Title Page: iii Copyright Page: iv Dedication Page: v TABLE OF CONTENTS Page: xi PREFACE TO THE FIRST EDITION Page: vii PREFACE TO THE SECOND EDITION Page: ix CHAPTER I INTRODUCTION Page: 1 1. Fields, rings, ideals, polynomials Page: 1 2. Vector space Page: 6 3. Orthogonal transformations, Euclidean vector geometry Page: 11 4. Groups, Klein's Erlanger program. Quantities Page: 13 5. Invariants and covariants Page: 23 CHAPTER II VECTOR INVARIANTS Page: 27 1. Remembrance of things past Page: 27 2. The main propositions of the theory of invariants Page: 29 A. FIRST MAIN THEOREM Page: 36 3. First example: the symmetric group Page: 36 4. Capelli's identity Page: 39 5. Reduction of the first main problem by means of Capelli's identities Page: 42 6. Second example: the unimodular group SL(n) Page: 45 7. Extension theorem. Third example: the group of step transformations Page: 47 8. A general method for including contravariant arguments Page: 49 9. Fourth example: the orthogonal group Page: 52 B. A CLOSE-UP OF THE ORTHOGONAL GROUP Page: 56 10. Cayley's rational parametrization of the orthogonal group Page: 56 11. Formal orthogonal invariants Page: 62 12. Arbitrary metric ground form Page: 65 13. The infinitesimal standpoint Page: 66 C. THB SECOND MAIN THEOREM Page: 70 14. Statement of the proposition for the unimodular group Page: 70 15. Capelli's formal congruence Page: 72 16. Proof of the second main theorem for the unimodular group Page: 73 17. The second main theorem for the unimodular group Page: 75 CHAPTER III MATRIC ALGEBRAS AND GROUP RINGS Page: 79 A. THEORY OF FULLY REDUCIBLE MATRIC ALGEBRAS Page: 79 1. Fundamental notions concerning matric algebras. The Schur lemma Page: 79 2. Preliminaries Page: 84 3. Representations of a simple algebra Page: 87 4. Wedderburn's theorem Page: 90 5. The fully reducible matric algebra and its commutator algebra Page: 93 B. THE RING OF A FINITE GROUP AND ITS COMMUTATOR ALGEBRA Page: 96 6. Stating the problem Page: 96 7. Full reducibility of the group ring Page: 101 8. Formal lemmas Page: 106 9. Reciprocity between group ring and commutator algebra Page: 107 10. A generalization Page: 112 CHAPTER IV THE SYMMETRIC GROUP AND THE FULL LINEAR GROUP Page: 115 1. Representation of a finite group in an algebraically closed field Page: 115 2. The Young symmetrizers. A combinatorial lemma Page: 119 3. The irreducible representations of the symmetric group Page: 124 4. Decomposition of tensor space Page: 127 5. Quantities. Expansion Page: 131 CHAPTER V THE ORTHOGONAL GROUP Page: 137 A. THE ENVELOPING ALGEBRA AND THE ORTHOGONAL IDJIAL Page: 137 1. Vector invariants of the unimodular group again Page: 137 2. The enveloping algebra of the orthogonal group Page: 140 3. Giving the result its formal setting Page: 143 4. The orthogonal prime ideal Page: 144 5. An abstract algebra related to the orthogonal group Page: 147 B. THE IRREDUCIBLE REPRESENTATIONS Page: 149 6. Decomposition by the trace operation Page: 149 7. The irreducible representations of the full orthogonal group Page: 163 C. THE PROPER ORTHOGONAL GROUP Page: 159 8. Clifford's theorem Page: 159 9. Representations of the proper orthogonal group Page: 163 CHAPTER VI THE SYMPLECTIC GROUP Page: 165 1. Vector invariants of the symplectic group Page: 165 2. Parametrization and unitary restriction Page: 169 3. Embedding algebra and representations of the symplectic group Page: 173 CHAPTER VII CHARACTERS Page: 176 1. Preliminaries about unitary transformations Page: 176 2. Character for symmetrization or alternation alone Page: 181 3. Averaging over a group Page: 185 4. The volume element of the unitary group Page: 194 5. Computation of the characters Page: 198 6. The characters of GL(n). Enumeration of covariants Page: 201 7. A purely algebraic approach Page: 208 8. Characters of the symplectic group Page: 216 9. Characters of the orthogonal group Page: 222 10. Decomposition and ×-multiplication Page: 229 11. The Poincaré polynomial Page: 232 CHAPTER VIII GENERAL THEORY OF INVARIANTS Page: 239 A. ALGEBRAIC PART Page: 239 1. Classic invariants and invariants of quantics. Gram’s theorem Page: 239 2. The symbolic method Page: 243 3. The binary quadratic Page: 246 4. Irrational methods Page: 248 6. Side remarks Page: 250 6. Hilbert’s theorem on polynomial ideals Page: 251 7. Proof of the first main theorem for GL(n) Page: 252 8. The adjunction argument Page: 254 B. DIFFERENTIAL AND INTEGRAL METHODS Page: 258 9. Group germ and Lie algebras Page: 258 10. Differential equations for invariants. Absolute and relative invariants Page: 262 11. The unitarian trick Page: 265 12. The connectivity of the classical groups Page: 268 13. Spinors Page: 270 14. Finite integrity basis for invariants of compact groups Page: 274 15. The first main theorem for finite groups Page: 275 16. Invariant differentials and Betti numbers of a compact Lie group Page: 276 CHAPTER IX MATRIC ALGEBRAS RESUMED Page: 280 1. Automorphisms Page: 280 2. A lemma on multiplication Page: 283 3. Products of simple algebras Page: 286 4. Adjunction Page: 288 CHAPTER X SUPPLEMENTS Page: 291 A. SUPPLEMENT TO CHAPTER II, §§9–13, AND CHAPTER VI, §1, CONCERNING INFINITESIMAL VECTOR INVARI Page: 291 1. An identity for infinitesimal orthogonal invariants Page: 291 2. First Main Theorem for the orthogonal group Page: 293 3. The same for the symplectic group Page: 294 B. SUPPLEMENT TO CHAPTER V, §3, AND CHAPTER VI, §§2 AND 3, CONCERNING THE SYMPLECTIC AND ORTHOGON Page: 295 4. A proposition on full reduction Page: 295 5. The symplectic ideal Page: 296 6. The full and the proper orthogonal ideals Page: 299 C. SUPPLEMENT TO CHAPTER VIII, §§7–8, CONCERNING. Page: 300 7. A modified proof of the main theorem on invariants Page: 300 D. SUPPLEMENT TO CHAPTER IX, §4, ABOUT EXTENSION OF THE GROUND FIELD Page: 303 8. Effect of field extension on a division algebra Page: 303 ERRATA AND ADDENDA Page: 307 BIBLIOGRAPHY Page: 308 SUPPLEMENTARY BIBLIOGRAPHY, MAINLY FOR THE YEARS 1940–1945 Page: 314 INDEX Page: 317
Description: