ebook img

The close pair fraction of BCGs since $z=0.5$: major mergers dominate recent BCG stellar mass growth PDF

8.9 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The close pair fraction of BCGs since $z=0.5$: major mergers dominate recent BCG stellar mass growth

MNRAS000,1–18(2017) Preprint1February2017 CompiledusingMNRASLATEXstylefilev3.0 The close pair fraction of BCGs since z = 0.5: major mergers dominate recent BCG stellar mass growth Danièl N. Groenewald1,2(cid:63), Rosalind E. Skelton1, David G. Gilbank1 and S. Ilani Loubser2 1SouthAfricanAstronomicalObservatory,ObservatoryRoad,7925,CapeTown,SouthAfrica 2North-WestUniversity,Potchefstroom,2520,SouthAfrica 7 1 0 AcceptedXXX.ReceivedYYY;inoriginalformZZZ 2 n ABSTRACT a UsingtheredMaPPerclustercataloguebasedontheSloanDigitalSkySurvey(SDSS)pho- J tometry,weinvestigatetheimportanceofmajormergersinthestellarmassbuild-upofbright- 1 estclustergalaxies(BCGs)between0.08(cid:54)z(cid:54)0.50.WeusetheSDSSspectroscopy,supple- 3 mentedwithspectroscopicobservationsfromtheSouthernAfricanLargeTelescopeathigher ] redshifts,toidentifywhichBCGsandnearbycompanionsarepotentialmajormergercandi- A dates.Weusethepairfractionasaproxyforthemergerfractioninordertodeterminehow G much stellar mass growth the BCGs have experienced due to major mergers. We observe a weaktrendoftheBCGpairfractionincreasingwithdecreasingredshift,suggestingthatma- . h jormergersmaybecomemoreimportanttowardsthepresentday.Majormergersarefoundto p contribute, on average, 24±14 (29±17) per cent towards the stellar mass of a present day - BCGsincez=0.32(0.45),assumingthathalfofthecompanion’sstellarmassisaccretedonto o theBCG.Furthermore,usingourmergerresultsinconjunctionwithpredictionsfromtwore- r t cent semi-analytical models along with observational measurements from the literature, we s a findthatmajormergershavesufficientstellarmaterialtoaccountforthestellarmassgrowth [ oftheintraclusterlightbetweenz=0.3andz=0. 1 Keywords: galaxies:clusters:general–galaxies:clusters:intraclustermedium–galaxies: v ellipticalandlenticular,cD–galaxies:evolution–galaxies:interactions. 2 1 0 9 0 1 INTRODUCTION their host clusters, these massive galaxies are expected to expe- 1. rience multiple mergers during their lifetime, making them ideal Brightestclustergalaxies(BCGs)arethemostmassiveandlumi- 0 probes with which to study galaxy formation. Observational evi- nousgalaxiesintheUniverse.Thesegalaxiesaretypicallyfound 7 dence,forexampletidaltailsanddistortedisophotes,indicatesthat closeto,orat,thecentresoftheirhostclusters(Jones&Forman 1 some BCGs are experiencing mergers (e.g. Bernardi et al. 2007; 1984,1999;Beers&Tonry1986;Rhee&Latour1991).Inthehier- : Laueretal.2007;vonderLindenetal.2007;McIntoshetal.2008; v archicalformationscenarioBCGsarethoughttoformthroughthe Liuetal.2009,2015;Rasmussenetal.2010;Broughetal.2011), Xi accretionofsmallergalaxies(e.g.Ostriker&Hausman1977;Rich- butitisnotcleartowhatextenttheirstellarmassisbeingbuiltup stone&Malumuth1983).Thesemassivegalaxiesarealsoknown r bymergersandatwhatrate. a tohavepropertiesthatareverydifferentfromthatofotherearly- type galaxies (ETGs). In comparison to other ETGs of the same Thereiscurrentlynoconsensusintheliteratureregardingthe mass,BCGsarefoundtobelarger(Bernardietal.2007,andref- stellar mass evolution of BCGs between z=1 and the present erencestherein)andhaveextendedlightprofiles(Matthewsetal. day.Observationalstudieshavefoundthatthesemassivegalaxies 1964;Tonry1987;Schombert1988;Gonzalezetal.2000,2003). changedtheirmassbyfactorsthatrangebetweenone(equivalentto Theseuniquepropertieshavebeenattributedtotheirspecialloca- nogrowth;e.g.Aragon-Salamancaetal.1998;Whileyetal.2008; tionattheclustercentres(Hausman&Ostriker1978).Theseprop- Collinsetal.2009;Stottetal.2010;Oliva-Altamiranoetal.2014) erties may also suggest that the formation of BCGs are different and 1.4±0.2 (Lin et al. 2013) or 1.8±0.3 (Lidman et al. 2012) fromthatofotherETGs(e.g.Burkeetal.2000;Stottetal.2008, sincez(cid:46)1. 2010). Predictions from numerical simulations and semi-analytical Due to the privileged positions of BCGs at the centres of models(SAMs)suggestthatBCGsformintwo‘phases’.Theysug- gestthatstarformationdominatestheBCG’smassgrowthatz(cid:62)2, whilemultipledrymergersofsmallergalaxiesdominatethemass (cid:63) E-mail:[email protected] assemblyatz(cid:54)1(e.g.DeLucia&Blaizot2007;Naabetal.2009; (cid:13)c 2017TheAuthors 2 D.N.Groenewaldetal. Laporte et al. 2013). The simulations, however, differ in the stel- 2 DATA larmassgrowththeypredictforBCGs.Forexample,DeLucia& 2.1 OverviewoftheredMaPPerclustercatalogue Blaizot(2007)findthatBCGshavechangedtheirmassbyafac- torof4fromz=1−0,mainlythroughminor1 mergers.Laporte Throughout this paper we use version 5.2 of the red-sequence et al. (2013) on the other hand predict a BCG mass growth fac- Matched-filterProbabilisticPercolationclustercatalogue(redMaP- tor closer to 2 over the same redshift range, however this model Per3; Rykoff et al. 2014). This catalogue covers roughly 10 000 findsthatbothmajor2 andminormergerscontributesignificantly deg2 of the sky and consists of more than 25000 galaxy clusters towardsthemassgrowthofthesemassivegalaxies. which span a redshift range of 0.08(cid:54)z(cid:54)0.55. The clusters in The discrepancies between the BCGs’ observed stellar mass thiscataloguehavebeenopticallyidentifiedusingphotometryfrom growthandthatpredictedbysimulationsarequiteapparent.This the Eighth Data Release (DR8; Aihara et al. 2011) of the SDSS. maybebecausemergersdonotcontributesignificantlytothestel- Wherepossible,wesupplementthecataloguewithadditionalspec- larmassgrowthoftheBCGsifasignificantfractionofthemerging troscopic redshifts from the SDSS DR12 (Alam et al. 2015). A massendsupinthecluster’sintraclusterlight(ICL).TheICLcan detaileddescriptionoftheredMaPPerclustercatalogue(andcon- bedescribedasstarsthatarenotgravitationallyboundtoanysin- struction)canbefoundinRykoffetal.