminosityandcolourde- per(Guoetal.,inpreparation). pendence of galaxy 2PCFs from BOSS DR9 CMASS sample We focus on the analysis of the CMASS sample (Andersonetal. 2012) in the redshift range of 0.43 < z < 0.7. (Eisensteinetal. 2011; Andersonetal. 2012, 2013) selected Itwasfoundthatmoreluminousandreddergalaxiesaregenerally fromSDSS-IIIBOSSDR10.Thesamplecoversaneffectivearea moreclustered,consistentwiththepreviouswork.Theevolutionof ofabout6,500deg2,almosttwiceaslargeasinDR9.Theselec- galaxyclusteringonlargescales(characterizedbythebiasfactor) tion of CMASS galaxies is designed to be roughly stellar-mass ModelingtheLuminosityand ColourDependentClustering 3 limitedatz>0.4.Thedetailedselectioncutsaredefinedby, 2.2 MeasurementsoftheGalaxy2PCFs 17.5<icmod < 19.9 (1) Approximately 1.5 per cent of CMASS galaxies in DR10 were d⊥ > 0.55, (2) previously observed in SDSS-II whose angular distribution dif- fersfromotherBOSSgalaxies(seemoredetailsinAndersonetal. icmod < 19.86+1.6(d⊥−0.8) (3) 2012). The redshift measurements of these SDSS-II ‘Legacy’ ifib2 < 21.5 (4) galaxies are, by construction, 100 per cent complete, while the r i < 2.0 (5) redshift and angular completeness of BOSS galaxies vary with mod mod − sky position. The different distributions of these ‘Legacy’ galax- where all magnitudes are Galactic-extinction corrected ies and the newly observed BOSS galaxies need to be carefully (Schlegel,Finkbeiner,&Davis 1998) and are in the observed taken into account for clustering measurement. In previous work frame.WhilethemagnitudesarecalculatedusingCMODELmagni- (e.g. Andersonetal. 2012,G13), this is achieved by subsampling tudes(denotedbythesubscript‘cmod’),thecoloursarecomputed the SDSS-II galaxies to match the sector completeness of BOSS using MODEL magnitudes (denoted by the subscript ‘mod’). The survey.Here,topreservethefullinformationinthe‘Legacy’galax- magnitude i corresponds to the i-band flux within the fibre fib2 ies, weadopt an alternative method, withadecomposition of the aperture (2′′ in diameter). The quantity d⊥ in Equations (2) and total3Dcorrelationfunctionsasfollows(Zuetal.2008;Guoetal. (3)isdefinedas 2012) d⊥ =(rmod imod) (gmod rmod)/8. (6) − − − n2 2n n n2 SincethebluegalaxiesaregenerallyfarfromcompleteinCMASS ξ = Lξ + L Bξ + Bξ , (8) T n2 LL n2 LB n2 BB duetotheselectioncutsofEquations(2)and(3)(seealsoFigure1 T T T ofG13),wefocusinthispaperontheclusteringandevolutionof the red galaxies. The red galaxies in this paper are selected by a where nL, nB and nT are the number densities of the Legacy, luminosity-dependentcolourcut(G13), (uniquely) BOSS, and all galaxies, respectively, ξLL is the auto- correlationfunctionofLegacygalaxies,ξ istheauto-correlation BB (r−i)>0.679−0.082(Mi+20) (7) function of BOSS galaxies, and ξLB is the cross-correlation of where theabsolute magnitude M and r icolour are both k+e LegacyandBOSSgalaxies.Thedecompositioncanbeunderstood i correctedtoz =0.55(Tojeiroetal.2012)−. intermsofgalaxypaircounts–thetotalnumberofgalaxypairsis Inthispaper,wefocusonmodelingtheluminosityandcolour composed of Legacy-Legacypairs(relatedtoξLL), BOSS-BOSS dependence of the CMASS red galaxies. We therefore construct pairs(relatedtoξBB),andtheLegacy-BOSScross-pairs(relatedto suitable luminosity and colour subsamples of galaxies. Three lu- ξLB).Therandomsamplesareseparatelyconstructed forLegacy minosity threshold samples of red galaxies are constructed, with andBOSSgalaxiestoreflectthedifferentangularandredshiftdis- M < 21.6,M < 21.8,andM < 22.0,inthesamered- tributions. i i i shiftran−ge,0.48<z<−0.55.Weuselumin−ositythresholdsamples In galaxy surveys using fibre-fed spectrographs, the precise tofacilitateamorestraight-forwardHODmodelingofthemeasure- small-scaleauto-correlationmeasurementsarehinderedbytheef- ments.Theredshiftrangeisselectedtoensurethattheredgalaxies fectthattwofibresonthesameplatecannotbeplacedcloserthan inthesamplesarenearlycompleteandminimallysufferfromthe certainangularscales,whichis62′′ inSDSS-III,correspondingto selectioneffects(G13).DetailsofthesamplesaregiveninTable1 about 0.4h−1Mpcatz 0.55. Suchfibre-collisioneffectscanbe ∼ (together withthe best-fittingparameters fromHOD modeling to correctedbyusingthecollidedgalaxiesthatareassignedfibresin be presented in Section 3). The left panel of Figure 1 shows the thetileoverlapregions,asproposedandtestedbyGuoetal.(2012) selectionof thethreeluminosity-threshold samples inthecolour- andimplementedinG13. magnitudediagram(CMD).Thecontoursrepresentthedensitydis- WeapplythesamemethodheretoBOSSgalaxiestocorrect tributionof theCMASS galaxies intheCMD. Thesolid linede- for the fibre-collision effect in measuring the 2PCFs. We divide notesthecolourcutofEquation(7)andtheshadedregionandthe the BOSS sample into two distinct populations, one free of fibre three dashed lines show the selection of the luminosity threshold collisions(labelledbysubscript‘1’)andtheotherconsistingofpo- samples. tentiallycollidedgalaxies(labelledbysubscript‘2’).Withsucha For studying thecolour dependence of clustering, we divide division,Equation (8)isfurtherdecomposedintosixtermsas, theCMASSgalaxiesinto‘green’,‘redseq’,and‘reddest’subsam- n2 2n n 2n n ples, using the colour cuts in Table 2 of G13. In order to have ξ = Lξ + L B1ξ + L B2ξ thebestsignal-to-noiseratioanddecouplethecolour dependence T n2T LL n2T LB1 n2T LB2 from the luminosity dependence, we only select galaxies in the n2 2n n n2 + B1ξ + B1 B2ξ + B2ξ . (9) redshift range of 0.48 < z < 0.55 and luminosity range of n2 B1B1 n2 B1B2 n2 B2B2 T T T 22.2 < M < 21.6.TherightpanelinFigure1showsthese- i − − lectionofthethreesubsamples.Thethreecolouredsolidlinesare Inactualmeasurements,thecorrelationfunctionsξ ,ξ ,and LB2 B1B2 thethreecutsforthefinecoloursamples(G13):thegreen,magenta, ξ involving thecollided galaxiesare estimatedusing there- B2B2 andredlinesdividethegalaxiesinto‘blue’,‘green’,‘redseq’,and solvedcollidedgalaxiesintileoverlapregions(asdetailedinGuo ‘reddest’ subsamples, respectively. The ‘reddest’ sample has the etal.2012). reddest colour, while the ‘redseq’ sample represents the galaxies Wefirstmeasuretheredshift-space2PCFξ(r ,r )inbinsof p π occupying the central part of the red sequence in the CMD. The transverseseparationr andline-of-sightseparationr (r inloga- p π p ‘green’ sampleisselectedtorepresent thetransitionfromblueto rithmicbinsfrom 0.02to 63h−1Mpcwith∆logr =0.2and p redgalaxies.The‘blue’galaxysampleisnotconsideredherebe- r inlinearbinsfr∼om0to1∼00h−1Mpcwith∆r =2h−1Mpc), π π causeofitslowcompleteness.Moreinformationonthecoloursub- usingtheLandy&Szalay(1993)estimator.Wethenintegratethe samplescanbefoundinTable2. 2PCFalongtheline-of-sightdirectiontoobtaintheprojected2PCF 4 Guo etal. Table1.Samplesofdifferentluminositythresholdsintheredshiftrange0.48<z<0.55 Mimax Ngal n¯(z) χ2/dof logMmin σlogM logM0 logM1′ α fsat(percent) 21.6 114417 2.18 10−4 19.74/14 13.37 0.05 0.58 0.05 0.57 2.09 14.30 0.02 1.56 0.03 7.91 0.43 −21.8 65338 1.25×10−4 28.83/14 13.57±0.05 0.59±0.05 3.67±4.25 14.46±0.02 1.64±0.07 6.30±0.40 −22.0 33964 0.65×10−4 21.19/14 13.80±0.06 0.61±0.06 2.81±3.07 14.59±0.03 1.82±0.09 5.04±0.36 − × ± ± ± ± ± ± Themeannumberdensityn¯(z)isinunitsofh3Mpc−3.Thehalomassisinunitsof h−1M .Thesatellitefactionfsatisthederivedparameter ⊙ from the HOD fits. The best-fitting χ2 and the degrees offreedom (dof) with the HOD modeling are also given. The degrees offreedom are calculatedasdof =Nwp+1−Npar,wherethetotalnumberofdatapoints(Nwp+1)isthatofthewp(rp)datapointsplusonenumberdensity datapoint,andNparisthenumberofHODparameters. Figure1.Left:theselectionoftheluminositythresholdsamplesinthecolour-magnitudediagram(CMD).Thecontoursrepresentthedensitydistributionof