(2014).Here,wesummarize glegalaxy,butrathertotheclusterpotential.Althoughtheorigin themostimportantfeatures. oftheICLisnotknown,itisthoughtthattidalstrippingofsatellite Briefly,theredMaPPerclusterdetectionalgorithmphotomet- galaxies and merger events (involving BCGs) contribute towards rically identifies clusters by searching for overdensities of red- thestellarmassgrowthoftheICL.TheICLisoftenfoundtobe sequence galaxies. This relies on a set of galaxies with spectro- more concentrated around the central galaxy in a cluster (Mihos scopicredshiftsthatareusedtoconstructaredshiftdependentred- etal.2005;Rudicketal.2011).Thisinturnimpliesthatthefor- sequence model. The spectroscopic redshifts needed for the cal- mationandevolutionofBCGsandtheICLareconnectedtoone ibration of the red-sequence model are retrieved from the SDSS another. Main Galaxy Sample (MGS; Strauss et al. 2002), Luminous Red TherecentsimulationofLaporteetal.(2013)predictsthat30 Galaxy(LRG;Eisensteinetal.2001),andBaryonOscillationSpec- percentofacompaniongalaxy’smasswillbedistributedintothe troscopicSurvey(BOSS;Ahnetal.2012).Thismodelisthenused ICLduringamergerwiththeBCG(seealsoConroyetal.2007b; tophotometricallygroupredgalaxies(withluminosities(cid:62)0.2L(cid:63)) Puchweinetal.2010).Thisbringsthemodel’spredictedBCGmass atsimilarredshiftsintoclusters,assumingaradialfilterthatcorre- growthover0<z<1intobetteragreementwiththeobservedstel- spondstotypicalclustersizes.Thealgorithmiterativelydetermines larmassgrowthestimatesofLidmanetal.(2012);Linetal.(2013); aphotometricredshiftforeachclusterbasedonthecalibratedred- Burke&Collins(2013)inthesameredshiftrange.Ifwearetobe- sequencemodel,asmeasuredfromthephotometricallyidentified lievethatsomefractionofthemergingmassendsupintheICL, candidateclustermembers. then this presents us with a scenario that the ICL is being built- up through galaxies that are interacting with the BCGs. DeMaio etal.(2015)howeverarguesagainstthisidea,statingthattheICL 2.1.1 Probabilityofbeingaclustermember is being built-up by the stripping of satellite galaxies with lumi- ThecandidateclustermembersareeachassignedtoaredMaPPer nosities>0.2L(cid:63) (alsoseeContinietal.2014).Consequently,itis clusterbasedonamembershipprobability(P ).P indicates MEM MEM clear that the growth and stellar mass build-up of BCGs and the theprobabilityofagalaxybeingared-sequencegalaxythatbelongs ICLarelinked,howeveritisnotcleartowhatextentmergerevents toaspecificcluster.Thisfollowsdirectlyfromthemethodusedby contributetowardsthis. theclusterdetectionalgorithmtoidentifyclusters,i.e.lookingfor Inthispaperweinvestigatetheimportanceofmajormergers overdensitiesofred-sequencegalaxies,withtheluminositycutand inthestellarmassbuild-upofBCGsbetween0.08(cid:54)z(cid:54)0.50.We radialfilteringmentionedabove.redMaPPerprovidescataloguesof selectBCGsfromaphotometricclustercatalogue,whichhasbeen (candidate)clustermembersforeachcluster,basedonthegalaxies’ constructedfromtheSloanDigitalSkySurvey(SDSS;Yorketal. individual properties, including PMEM, and it is these catalogues 2000).WeusespectroscopicinformationfromtheSDSStoidentify whichweusethroughoutouranalysis. which BCGs and nearby companions are potential major merger In Fig. 1 we show the colour-magnitude diagrams (g−r vs. candidates.Theclosepairfractionisusedasaproxyforthemerger mi)oftheredMaPPerclustersouttoz=0.35(theredshiftcutwill fractiontodeterminehowmuchstellarmassgrowththeBCGswill be explained in the next section). All candidate cluster members experienceduetomergers. and those with PMEM>0.9 are shown in grey and green respec- Thispaperisstructuredasfollows.Section2containsdetails tively.IneachpanelitisapparentthatmemberswithlargePMEM pertaining to the redMaPPer catalogue; in Section 3 the methods values form a tighter sequence, as expected, since these galaxies aredescribed.Theresultsonthepairfractionandmerger-inferred aremorelikelytobered-sequencegalaxies.Wewillreturntothis stellarmassgrowthoftheBCGsareshownanddiscussedinSec- ideainSection4.1. tion4.ConclusionsaredrawninSection5.Throughoutthepaper For each cluster in the redMaPPer catalogue, the central weassumeaflatΛCDMcosmologywithΩM=1−ΩΛ=0.3and galaxy identification algorithm of redMaPPer assigns five galax- H =70 kms−1Mpc−1.MagnitudesaregivenintheABsystem ies probabilities of being the central galaxy (CG) of the cluster 0 andtheChabrier(2003)initialmassfunctionisused. (PCEN).Thesegalaxiesarerankedaccordingtoprobabilityandare hereafter referred to as the CG candidates. The central probabili- ties are defined by using a luminosity filter, photometric redshift 1 Typicallydefinedintheliteratureasmergerswithstellarmassratiosof filterandalocalgalaxydensityfilter(discussedbelow).Theprod- >1:4−1:20(e.g.Edwards&Patton2012;Burke&Collins2013;Burke uct of these three filters produces the overall centering filter that etal.2015). 2 Typicallydefinedasmergerswithstellarmassratiosof1:1to1:4(e.g. Jogeeetal.2009;López-Sanjuanetal.2012;Robothametal.2014). 3 http://risa.stanford.edu/redmapper/ MNRAS000,1–18(2017) RoleofmajormergersinstellarmassgrowthofBCGs 3 is used to determine the central probabilities (see equation 67 of The redMaPPer catalogue does not supply any stellar mass Rykoffetal.2014).Theredshiftfilterthatisusedinthisequation (M(cid:63)) estimates for the galaxies. We determine stellar mass esti- isslightlybroaderthantheclusterred-sequencefilterinordertoal- matesusingversion4.1ofthekcorrectcode(Blanton&Roweis lowgalaxieswithslightcolouroffsetsfromthered-sequencetobe 2007)whichusestemplatesbasedontheBruzual&Charlot(2003) consideredasCGcandidates,asitispossiblefortheCGstohave models.Briefly,spectralenergydistributionfittingisusedtoderive experiencedresidualamountsofstarformationandthereforehave theM(cid:63) ofthegalaxiesbyfittingtheirobservedmodelMagmagni- bluerphotometriccolours(∼2percentoftheCGsinredMaPPer tudes(intheu,g,r,iandz-bands)againstarangeofspectraltem- areblue;Rykoffetal.2014). platesfromBruzual&Charlot(2003)assumingaChabrier(2003) ThegalaxywiththehighestP isnotnecessarilythebright- initialmassfunction.Thebest-fittingstellartemplateisdetermined CEN est galaxy. This is because, apart from the luminosity, the local throughχ2-minimization,whereafteramass-to-lightratioisdeter- galaxy density around the CG candidate is also considered. Cen- minedfromthistemplateandusedtoconverttheluminosityofthe tralgalaxiesareexpectedtobefoundinthehighestdensitycentral galaxytostellarmass. regionsofclusters.Consequently,theredMaPPeralgorithmgives higher preference to galaxies in denser regions than those in less denseregions.Alessluminousgalaxylocatedinadenserenviron- 2.2 TheSALTsample mentthanthemostluminousgalaxymaythereforehaveahigher PCEN. WeextendtheBCGpairfractionanalysisouttomoderatelyhigh ThetotalmagnitudesofthegalaxiesintheredMaPPercata- redshifts (0.4 (cid:54) z (cid:54) 0.5) using the Gaussian Mixture Bright- logue are given by the i-band cModel_Mag (mi; Abazajian et al. est Cluster Galaxy catalogue (GMBCG7; Hao et al. 2010) with 2004),whilethecoloursofthegalaxiesaredeterminedusingmod- follow-upspectroscopyfromtheSouthernAfricanLargeTelescope elMag(Abazajianetal.2004)intheu,g,r,iandz-bands.Allmag- (SALT;Buckleyetal.2006;O’Donoghueetal.2006).Werequirea nitudesandcolourshavebeencorrectedforGalacticextinctionus- samplewithahighspectroscopiccompletenessinordertoidentify ingthedustmapsofSchlegel,Finkbeiner&Davis(1998). pairsthatarelikelytomerge.Thespectroscopiccompletenessof the SDSS drops significantly around z=0.4, so we have supple- mentedtheSDSSdatawithadditionalredshiftsfromSALT. 2.1.2 RichnessoftheredMaPPerclusters TheGMBCGclustercatalogueisaphotometrically-identified The catalogue contains clusters with richnesses4 of λ (cid:62)20S(z), cluster sample similar to redMaPPer and was used in the early where S(z)5 is a correction factor that is used to account for the stages of this work. When redMaPPer became available, we surveydepthoftheSDSS.Weshowtheeffectofthesurveydepth switched to using this due to several advantages it offered, such onthemeasuredcompletenessoftheredMaPPerclustersasafunc- asexplicitBCGprobabilities,candidatemembergalaxyprobabil- tionoftheirhalomasses(M )inFig.2.TheM havebeenderived ities,etc.However,spectroscopicfollow-upwasalreadywellun- h h using the halo mass-richness relation of Rykoff et al. (2012), as- derway for the GMBCG sample. In this work, we treat them as sumingrichness6isaproxyforM .ThevariouslinesinFig.2are two independent cluster samples, in the same way as comparing h constructedfromthevaluesinfigure22ofRykoffetal.(2014).The ourredMaPPerworkwiththoseofothersintheliterature,andwill redMaPPeralgorithmusedfiveredshiftbinstodeterminethecom- showthatourresultsarecompatible. pleteness of the catalogue as a function of richness. The lines in We refer the reader to Hao et al. (2010) for details on the thisfigurejointhemeanredshiftvalueofeachbin.Atz(cid:54)0.35,the GMBCG catalogue. Briefly, the catalogue spans a redshift range galaxycatalogueisvolumelimitedandthesurveydepthisbrighter of0.1<z<0.55andcontains55000clusters,opticallyidentified thanthefiducialluminositycutof0.2L(cid:63) (thereforeS(z)=1).At fromtheSDSSDR7(Abazajianetal.2009)asoverdensitiesofred- theseredshiftstheclustercatalogueis50percentcompletedown sequencegalaxies.ThepositionsoftheBCGsandthephotometric to clusters with Mh (cid:38)0.2×1015M(cid:12). At z>0.35, however, the redshiftsoftheirhostclustersareprovidedinthecatalogue.Here magnitudelimitofthesurveycausesonlythemostmassiveclus- weareinterestedinthe4814BCGsthatarefoundintheredshift terstobedetected.Thiscausestherichnessdetectionthresholdto range0.4(cid:54)z(cid:54)0.5. increasewithredshift. WeusethemethodoutlinedinSection3.2toselecttheclose Inthiswork,werestrictouranalysistoonlyconsiderclusters pairs that are included in the SALT sample. Briefly, all compan- in the volume limited sample at z(cid:54)0.35. We further only con- ionswithinaphysicalseparationdistanceof50kpcand1.5mag- siderredMaPPerclusterswithhalomassesabovethe50percent nitudes(inthei-band)oftheBCGswereretrievedfromtheDR7 