theCMASSgalaxiesintheCMD.Theshadedregionsshowthegalaxiescoveredintheluminositythresholdsamples.Thesolidlinedenotesthecolourcutof Equation(7),andthethreedashedlinesrepresentthethreeluminositythresholds.Right:theselectionofthe‘green’,‘redseq’and‘reddest’coloursamples intheluminosityrangeof−22.2<Mi <−21.6andredshiftrangeof0.48<z <0.55.Thethreecoloursolidlinesarethethreecutsforthefinecolour samples.Thegreenlineisforthecutbetweenthe‘blue’and‘green’samples.Themagentalineisthecutbetweenthe‘green’and‘redseq’samples.Thered lineisthecutbetweenthe‘redseq’and‘reddest’samples.Theshadedregionsrepresentourselectionofthecorrespondingcoloursamples. 3 HODMODELING Table2.HODparametersforthecoloursamplesin−22.2<Mi<−21.6 We perform the HOD fits to the projected two-point auto- Sample Ngal n¯(z) χ2/dof logM1′ fsat(percent) correlation functions wp(rp), measured in different luminosity ‘green’ 28835 0.54 20.81/16 14.57 0.04 3.68 0.47 and colour bins. In the HOD framework, it is helpful to sepa- ‘redseq’ 32221 0.61 15.62/18 14.42±0.03 6.15±0.46 ratethecontribution tothemean number N(M) of galaxiesin ± ± h i ‘reddest’ 34670 0.66 35.26/18 14.30 0.02 9.35 0.46 halos of mass M into those from central and satellite galaxies ± ± (Kravtsovetal.2004;Zhengetal.2005). The mean number density n¯(z) is in unit of 10−4h3Mpc−3. The halo For luminosity-threshold samples, we follow mass is in units of h−1M . The redshift range of colour samples are Zheng,Coil,&Zehavi (2007) to parameterize the mean oc- limitedto0.48<z<0.55.⊙ cupationfunctionsofcentralandsatellitegalaxiesas wp(rp) hNcen(M)i = 21(cid:20)1+erf(cid:18)logMσ−logloMgMmin(cid:19)(cid:21) (11) wp(rp)=2Z0rπ,maxξ(rp,rπ)drπ, (10) hNsat(M)i = hNcen(M)i(cid:18)MM−1′M0(cid:19)α (12) with rπ,max = 100h−1Mpc. This projected 2PCF is what we whereerf istheerrorfunction.Intotal,therearefivefreeparame- present and model in this paper. The covariance error matrix for tersinthisparametrization.TheparameterMmindescribesthecut- wp(rp)isestimatedfrom200jackknifesubsamples(Zehavietal. offmassscaleofhaloshostingcentralgalaxies( Ncen(Mmin) = h i 2002,2005,G13).Weprovidethemeasurementsfortheprojected 0.5). The cutoff profile is step-like but softened to account for 2PCF, w (r ), for all the subsamples used in this paper in the thescatterbetweengalaxyluminosityandhalomass(Zhengetal. p p AppendixB.WiththeadvantageoflargerskycoverageinDR10, 2005),andischaracterizedbythewidthσ .Thethreeparam- logM the correlation function measurements have much smaller errors etersfor the mean occupation function of satellitesarethe cutoff comparedwiththoseinDR9.ThemeasurementsinDR9andDR10 massscaleM0,thenormalizationM1′,andthehigh-massendslope aregenerallyconsistentwithintheerrors. α of Nsat(M) . In halos of a given mass, the occupation num- h i ModelingtheLuminosityand ColourDependentClustering 5 Figure2.Projectedtwo-point correlation functions measuredinDR10andthecorresponding best-fitting HODmodelsforthethreeluminositythreshold samples.Topleft:themeasurementsofwp(rp)fromDR10(squares)comparedwiththebest-fittingHODmodels(lines).Thebluedottedlinesrepresentthe one-haloandtwo-halotermsforthesampleofMi<−21.6.Theχ2perdegreeoffreedom(dof)forthethreebest-fittingsarealsoshown.Topright:themean occupationnumberdistributionsofthethreesamples.Thetotalmeanhalooccupationfunction(solidlines)isdecomposedintocontributions fromcentral galaxies(dashedlines)andsatellitegalaxies(dottedlines).Bottomleft:Theprobabilitydistributionoffsat.BottomRight:Theprobabilitydistributionofthe hosthalomass. bersofthecentralandsatellitegalaxiesareassumedtofollowthe withintheHODframework,wefollowtheprocedures laidoutin nearestintegerandPoissondistributionswiththeabovemeans,re- Zheng (2004) and Tinkeretal. (2005). When computing the pro- spectively.Inourfiducialmodel,thespatialdistributionofsatellite jected 2PCF from the real-space 2PCF, we also incorporate the galaxiesinhalosisassumedtofollowthatofthedarkmatter,i.e. effect of residual redshift-space distortions to improve the mod- theNavarro-Frenk-White(NFW)profile(Navarro,Frenk,&White elingonlargescales.Thisisdonebydecomposingthe2PCFinto 1997),withhaloconcentrationparameter monopole, quadrupole, and hexadecapole moments and applying themethodofKaiser(1987)(alsoseevandenBoschetal.2013). c(M)=c0(M/Mnl)β(1+z)−1, (13) WeuseaMarkovChainMonteCarlo(MCMC)methodtoex- ploretheHODparameterspaceconstrainedbytheprojected2PCF where Mnl is the non-linear mass scale at z = 0, c0 = 11 and β = 0.13 (Bullocketal. 2001; Zhaoetal. 2009). Later in this wp(rp)andthenumberdensityng ofeachgalaxysample.Theχ2 paper,−wewillalsoconsiderageneralizedNFWprofileandusethe isformedas 2PCFmeasurementstoconstrainit.Halosherearedefinedtohave ameaTnodtehnesoitryet2ic0a0lltyimceosmthpautteoftthheerbeaaclk-sgproacuend2uPnCivFerosfe.galaxies χ2 =(wp−wp∗)TC−1(wp−wp∗)+ (ngσ−2n∗g)2, (14) ng 6 Guo etal. where wp is the vector of wp at different values of rp and C Thebottom-rightpanelofFigure2showstheprobabilitydis- is the full error covariance matrix determined from the jackknife tributionsofhosthalomassforthethreesamples,generatedfrom resampling method (as detailed in Guoetal. 2013). The mea- the product of the mean occupation function and the differential sured values are denoted with a superscript ‘ ’. The error σ halomassfunction(Wakeetal.2008;Zhengetal.2009).Thehost ∗ ng on thenumber density isdetermined fromthe variation of n (z) halos refer to the main halos, i.e. we do not consider the subha- g in the different jackknife subsamples. Finally, in order to ac- los as the host halos. Most of the central galaxies in these sam- countforthebiasintroducedwheninvertingthecovariancematrix ples reside in halos of about a few times 1013h−1M , while (Hartlap,Simon,&Schneider2007),wemultiplytheaboveχ2by the satellitegalaxies are mostly found in halos of masse⊙s around afactor(n n 2)/(n 1),whichisabout0.9inourcase. 1014h−1M .Moreluminousgalaxieshaveahigherprobability jk d jk Heren isth−enum−berofjack−knifesamplesandn isthedimen- ∼tobefoundin⊙moremassivehalos.Forcentralgalaxies,inthenar- jk d sionofthedatavector.InAppendixA,wedemonstratetherobust- rowluminosityrangeinoursamples,thepeakhosthalomassvaries nessandaccuracyofourfittingwithjackknifecovariancematrices from1.1 1013to3.3 1013h−1M forthethreesamples. bycomparingwithresultsfromusingmockcovariancematrices. Figu×re3displays t×herelationof⊙the HODparameters Mmin andM1 withthethresholdluminosityMi.Notethatthequantity Mmin is the characteristic mass of halos hosting central galaxies 4 MODELINGRESULTS atthethresholdluminosity(withhNcen(Mmin)i = 0.5),andM1 is the characteristic mass of halos hosting on average one satel- 4.1 HODfortheLuminosity-thresholdSamples lite galaxy above the luminosity threshold ( Nsat(M1) = 1), which has a subtle difference from M′. Cleahrly, the tigiht corre- Thebest-fittingHODparametersforthethreeluminositythreshold 1 lation between galaxy luminosity and halo mass scales persists samplesarelistedinTable1.Figure2showsthemodelingresults. for massive galaxies in massive halos at z 0.5. The scal- (Tshqeuatoreps-)lecfotmpapnaerelddiwspitlhaytshethbeesmt-efiatstuinrgemHeOntDsomfowdepl(srp(l)iniens)D.RT1h0e ing relation between Mmin and M1 in our sam∼ples roughly fol- top-rightpanelshowsthemeanoccupationfunctionsfromthethree lows M1∼8.7Mmin. The large gap between M1 and Mmin im- best-fitting models. Overall, the trend of stronger clustering for pliesthatahalowithmassbetweenMmin andM1 tendstohosta moremassivecentralgalaxyratherthanmultiplesmallergalaxies moreluminousCMASSsamplesisexplained intheHODframe- workasashifttowardhigher massscaleofhosthalos, similarto (Berlindetal.2003).ThisM1-to-Mmin ratioiscomparabletothe one found for SDSS LRGs (Zhengetal. 