M completeness limit. This is done to maximize the number of database.Thespectroscopicredshifts(ifavailable)ofthesegalax- h clustersintheevolutionarysequence(asdiscussedinSection3.1). ies were retrieved from the SDSS DR12 (Alam et al. 2015). We furtherrestrictedtheSALTsampletoonlyincludepairswhereei- ther the BCG or companion (in each pair) had a SDSS spectro- 2.1.3 BCGs-Identificationandstellarmasses scopicredshift(zspec).SALTobservationswereusedtodetermine InourworkweselectthefirstCGcandidate(thegalaxywiththe theremaininggalaxy’szspec todeterminewhetherthegalaxiesare potentialmergercandidatesornot.Only16oftheclosepairssat- highestP )ineachclusterastheBCGcandidate. CEN isfiedthesecriteria.Twelvepairsweresuccessfullyobservedover twosemestersspanning2013November-2014April(proposalID: 2013-2-RSA-008,PI:Groenewald)and2014May-October(pro- 4 Richnessisdefinedasthenumberofred-sequencegalaxieswithinaclus- terthatarebrighterthan0.2L(cid:63). posalID:2014-1-RSA_OTH-009,PI:Groenewald). 5 Givenbyequation23ofRykoffetal.(2014). 6 WecorrecttheredMaPPerrichnessestimatesforthesurveydepthusing λ/S(z).Weusetheseintheremainderofthepaperandrefertothemasthe correctedrichnesses. 7 http://home.fnal.gov/∼jghao/gmbcg_sdss_catalog.html MNRAS000,1–18(2017) 4 D.N.Groenewaldetal. Figure1.Thecolour-magnitudediagramoftheredMaPPerclustersinvariousredshiftbins.AllcandidateclustermembersandthosewithPMEM>0.9are showningreyandgreenrespectively.Thesolidanddashedlinesrespectivelyindicatethelocationofthered-sequenceandthe1σwidth.Onlyhighprobability clustermembers(PMEM>0.9)havebeenusedtofindthered-sequence,sincethesegalaxiesaremorelikelytobelongtothered-sequence.Thered-sequence formsatightersequenceasPMEMincreasesandbecomesredderwithredshift. 2.2.1 Observationsandreductions SDSSgalaxyspectraltemplate(hereafterreferencespectrum).The restwavelengthsoftheCalciumIIHandKabsorptionlinesinthe Using the Robert Stobie Spectrograph (RSS; Burgh et al. 2003; referencespectrumwereshiftedtomatchthoseinthegalaxy’sob- Kobulnickyetal.2003)onSALTweobtainedlongslitspectroscopy servedSALTspectrum. for the close pairs. A slit with a width of 2(cid:48)(cid:48) was centred on the InTable1wepresentasummaryofthegalaxiesintheSALT BCGineachpairandalignedinsuchawaythatboththeBCGand samplealongwiththeirSDSSspectroscopicredshifts(ifavailable). companionwereobservedinasingleobservation.Thisallowedus Foreachclosepairweindicatethevelocitydifferenceasderived todeterminetherelativevelocitiesbetweenthesetwogalaxiesus- from the SALT spectroscopy. The BCG and companion in each ing the same wavelength calibration. The RSS observations used pairwereobservedinthesameslitandsharethesamewavelength thePG900gratingwhichcoversthemainopticalfeaturesthatwe calibration. Thus the velocity differences, which are our ultimate areinterestedinover4500−7500Å.EachclosepairintheSALT goal,aremorerobustthanifwehadusedacombinationofSALT samplewasobservedforatotalof106minutes,splitovertwoob- andSDSSredshiftsforeachpair. servationblocks(eachobservationblockconsistedof2×20minute exposures). Basic data reductions, i.e. gain and cross-talk correction as 3 METHOD-THEPAIRFRACTIONAND wellasbiassubtractionwereperformedaspartoftheautomated MERGER-INFERREDSTELLARMASSGROWTHOF reductionpipelineofSALT(Crawfordetal.2010).Weperformed THEBCGS cosmicrayrejectiononthescienceimagesbyusingtheLACosmic 3.1 Constructinganevolutionaryclustersequence package (van Dokkum 2001). Wavelength calibrations were then performedwithstandardIRAF(Tody1986,1993)tasks.Wedeter- ThestellarmassesofBCGsareknowntocorrelatewiththehalo minedthespectroscopicredshiftofeachgalaxyintheSALTsam- massesoftheirhostclusters,withmoremassivehaloshostingmore plebyfittingtheobservedSALTspectrumagainstthe‘Early-type’ massive BCGs (e.g. Edge 1991; Burke et al. 2000; Brough et al. MNRAS000,1–18(2017) RoleofmajormergersinstellarmassgrowthofBCGs 5 Figure2.CompletenessoftheredMaPPercatalogueasafunctionofMh andredshift.ThegreypointsrepresenttheMh-distributionoftheclustersinthe catalogue(derivedusingthecorrectedrichnesses).Thevariouslinesareconstructedfromthevaluesinfigure22ofRykoffetal.(2014).TheredMaPPer algorithmusedfiveredshiftbinstodeterminethecompletenessofthecatalogueasafunctionofrichness.Thelinesjointhemeanredshiftvalueofeachbin. Atz(cid:54)0.35(verticaldashedline),thegalaxycatalogueisvolumelimitedandcompletedowntoclusterswithMh∼0.2×1015M(cid:12).Atz>0.35,however,the algorithmisonlyabletodetectthemostmassiveclustersduetothemagnitudelimitofthesurveyandisthereforeincompleteforlowmass(lowrichness) clusters.Seetextfordetails. Table1.SummaryoftheclosegalaxypairsintheSALTsample.ThepairIDofeachpair(takenfromtheGMBCGcatalogue)isgiveninColumn1while thegalaxies’coordinatesaregiveninColumns3and4.TheSDSSspectroscopicredshiftsofthesegalaxies,ifavailable,aregiveninColumn5.Thevelocity differenceofeachclosepair,determinedfromSALTspectroscopy,isgiveninColumn6. PairID RA(J2000) DEC(J2000) zSDSS ∆vSALT (deg) (deg) (kms−1) BCG 190.404850 −0.668280 0.4587±0.0001 337 21±85 Companion 190.406416 −0.667039 — BCG 128.317079 0.108010 — 5501 1017±85 Companion 128.316370 0.108480 0.4748±0.0001 BCG 153.259460 0.812003 0.4063±0.0001 5919 4517±85 Companion 153.259030 0.809660 — BCG 27.261019 −0.639814 0.3584±0.0001 22105 685±42 Companion 27.261605 −0.639844 — BCG 346.949880 0.948270 0.3686±0.0001 22258 307±85 Companion 346.949133 0.947189 — BCG 186.754036 0.765942 — 23941 2612±42 Companion 186.753290 0.767780 0.5153±0.0002 BCG 148.316850 1.272180 0.3648±0.0001 24097 198±42 Companion 148.316048 1.272079 — BCG 206.032182 1.948250 — 431 39±42 Companion 206.031830 1.948720 0.5432±0.0001 BCG 223.098640 0.949810 0.4830±0.0001 5680 40±85 Companion 223.099826 0.950909 — BCG 210.260650 0.275680 — 5905 61±42 Companion 210.258767 0.275656 0.4757±0.0001 BCG 218.763280 3.109750 0.3829±0.0001 24726 152±85 Companion 218.763793 3.111125 — BCG 357.091165 0.741055 — 52685 106±85 Companion 357.088710 0.741300 0.4113±0.0001 MNRAS000,1–18(2017) 6 D.N.Groenewaldetal. 