2009) and significantly thatfortheSDSSMAINgalaxies(Zehavietal.2011). smaller thanthe scaling factor found for theSDSSMAIN galax- The mean occupation functions in the top-right panel also ies( 17,Zehavietal.2011).Theratiodecreasessomewhatwith show that a fraction of the CMASS luminous red galaxies must ∼ increasingluminosity–forthemostluminoussampleweanalyse be satellites in massive halos. This is required to fit the small- (M < 22.0),theratiois6.4+0.5,smallerthanthe 8.7inferred scaleclustering.Theprobabilitydistributionoffsatisshowninthe fromi the−lowerluminosity-thre−sh0o.4ldsamples.Sucha∼trendwithlu- bottom-leftpanelofFigure2.Moreluminousgalaxieshavealower minosityisalsofoundinotherSDSSanalyses(Zehavietal.2005, fraction of satellites, consistent with the trend found for MAIN 2011; Skibba,Sheth,&Martino 2007; Zhengetal. 2009). These sample galaxies (Zehavietal. 2011) and luminous red galaxies behaviorsarelikelyrelatedtothedominanceofaccretionofsatel- (Zhengetal. 2009). The peak fsat varies from 8 per cent for the litesoverdestructioninmassivehalos.Moremassive,cluster-sized M < 21.6sampleto5percentfortheM < 22.0sample. i − i − halos form late and accrete satellites more recently, leaving less timeforsatellitestomergeontothecentralgalaxiesandthuslow- eringthesatellitethresholdmassM1(Zentneretal.2005). In Figure 4 we compare the measurements of Mmin and M1 of our samples with those from the literature of various surveys (Mandelbaumetal. 2006; Phlepsetal. 2006; Kulkarnietal. 2007; Zheng,Coil,&Zehavi 2007; Brownetal. 2008; Blake,Collister,&Lahav 2008; Wakeetal. 2008; Padmanabhanetal. 2009; Zhengetal. 2009; Whiteetal. 2011; Zehavietal. 2011; Couponetal. 2012; Beutleretal. 2013; Miyatakeetal. 2013; Parejkoetal. 2013). We plot them as a function of galaxy number density n¯ (note that a lower n¯ g g corresponds to a higher threshold in galaxy luminosity or stellar mass).Themassscalesareallcorrectedtothecosmologyadopted inthispaperaccordingtotheirproportionalitytoΩ (Zhengetal. m 2002,2009).TheleftpanelshowsMmin (opensymbols)andM1 (solid symbols) as a function of (decreasing) number density of thedifferent samples. The right panel displays the corresponding ratios M1/Mmin. Our results of the three luminosity threshold samples(blackstars)areingoodagreementwiththetrendshown inothersamples. Figure 3. Two mass scales in HOD models as a function of threshold Brownetal. (2008) noted that Mmin and n¯g approximately luminosity of the galaxy samples, where hNcen(Mmin)i = 0.5 and followapower-lawrelationwithapower-lawindex 1.Such hNsat(M1)i = 1.ThesquaresandsolidlinesaretheHODmodelingre- a power-law relation can be largely explained from∼the−the halo sultsofthethreeluminositythresholdsamples,whilethedashedlineshows massfunction.Intheleftpanel,weplotthecumulativehalomass therelationofM1 8.7Mmin. ∼ functions n (> M) at three typical redshifts, z = 0, 0.5, and h ModelingtheLuminosityand ColourDependentClustering 7 Figure4.Leftpanel:HODparametersMmin(opensymbols)andM1(solidsymbols)asafunctionoftheaveragenumberdensityn¯gofthesamples.Different symbolsrepresentthemeasurementsfromtheliterature,aslabelledinthefigure.Ourmeasurementsofthethreeluminositythresholdsamplesaredisplayed bytheblackstars,whichareingoodagreementwiththeliterature.Thehalomassfunctionsatthethreetypicalredshiftsz=0,0.5,and1arealsoshownas thesolidlines.Rightpanel:theratiobetweenM1andMminforallthemeasurementsinliterature. 1, assolid curves. The halomass functions areanalytically com- puted for the assumed cosmological model. The low-mass end (M < 1012h−1M ) of the halo mass function closely follows n (> M) M−1⊙andevolvesslowlywithredshift.Atthehigh- h ∝ mass end, the halo mass function drops more rapidly than the power-law at thelow massend, and shows stronger redshift evo- lution.Thehalomassfunctionnh(M > Mmin)canberegarded as resulting from a simple form of HOD — one galaxy per halo andasharpcutoffatMmin,i.e. N(M) =1forM >Mminand h i 0 otherwise, where Mmin is determined by matching the galaxy number density. Thus,anydeviation fromthehalo massfunction curvescould onlybecausedby theexistence ofsatellitegalaxies andthesoftenedmasscutoffaroundMminforcentralgalaxies.For highnumberdensitygalaxysamples,thedeviationarisesfromthe satellitegalaxies,sincethesehaloshavelargesatellitefractions(see Figure5).Forlownumber densitysamples, theprominent devia- tion is mainly a result of the wide softened cutoff in the central galaxy mean occupation function. Such awide softened cutoff is a manifestation of the large scatter between central galaxy lumi- nosityandhalomass(Zhengetal.2007).Itisinterestingthatthe Figure5. Satellitefractionfsatasafunctionoftheaveragenumberden- deviationsatboththelow-andhigh-massenddrivetheMmin–n¯g sthiteylni¯tegraotfutrhee,assamlapbleelsle.dDiinffethreenfitgsuyrme.bOolusrremperaessuenretmtheenmtseoafstuhreemtherneetslfurmomi- relationtowardsapowerlaw. nositythresholdsamplesaredisplayedbytheblackstars. The M1–n¯g relation also roughly follows a power law with 4.2 HODfortheColourSamples a slightly shallower slope than the Mmin–n¯g relation. As a con- sequence, thereisatrendthattheratioM1/Mmin decreaseswith To model the colour dependence of the 2PCFs for the CMASS decreasingn¯g,albeitwithalargescatter,asshownintherightpanel galaxies in the luminosity bin of 22.2 < Mi < 21.6, we ofFigure4.Thisresultisconsistentwithwhatwefindinthelumi- formthemean occupation function−of thecentral galax−iesinthis nositydependenceofM1/Mmin. luminositybinasthedifferencebetween Ncen(M) oftheMi < h i 21.6 sample and that of the M < 22.2 sample. Following i − − Figure 5 presents the satellite fraction fsat as a function of Zehavietal. (2011), we fix the slope α of the satellite mean oc- thenumberdensityn¯ fromourluminosity-thresholdsamplesand cupation function to be 1.56, the value from the fainter luminos- g thosefromtheliterature.Thesatellitefractionappearstofollowa ity threshold sample that dominates the number density of the well-definedsequence,especiallytowardlownumberdensity,de- luminosity-bin sample. The cutoff mass of the mean occupation cliningwithdecreasingnumberdensityandcanbewelldescribed functionofsatellitegalaxiesisalsosettobethesmallerofthetwo byapowerlaw,fsat 0.1[n¯g/(10−3h3Mpc−3)]1/3. valuesfromthetwothresholdsamples.Thus,wemodelthe2PCF ≃ 8 Guo etal. Figure6.SimilartoFigure2,butforthedifferentcoloursamplesintheluminosityrange−22.2<Mi <−21.6andredshiftrange0.48<z<0.55.The red,magenta,andgreenlinesareforthe‘reddest’,‘redseq’and‘green’samples,respectively. ofeachcoloursubsamplewithonlyonefreeparameter,M′.Inthis resultof alargerfractionof thembeing satellites(inmassive ha- 1 simplemodel,theshapeofthecentralorsatellitemeanoccupation los),asshowninthetop-rightandbottom-leftpanels.Thesatellite functions for different colour samples remains the same, and the fractionfsat variesfrom3.7percentinthe‘green’sampleto9.4 relativenormalizationbetweenthecentralandsatellitemeanoccu- percentinthe‘reddest’sample,consistentwiththetrendinMAIN pationfunctionsisgovernedbyM′ andconstrainedbythesmall- sample(Zehavietal.2005,2011).Compared withtheluminosity 1 scale clustering. The overall normalizations of the mean occupa- dependenceofgalaxyclustering,wheremoreluminousgalaxiesre- tion functions are determined from the relative number densities sideinmoremassivehalosandhavesmallersatellitefractions,the ofthecoloursamplestothetotalnumberdensityinthisluminos- trendinthecolour dependence indicatesthatthesatellitefraction ity bin. By construction, the sum of the mean galaxy occupation mostly affects the small-scale clustering, while halo mass scales functionsofallcoloursamples(includingthe‘blue’galaxiesthat affecttheoverallclusteringamplitudes(especiallyonlargescales arenotmodeledinthispaper)equalsthatofthefullluminosity-bin dominatedbythetwo-haloterm). sample. Figure 6 shows the