2008; Stott et al. 2008, 2010, 2012; Whiley et al. 2008; Collins Kitzbichler & White 2008). We have chosen this cut, which is etal.2009;Hansenetal.2009;Lidmanetal.2012).Consequently, somewhat stricter than many other observational works (e.g. Lin it is important to take the halo mass growth of the clusters into et al. 2004, 2008; López-Sanjuan et al. 2012; Robotham et al. account when the stellar mass growth of BCGs is investigated, 2014), in order to use the results of Kitzbichler & White (2008) to ensure that that BCGs at high redshifts are compared to their to estimate merging timescales for each pair. These field merger likely descendants at lower redshifts. This idea has already been timescalescanbeappliedtoclosepairsinclusters(seesection4.2 exploredbyotherworksintheliterature(Lidmanetal.2012;Lin ofLidmanetal.2013,formotivation). etal.2013;Oliva-Altamiranoetal.2014;Zhangetal.2016).Inour WeuseacompilationoftheSDSSspectroscopicgalaxysam- workweuseanapproachsimilartothatimplementedbyLidman plesofwhichtheBOSSsurveysuppliesthedeepestspectroscopy, et al. (2012) to construct an evolutionary cluster sequence using uptoamagnitudelimitof19.9magnitudesinthei-band.Wethere- evolvingM limits.WeassumethattheBCGsinthisevolutionary forefurtherrestrictourclosepairsampletoonlyincludepairswith h sequenceareprogenitors/descendantsofoneanothertoderivethe galaxiesbrighterthantheBOSSmagnitudelimit.Ourfinalsample merger-inferredmassgrowthoftheBCGs. consistsof1016photometricpairs,ofwhich320(∼31percent) Briefly,weconstructanevolutionaryclustersequencebyiden- havespectroscopy.Wecorrectforthespectroscopicincompleteness tifying the low redshift descendants of the redMaPPer clusters in of our sample when the BCG pair fraction is measured (Section our highest redshift bin (z=0.35). This is done by evolving the 3.3).Toensurethatwearerelativelycompleteforcompanionsto M oftheseclustersforwardintimeusingthemeanmassaccretion theBOSSmagnitudelimit,weonlyconsiderneighbouringgalaxies h rates (MMAR) from the Fakhouri, Ma & Boylan-Kolchin (2010) withastellarmassratiowithin1:4oftheBCG(seepanelbofFig. model(seetheirequation2).ThroughtheseMMARsweareable 4).Thismaximizestheredshiftrangeoverwhichwearecomplete. todeterminewhatthecorrespondinghalomassesofthesehighred- Wedefineallpotentialmergercandidateswithstellarmassratios shift clusters will be at later times, allowing us to construct an between 1:1−1:4 as major mergers. For illustrative purposes, we evolving M limit as a function of redshift. We divide the clus- showtheSDSScutoutsofeightmajormergercandidatesfromour h tersintofourequalsizedredshiftbinswithawidthof0.067.The closepairsampleinFig.5. binwidthischosentobelargerthanthetypicaluncertaintyonthe photometric redshift of the clusters (∼0.02), which reduces the chancesthatclusterswillbescatteredinandoutofadjacentred- 3.3 Definingthepairfraction shiftbins.Secondly,itissmallenoughtoensurewehavemultiple WeultimatelywanttodeterminethefractionofBCGsthatarein bins,eachwitharobustnumberofclusters,withwhichtostudythe boundpairs,i.e.BCGsthatwillmergewiththeircompanionsby BCGs’merger-inferredstellarmassgrowth. z=0(hereafterlooselyreferredtoas‘boundcompanions’).Thisis Wefindatotalof5432clustersthatformpartoftheevolution- definedasfollows: arysequence.Theseclusters(alongwiththeevolvingM limit)are h showninFig.3.InTable2wepresentasummaryofthenumberof NBCGs,BC f = (1) clustersineachredshiftbinalongwiththeirMhranges.InSection pair NBCGs 4.1wetesthowthepairfractionoftheBCGsisinfluencedwhen whereN isthetotalnumberofBCGsthatformpartoftheevo- BCGs thehalomassgrowthoftheclustersisnottakenintoaccount. lutionarysequence(asderivedinSection3.1)andNBCGs,BCrepre- sentsthenumberofBCGswithboundmajormergercompanions. 3.2 Theclosepairselection WecanexpandEq.1tothefollowing: Webeginbyonlyconsideringgalaxiesthatarebrighterthan21.5 f = NBCGs,C×NBCGs,BC (2) magnitudesinthei-band.ThisisthemagnitudewheretheSDSS pair NBCGs NBCGs,C is 95 per cent complete for galaxies. This limit was determined wherethefirsttermisthefractionofBCGswithcompanionsand by comparing the galaxy number counts in a region on the ce- thesecondtermisthefractionofthesecompanionsthatarebound lestial equator from the SDSS to the Stripe 82 survey (Adelman- (contamination correction). NBCGs,C is the number of BCGs that McCarthyetal.2007),whichis∼2magdeeper. haveoneormorecompanion(s)asdescribedinSection3.2.Inthe From the redMaPPer catalogue we construct a close galaxy casewhereonlyphotometryisavailable,thesecondterm(contam- pairsampleof1336pairsbysearchingforallphotometricgalaxies inationcorrection)inEq.2maybesettoaconstantvalue(e.g.0.5 within a physical separation distance (rsep) of 7(cid:54)rsep(cid:54)50 kpc in Edwards&Patton2012). fromtheBCGs.Galaxieswithinthissearchradiusarereferredtoas We obtain a measurement for the BCG pair fraction in two companions.Thelowerlimitisimposedsincethisistheminimum cases. We start with the simple case, where only photometry is separationdistancedowntowhichtheSDSScanresolveindividual used.Thisisusedinstudieswhichdonothavespectroscopyavail- galaxiesoverourredshiftrange. able(suchasEdwards&Patton2012).Thereafterweconsiderthe Aclosepairsamplethathasonlybeenconstructedusingpho- casewherethereisspectroscopicinformation. tometricinformationwillinevitablysufferfromcontaminationdue Where spectroscopic information is available for some of to line-of-sight projections. Although the contamination in clus- the sample, we have more information from which to determine tersishigherthaninthefield(includingcontaminationfromclus- whethercompanionsareboundtotheBCGs.Ratherthanassum- termembersthemselves),thesametechniquescanbeusedtoob- ingaconstantvalueforthecontaminationcorrectioninEq.2,we tain the close pair fraction. In this work we use spectroscopy to deriveamoredetailedcorrectionbygroupinggalaxiesintobinsof correctforthiscontaminationbydeterminingwhetherthephoto- colours,magnitudeandseparationdistance.Inthei-thbinthepair metrically identified companion galaxies are bound to their host fractioninredshiftbin jis BCGs. In order for close pairs to be considered potential merger coafn∆dvid(cid:54)ate3s0,0wkemrse−q1ui(rseetehee.gg.alBauxriebsidtgoeh1a9v7e5;aEvlelliosocnityetdaiflf.e2re0n1c3e; (fpair)j = ∑iC∑i−i1NNBBCCGGssi,SCi (3) MNRAS000,1–18(2017) RoleofmajormergersinstellarmassgrowthofBCGs 7 Figure3.TheevolutionaryclustersequenceoftheredMaPPerclustersatz=0.35thathavebeenconstructedusingtheMMARsofFakhourietal.(2010). TheMh-distributionoftheredMaPPerclustersisrepresentedwiththegreypoints.Theclustersthatformpartofthesequenceareindicatedinblue,whilethe redlinerepresentsthe50percentMhcompletenesslimit.Seetextfordetails. whereNBCGs,SC isthenumberofBCGswithspectroscopiccom- of the BCGs, denoted (cid:104)M(cid:63)(cid:105), in each redshift bin. The uncertain- panions andC is the applied correction for spectroscopic incom- tieson(cid:104)M(cid:63)(cid:105)aredeterminedusingbootstrapresamplingwith1000 pleteness(derivedinAppendixA). realizations. In our high redshift bin 0.4(cid:54)z(cid:54)0.5, due to the low spec- We estimate average merger timescale, denoted (cid:104)tmerge(cid:105), for troscopiccompletenessoftheSDSSattheseredshifts,weusedthe each close pair using the results of Kitzbichler & White (2008). SALT sample to determine the contamination correction (second UsingtheMillenniumSimulation(Springeletal.2005),theyfind terminEq.2)i.e: thattheaveragetmergeforgalaxieswithrsep(cid:54)50kpcand∆v(cid:54)300 kms−1canbegivenbythefollowing: NBCGs,C NBCGs,BC(SALT) fpair = N × N (4) rsep (cid:16) M(cid:63),com (cid:17)−0.3(cid:16) z(cid:17) BCGs BCGs,C(SALT) (cid:104)tmerge(cid:105)=2.2Gyr50kpc 5.5×1010M(cid:12) 1+8 (5) Wehaveassumedherethatthefractionofpotentialmergerpairsin theSALTsampleisrepresentativeofthosefoundinthephotomet- whereM(cid:63),com isthetotalstellarmassofthecompanionatitsob- ricpairsample(selectedfromtheGMBCGcatalogue).TheSALT servedredshift(determinedusingkcorrect),rsep isthephysical separationdistance(inkpc)andzisthephotometricredshiftofthe pairs are not different from those in the photometric pair sample sincethesamersep and∆mi criteriahavebeenusedtoselectpairs cluster.Theuncertaintieson(cid:104)tmerge(cid:105)aregivenby1σ standardde- viationandarepropagatedthroughtothefinalmeasuredfractional inbothsamples.Theonlydifferencebetweenthesetwosamplesis massgrowths.VariousworkshavecommentedthattheKitzbichler theredshiftrequirementusedfortheSALTpairselection.Sincethe &White(2008)mergertimescalesaresignificantlylongerthanthe BCGsarebright,redgalaxies,theyareverylikelytobeobservedby estimatefromdynamicalfrictionortheorbitalperiod(e.g.Conroy theSDSSspectroscopicsurveys,sowedonotexpectabiasagainst et al. 2007a; Bertone & Conselice 2009; Conselice 2009; Kauff- spectroscopyforthesegalaxies.Thenumberofpairsobservedwith SALTshouldthereforeberepresentativeofthenumberofpairsin mannetal.2010;Lotzetal.2011).Theuncertaintieson(cid:104)tmerge(cid:105)in alltheredshiftbinsarelargeenoughtoencompassdifferenceswith thephotometricsample. othermethods(seeTable3). Theuncertaintyon f representsthe68.3percent(1σ)bi- pair nomialconfidencelimitandiscalculatedusingthebetaconfidence Themergerrate,denotedRmerge,ofthesample,i.e.thenum- berofmergersperBCGperGyr,isdefinedasfollows: intervalasdescribedbyCameron(2011). f pair Rmerge= (6) (cid:104)t (cid:105) merge 3.4 ThemassgrowthoftheBCGs TheuncertaintyonRmergeisdeterminedusingthestandardpropa- Wenowcontinueontothemainaimofthepaper,measuringthe gationoferrors. merger-inferredstellarmassgrowthoftheBCGsasafunctionof Semi-analytical models, for example Conroy et al. (2007b); redshift.Inordertodothiswefirstcalculateaveragestellarmasses Puchwein et al. (2010); Laporte et al. (2013) have shown that MNRAS000,1–18(2017) 8 D.N.Groenewaldetal. Figure4.ToensurewehaveasamplewithahighspectroscopiccompletenesswithwhichtheBCGpairfractioncanbedetermined,werequireallthegalaxies inourclosepairsampletobebrighterthantheBOSSmagnitudelimitofmi=19.9magnitudes(dashedline).Wefurtherrestrictoursampletoonlyinclude closepairswithstellarmassratiosof1:1−1:4.Thiswasdonetomaximizeboththeredshiftrangeandnumberofclosepairsinoursample.Seetextfordetails. 