modeling result (also in Table 2) of the Thetop-leftpanelofFigure6demonstratesthattheprojected threecolour samples,inasimilarformat tothatof Figure2.Itis 2PCFofthe‘reddest’sampleonsmallscales(r <0.2h−1Mpc) p evidentfromthefigurethatreddergalaxieshaveahigherclustering isnotwellfittedbythesimpleHODmodel,leadingtoahighvalue amplitude,especiallyonsmallscales(one-haloterm).Withinour ofbest-fittingχ2.Evenifweallowtheslopeαofthemeansatellite model, thehigher clusteringamplitudeintheredder galaxiesisa occupationfunctiontovary,thesituationdoesnotsignificantlyim- ModelingtheLuminosityand ColourDependentClustering 9 Table3.χ2/dofingeneralizedNFWmodels Sample χ2/dof ∆AIC exp(∆AIC/2) fsat(percent) Mi<−21.6 19.34/12 3.60 6.05 7.76±0.55 Mi<−21.8 24.75/12 -0.08 0.96 5.77±0.55 Mi<−22.0 18.93/12 1.74 2.39 4.66±0.56 ‘green’ 17.84/14 1.03 1.67 4.11 0.53 ± ‘redseq’ 11.76/16 0.14 1.07 6.50 0.61 ± ‘reddest’ 28.94/16 -2.32 0.31 9.73 0.62 ± ∆AIC=AICGNFW AICNFW − prove.Weexploretheimplicationforthesmall-scalegalaxydistri- butioninsidehaloswithageneralizedNFWprofileinSection4.3. A close inspection of thebest-fittingprojected 2PCFsinthe top-left panel shows that the model predicts a narrower range of clusteringamplitudethanthatfromthedataonscalesaboveafew h−1Mpc.Sincethelarge-scaleamplitudeinthe2PCFismainlyde- Figure8.ThesamemeasurementsofFigure6,butnowwiththeGNFW terminedbycentralgalaxies,thisresultimpliesthatthehalomass best-fittingmodels.Thered,magenta,andgreenlinesareforthe‘reddest’, scalesforcentralgalaxiesintheluminositybincanvarywiththe ‘redseq’and‘green’samples,respectively.Forcomparison,wealsoshow colourtosomedegree(inthesenseofhighermassscalesforred- thebest-fittingNFWmodelforthe‘reddest’sampleastheblackline. dercentralgalaxies)inamannerthatisnotcapturedinoursimple model. data of the luminosity-threshold samples do not require a profile differentthantheNFWprofile. TopresentadetailedexaminationoftheeffectoftheGNFW 4.3 GeneralizedNFWprofile profile,weshowinthetoppanelsofFigure7theratiosofw (r ) p p In our fiducial HOD model, we assume that the spatial distribu- predictedfromthebest-fittingGNFWHODmodels(redlines)and tionofsatellitegalaxiesinsidehalosfollowsthesameNFWprofile the measured wp(rp) (squares) to those of the NFW model pre- as the dark matter. The best-fitting small-scale clustering ampli- dictions.BoththeNFWandGNFWmodelsfitthedatareasonably tudeforthe‘reddest’sampleshowsdeviationsfromthedata(see well on scales of rp < 10h−1Mpc. Their predictions are sim- Figure6),implyingapossibledepartureofthesatellitedistribution ilar on large scales and they only differ slightly on scales below fromtheNFWprofile.Toexploresuchapossibility,wealsocon- 1h−1Mpc.Onlargerscales,themodelsappeartooverestimate ∼ siderageneralizedNFW(hereafterGNFW)profiletodescribethe thelargescalebiasforallsamples,whichmightbecausedbythe distributionofsatellitegalaxiesinsidehalosbyallowingtwomore samplevariance. free parameters in the HOD model, the normalization parameter Themarginalized joint distributionof the concentration nor- c0 for thehalo concentration inEquation (13) andthe slopeγ in malization c0 and the slope γ for the three luminosity threshold thedensityprofile(Watsonetal.2010,2012;vandenBoschetal. samples are shown in the bottom panels of Figure 7. The best- 2013), fittingmodelsaredisplayedastheredcrossesandtheNFWmodel isrepresentedbythebluecircles.Whilethereisaweaktrendthat cr γ cr 3−γ −1 theprofileformoreluminoussamplespreferstodeviatefromthe ρ(r) 1+ (15) ∝"(cid:18)rvir(cid:19) (cid:18) rvir(cid:19) # tNhFeWconptrooufirsle.,WthaetsoNnFeWtalp.r(o2fi0l1e0i)sanstdilWl watistohninetthael.∼(2021σ2)rfianndgethoaft where rvir is the virial radius of the halo. As a special case, the thedistributionsofsatelliteLRGsandsatellitesofluminousgalax- NFWprofilehasc0 = 11(Equation13)andγ = 1.Anotherspe- iesinSDSSMAINsamplehavesignificantlysteeperinnerslopes cialcaseisthesingularisothermalsphere(SIS)distribution,which thantheNFWprofile.FromFigure1inbothWatsonetal.