30−80 per cent of the companion’s stellar mass ends up in the toz=0.Wedonottakethistermintoconsiderationbecausewe ICLduringamergerwiththeBCG.Duringamerger,weassume areunabletoestimatethecontributionfromminormergersinthis that 50 per cent of the companion’s stellar mass is transfered to work,asweareincompleteforthesesystems8.Secondly,weex- theBCG(fmass=0.5;alsousedbyLiuetal.2009,2015;Burke pectthecontributionfromstarformationtobenegligibleforthese &Collins2013;Lidmanetal.2013).Toaccountforthepossible lowredshiftBCGs.ItisraretofindBCGsinthelocalUniversethat rangeof fmassvalues,weassignanuncertaintyof20percenttoour areactivelyformingstars(lessthan1percent;e.g.Liuetal.2012; assumed fmass valueof50percent(i.e. fmass=0.5±0.2),which Fraser-McKelvieetal.2014).Thesestarburstshavebeenfoundto ispropagatedthroughtothemeasuredfractionalmassgrowths.In contributeonly∼1−3percent(e.g.Sarazin&O’Connell1983; order to calculate how much mass (∆M) major mergers add to a Cardiel et al. 1995; Pipino et al. 2009; Liu et al. 2012; Loubser BCGfromredshiftzidowntoz=0,weusethefollowing: etal.2016)tothestellarmassoftheBCGs.TheuncertaintyonF isdeterminedusingthestandardpropagationoferrors. ∆M(z=zi−0)=Rmerge×TLB×(cid:104)M(cid:63)(cid:105)com(zi)×fmass (7) where TLB and (cid:104)M(cid:63)(cid:105)com(zi) respectively gives the lookback time andtheaveragestellarmassofthecompanionsatzi. 4 RESULTSANDDISCUSSION Thefractionalcontribution(F)madebymajormergerstothe stellar mass of a present day BCG, denoted (cid:104)M(cid:63)(cid:105)BCG(z=0), is 4.1 Theredshiftevolutionofthepairfraction definedasfollows: 4.1.1 TheredMaPPerpairfraction ∆M(z=zi−0) F= (8) Theredshiftevolutionofthepairfractionsfrom0.08(cid:54)z(cid:54)0.35for (cid:104)M(cid:63)(cid:105)BCG(z=0) BCGsselectedfromtheredMaPPercatalogueareshowninFig.6 with andsummarizedinTable2.Thepairfractionmeasuredwithin50 (cid:104)M(cid:63)(cid:105)BCG(z=0)=(cid:104)M(cid:63)(cid:105)BCG(zi)+∆M(z=zi−0)+∆Mother (9) kpcusingthreedifferentmethodstocorrectforprojectioneffectsis where (cid:104)M(cid:63)(cid:105)BCG(zi) is the average stellar mass of the BCGs at redshift zi and ∆Mother accounts for other sources of mass accre- 8 Between0.08(cid:54)z(cid:54)0.20,wearecompleteformergerswithmassratios tion,i.e.starformationandminormergers,fromredshiftzi down downto1:6(seeSection3.2andpanelcofFig.4). MNRAS000,1–18(2017) RoleofmajormergersinstellarmassgrowthofBCGs 9 Figure5.Forillustrativepurposes,weshowtheSDSScutoutsofeightpotentialmergercandidates(twoperredshiftbin)fromoursample.Eachcutoutis centredontheBCG(circledinblue)andis68(cid:48)(cid:48)onaside,whichroughlycorrespondsto100kpcatz=0.08.TheobjectscircledinredaretheredMaPPer candidateclustermembersthatarebrighterthantheluminositycutof0.2L(cid:63)(imposedduringtheconstructionofthecatalogue).Thedashedwhitelineindicates the50kpcphysicalsearchradius(atthecluster’sphotometricredshift).Foreachcutout,weshowtheredMaPPerIDandrichnessalongwiththecluster’s photometricredshift. showninthetoppanelofFig.6,whilethebottompanelcompares above (grey symbols and line). We find that the spectroscopicC- thespectroscopically-correctedresultsmeasuredwithin30and50 correction reduces the photometric pair fraction to ∼6 per cent kpc. whilethesimpleassumptionof50percentcontaminationreduces Aclosepairsampleconstructedusingonlyphotometrywith thephotometricpairfractionto∼10percent. nobackgroundcorrectionwillinevitablysufferfromprojectionef- Several studies in the literature, e.g. Le Fèvre et al. (2000); fects. The resulting pair fraction can therefore be considered as Kartaltepeetal.(2007);deRaveletal.(2009);López-Sanjuanetal. anupperlimit(redsymbolsandlineinthetoppanel).Tocorrect (2012);Keenanetal.(2014)parameterisedtheevolutionofthepair forthiscontamination,wehaveapplieda50percentcontamina- fractionwiththefollowingpower-lawfunction: tioncorrection(asusedbyEdwards&Patton2012,bluesymbols f (z)= f (z=0)×(1+z)m (10) andline).Wecomparethispairfractiontothatderivedusingthe pair pair availablespectroscopy,correctedforincompletenessasdescribed The power law fits to each of our three measurements are MNRAS000,1–18(2017) 10 D.N.Groenewaldetal. shown by the dashed and dotted lines in the figure. The negative ters by using a fixed9 Mh cut of ∼0.3×1015M(cid:12). The resulting powerindicesineachcasesuggestthattheindividualpairfractions pair fractions of these two subsamples are also consistent within increaseslightlywithdecreasingredshift.Thepairfractionderived theuncertainties.Theseresultsmaysuggestthatthepairfraction usingthespectroscopicC-correctionhasasteeperredshiftevolu- of BCGs involved in major mergers does not depend on the halo tionthanphotometricandthe50percentcontamination-corrected massoftheirhostclusters. pairfractions. The bottom panel of Fig. 6 compares the spectroscopic- 4.1.2 TheSALTpairfraction corrected f asmeasuredwithin30kpc(blacksymbolsandline) pair Inorderforaclosegalaxypairtobeconsideredapotentialmerger tothatwithin50kpc.Hereagain,thenegativepowerindicessug- gestthatthepairfractionsareincreasingwithdecreasingredshift. candidate,werequirersep(cid:54)50kpcand∆v(cid:54)300 kms−1.Wefind that seven of the 12 close pairs in the SALT sample satisfy this Thepairfractionwithin50kpcisafactorof∼2largerthanthat criteria (see Table 1). Using Eq. 4, we find the measured bound measuredwithin30kpc.Thisisclosetotheexpecteddifferencein BCGpairfractiontobe0.21+0.04between0.4(cid:54)z(cid:54)0.5.Ifinstead normalizationfordifferentradiifoundinpreviousworks(e.g.from −0.05 we consider a separation radius of 30 kpc, we find that three of thetwo-pointcorrelationfunction,Belletal.2006).Althoughthe thepairsintheSALTsamplecanbeconsideredpotentialmerger observedevolutionof f isslightlysteeperwithinthesmallerra- pair candidates.ThisresultsinaboundBCGpairfractionof0.09+0.06 dius,itisconsistentwithintheuncertaintytothatmeasuredwithin −0.03 (asderivedusingEq.4). thelargersearchradiusof50kpc. RecallthattheclustersinredMaPPerhavebeendetectedby 4.1.3 Literaturecomparison looking for overdensities of red-sequence galaxies (Section 2.1). This may tempt the reader to think that the given cluster mem- In Fig. 7 we show the comparison of our measured pair fraction bersareonlyred-sequencegalaxies.Ifthisisthecasethenwemay againstvaluesobtainedfromtheliterature.Wecompareagainstthe miss potential merger candidates that are not located on the red- resultsofstudiesconductedinclustersandthefield.Themajority sequence,causingustopotentiallyunderestimatethepairfraction ofthestudiesdiscussedhereafterhavederivedpairfractionswithin oftheBCGs.InFig.1weshowedthatgalaxieswithhighprobabil- rsep(cid:54)30kpc.Wehavethereforechosentoonlyshowthespectro- ities(PMEM>0.9)formatightersequence,asexpected,sincethey scopicallycorrectedpairfractionweobtainedbyconsideringclose are more likely to be red-sequence galaxies. Those with smaller pairswithinthesamephysicalseparationdistance(blackpoints). P values,ontheotherhand,aremorescatteredincolour.This MEM suggeststhat somegalaxiesthat arenot onthered-sequence (i.e. galaxiesinthebluecloud)arealsoincludedinthecatalogue.We Clusterstudies: investigatethisfurtherusingamethodsimilartothatofLuetal. BothMcIntoshetal.(2008)andLiuetal.(2009)havestudiedthe (2009)toseparatered-sequencegalaxiesfromtheirbluecounter- BCG pair fraction (over 0.01(cid:54)z(cid:54)0.12) by searching for close parts.WereferthereadertoLuetal.(2009)fordetails.Briefly,we pairs within 30 kpc. They further restricted their samples to only obtainedthewidthofthered-sequencebyfittingasingleGaussian consider close pairs where both the BCG and companion show againstthegalaxieswithhighprobabilitiesofbeingred-sequence signsofmorphologicaldistortions(i.e.diffusetailsandasymme- cluster members (PMEM >0.9). Galaxies within 2σ of the red- tries in the inner isophotes). These distortions indicate that the sequenceareconsideredtobepartofthered-sequencewhilethose galaxiesareintheprocessofmerging.Byonlyconsideringmajor below this limit are classified as blue galaxies. We find that a mergers(luminosityratios(cid:54)1:4),McIntoshetal.(2008)foundthat smallfraction(7percent)ofthegalaxiesinredMaPPerareblue. 38oftheir845closepairsweremorphologicallydistorted,giving Querying the SDSS DR8 database, we find an additional ∼200 f =0.04±0.01,assumingPoissonerrors(redpoint).Similarly, bluegalaxiesneighbouringourBCGsthatarenotincludedinthe pair Liuetal.(2009)found f =0.03±0.01(18/515)byassuming redMaPPer catalogue. Including these ‘missed’ galaxies into our pair Poissonerrors(bluepoint). close pair sample and remeasuring the photometric pair fraction, Only our first redshift bin overlaps with the redshift range resultsinanincreaseoflessthanonepercent.Itisthereforeclear used in the above-mentioned studies (z(cid:54)0.12). We measure a thatthese‘missing’bluegalaxieshaveanegligibleinfluenceonthe pair fraction of 0.05±0.01 at z∼0.11. The main difference be- averageBCGpairfraction. tweenourstudyandthatofMcIntoshetal.(2008);Liuetal.(2009) Severalstudiesintheliteratureuseluminosityratherthanstel- isthetechniqueusedtoselectmergers:morphologicaldistortions lar mass to identify potential major merger candidates (e.g. Liu vs. close pairs. Mergers identified through morphological distor- etal.2009,2015;Edwards&Patton2012;Burke&Collins2013; tionsareinthefinalstagesofmerging.Galaxiesinthesepairsare Keenanetal.2014;Burkeetal.2015,andothers).Wefindthatthe typically expected to merge within ∼0.2 Gyr (e.g. Patton et al. selectingpairsbasedontheirluminosityratioratherthantheirmass 2002;Hernández-Toledoetal.2005;Lotzetal.2011).Theclose ratiohasnoperceivableeffectonourindividuallymeasuredBCG pair technique on the other hand selects mergers that are in vari- pairfractions. ousstagesofthemergingprocess(earlytofinalstages).Formajor merger pairs with a separation distance of ∼50 kpc, Lotz et al. Recallthatthepairfractionsquotedherehavebeenderivedby (2011) estimate a merger timescale of roughly 0.6 Gyr. For pairs onlyconsideringtheBCGsthatformpartoftheevolutionaryclus- withrsep∼30kpc,tmergedecreasesto0.33Gyr(Lotzetal.2011). tersequence(i.e.thehalomassesoftheclustershavebeentaken The merger timescales of the pairs in our sample are therefore intoaccount).Wefindthesepairfractionstobeconsistentwithin longer(onaverage)thanthoseinMcIntoshetal.(2008);Liuetal. theuncertaintiestothatmeasuredinthecasewherewedidnottake thehostclusters’M growthintoaccount.Additionally,wedivide h the cluster sample into a subsample of low and high mass clus- 9 Thiscuthasbeenvaried,howevertheresultsremainunchanged. MNRAS000,1–18(2017)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.