(2010) hasc0 0andγ =2. and Watsonetal. (2012), weinfer that constraining the deviation → WefirstapplytheGNFWmodel totheluminosity-threshold from the NFW profile requires accurate measurements on scales samples. From Figure 2, the HOD model using the NFW profile r < 0.03h−1Mpc. However, at such small scales, the effect p canfitthe2PCFsof theluminosity-threshold samplesreasonably of photometric blending of close pairs may be important inclus- well. By including the two additional free parameters, the best- teringmeasurements(Masjedietal.2006;Jiang,Hogg,&Blanton fitting χ2 values only decrease slightly, as shown in Table 3. To 2012), which is not corrected for in our samples. Moreover, the compare the goodness of fits between the generalized and origi- measurement errors at these scales are large in our samples. We nal NFW profiles, we make use of the Akaike information crite- thereforecanonlyconcludethatourmeasurementsandmodeling rion (AIC; Akaike 1974), defined as AIC = χ2 +2k for each resultsshownostrongdeviationsfromtheNFWprofileinthedis- model,wherekisthenumberofHODparameters.Thedifference tributionofsatellitesinsidehalosforluminosity-thresholdsamples. ∆AIC AICGNFW AICNFW betweentheAICvaluesofthe WethenapplytheGNFWmodeltothefinecoloursamplesin ≡ − GNFW and NFW models reveals that the model with the NFW Section4.2.SignificantimprovementovertheNFWprofilemodel profileisexp(∆AIC/2)timesasprobableasthatwiththeGNFW isfoundinfittingthesmall-scale2PCFofthe‘reddest’sample,as profile.AsshowninTable3,onlytheMi < 21.8sampleshowsa showninFigure8.Withoutthevariationinc0andγ,thepureNFW − marginalpreferencefortheGNFWprofile.Overall,theclustering modelcannot fitwellthesmall-scaleclusteringbyonlyadjusting 10 Guoet al. Figure7.Toppanels:ratiosofwp(rp)predictedfromthebest-fittingGNFWHODmodelsandthosemeasuredfromthedatatothoseoftheNFWmodel predictions.Theblacksquaresrepresentthedatameasurements,whiletheredlinesarethepredictionsoftheGNFWmodels.Bottompanels:marginalized jointdistributionoftheconcentrationparameterc0andtheslopeγinthegeneralizedNFWmodelforthethreeluminositythresholdsamples.Thecontours showthe68percentand95percentconfidencelevelsforthetwoparameters.Theredcrossesrepresentthebest-fittingGNFWHODmodels,whiletheblue circlesarethepredictionsoftheNFWmodel. thesatellitefractionortheslopeαofthesatellitemeanoccupation function. The best-fitting χ2 value for this colour sample is also reduced by adding thetwo freeparameters, as shown in Table3. FromthedifferenceintheAIC,theNFWmodel ismuchlessfa- vorable than the GNFW model for the ‘reddest’ sample, while it stillprovidesreasonablefitstothe‘green’and‘redseq’samples. The ratiosof the HOD model predictions of GNFW models andthemeasuredw (r )tothoseoftheNFWmodelareshownin p p thetoppanelsofFigure9.Thesmall-scaleclusteringofthe‘red- dest’sampleisbetterfitbytheGNFWmodel,whichconfirmsthe importanceofthesmall-scale(r < 0.1h−1Mpc)measurements p indistinguishingtheNFWandGNFWmodels.Themarginalized jointdistributionofc0 andγ ispresentedinthebottompanelsof Figure9.Fromthe1σcontoursofFigure9,thereisavisibletrend thatreddergalaxiesfavorsmallerc0 andlargerγ.TheSISprofile (correspondingtoc0 0andγ = 2)seemstoprovidebetterfits → thantheNFWprofile,consistentwiththepreviousfindings(Grillo 2012;Watsonetal.2012).Thistrendisclearlymanifestedforthe ‘reddest’sample. Figure 10. Probability distributions of the effective slope γeff at r = 0.1h−1Mpcinhalosof2 1014h−1M forthethreecoloursamples. Sincec0andγarecorrelated,differentcombinationsofthem Theverticalblacklinedeno×tesγeff =1.37⊙,thevaluefortheNFWprofile canleadtosimilarshapeoftheprofile.Abetterquantitytorepre- atthisradius. sent theshape ofthedensity profileistheeffectiveslopedefined

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.