Mon.Not.R.Astron.Soc.000,000–000(0000) Printed15April2015 (MNLATEXstylefilev2.2) The circumstellar matter of supernova 2014J and the core-degenerate scenario 5 Noam Soker 1 DepartmentofPhysics,Technion–IsraelInstituteofTechnology,Haifa32000,Israel; 0 [email protected] 2 r p 15April2015 A 4 1 ABSTRACT Ishowthatthecircumstellarmatter(CSM)ofthetypeIasupernova2014Jistoomassiveand ] its momentum too large to be accounted for by any but the core-degenerate(CD) scenario R fortypeIa supernovae.Assumingthe absorbinggasisof CSM origin,the severalshellsre- S sponsibleoftheabsorptionpotassiumlinesareaccountedforbyamasslossepisodefroma . massive asymptotic giant branch star during a common envelopephase with a white dwarf h p companion.The time-varyingpotassium linescan be accountedfor byionizationof neutral - potassium and the Na-from-dust absorption (NaDA) model. Before explosion some of the o potassium resides in the gas phase and some in dust. Weakening in absorption strength is r t causedbypotassium-ionizingradiationofthesupernova,whilereleaseofatomicpotassium s from dust increasesthe absorption.I concludethat if the absorbinggas originatedfrom the a progenitorofSN2014J,thena commonenvelopephasetookplaceabout15,000yearsago, [ leadingtothemergingofthecorewiththewhitedwarfcompanion,i.e.,thecore-degenerate 2 scenario.Else,theabsorbingmaterialisofinterstellarmediumorigin. v 9 Keywords: binaries:general supernovae:individual:SN2014J,supernovae:general, 2 7 7 0 . 1 INTRODUCTION crucial to refer to all five scenarios (or categories of scenarios) 1 whenconfrontingobservationswithSNIascenarios.Inthepresent 0 TypeIasupernovae(SNIa)arethermonuclearexplosionsofwhite study I examine some properties of the type Ia SN 2014J, con- 5 dwarfs (WDs) accompanied by a complete destruction of the centratingon themedium around it.I takeintoaccount limitson 1 : WD, or at least one of the two interacting WDs(e.g. Maozetal. thepre-explosionprogenitor(Kellyetal.2014;Nielsenetal.2014; v 2014).Thereisasofyetnoconsensusonthescenariothatbrings Lundqvistetal.2015)anditsmassloss(Pe´rez-Torresetal.2014), i X a WD or two to explode. In recent years there have been several andthepropertiesoftheabsorptionpotassiumlines(Ritcheyetal. different scenarios, that were classified into five categories by 2014),andtheirtime-variability(Grahametal.2015). r a Tsebrenko&Soker(2015a).Welistthembelowbytheiralphabet- ¿Fromradioobservations Pe´rez-Torresetal.(2014)limitthe icalorder,andciteonlyalimitedfractionoftheliteratureoneach mass loss rate from the progenitor of SN 2014J to < 7.0 × scenario. 10−10M⊙yr−1 for a wind speed of 100kms−1. This con- (a)The core-degenerate (CD) scenario (e.g., Sparks&Stecher tradicts many cases of the SD scenario, but not those with a 1974; Livio&Riess 2003; Kashi&Soker 2011; Soker 2011; long delay to explosion (DiStefanoetal. 2011; Justham 2011). Ilkov&Soker2012,2013;Sokeretal.2013). Pe´rez-Torresetal. (2014) consider the DD scenario to be the al- (b)The double degenerate (DD) scenario (e.g., Webbink ternative to the SD scenario; without explanation they ignore the 1984; Iben&Tutukov 1984; vanKerkwijketal. 2010; other three scenarios listed above, and the presence of dense Lore´n-Aguilaretal.2010;Pakmoretal.2013;Aznar-Sigua´netal. circum-stellar matter (CSM) in some cases of the DD scenario 2013). (Molletal.2014;Raskinetal.2014;Levanonetal.2015).Asim- (c)The double-detonation (DDet) mechanism (e.g., ilarbutweaker constraintisobtainedfromX-rayobservations by Woosley&Weaver 1994; Livne&Arnett 1995; Shenetal. Marguttietal.(2014),whoalsoconduct athoroughdiscussionof 2013. possible scenarios, leaving some room for the SD scenario with (d)The single degenerate (SD) scenario (e.g., Whelan&Iben timedelaytoexplosion(DiStefanoetal.2011;Justham2011)and 1973;Nomoto1982;Han&Podsiadlowski2004). fortheCDscenario.OneshouldnotethattheWWCscenarioalso (e) The WD-WD collision (WWC) scenario (e.g., Raskinetal. complieswiththeselimitsonthecloseCSM.Grahametal.(2015), 2009; Rosswogetal. 2009; Thompson 2011; Katz&Dong 2012; ontheotherhand,attributethetime-varyingpotassiumlinesfrom Kushniretal.2013). SN2014JtoaCSM,andarguethattheirresultstentativelysupport As there is no consensus on the SN Ia progenitor(s), it is aSDscenarioforSN2014J. (cid:13)c 0000RAS 2 Noam Soker In this study I reexamine the claims for a CSM around SN (CE)phaseoftheprogenitorbinarysytem.Theshellsareactually 2014J,andtrytoreconcilesuchaCSMwiththeCDscenario.Ido clumpynebulaexpandinginalinearrelationbetweendistanceand notgetintothedisputewhethertheabsorbingmaterialisofCSM velocity.Namely,the−81kms−1 gasisatadistanceof81/144 (e.g.,Foleyetal.2014)orofinterstellarmedium(ISM)origin(e.g., times the distance of the −144kms−1 gas from the explosion. Johanssonetal.2014),butratherdiscusstheconsequences ofthe Suchexpandingclumpynebulaewithalineardistance-velocityre- case that the absorbing gas, or some of it, is of CSM origin. In lationand expansion velocitiesof uptofewhundreds kms−1 is section2Iexaminethepotassiumlines,andinsection3Iestimate observedinsomeplanetary nebulae(PNe),e.g.,NGC6302 (e.g., themassoftheabsorbinggasbasedontheresultsofGrahametal. Meaburnetal. 2008; Szyszkaetal. 2011) and the pre-PN M1-92 (2015).Under theassumptionthattheabsorbingmaterial,orpart (IRAS19343+2926;Bujarrabaletal.1998). of it, originated from the progenitor of SN 2014J I confront the Mysuggestionthattheabsorbinggasofthemostblue-shifted differentscenarioswiththeCSMpropertiesinsection4. linesliesatthelargestdistancesfromtheexplosionisoppositeto theclaimofGrahametal.(2015),butgivesalowerCSMmassthat can be compatible with a CSM, as is shown in the next section. TheproposedscenarioimpliesthatSN2014JisaSN-InsideaPN 2 POTASSIUMABSORPTIONLINES (SNIP;Dickel&Jones1985;Tsebrenko&Soker2013,2015a,b). The absorption potassium lines were studied by Ritcheyetal. (2014) and Grahametal. (2015). In examining the higher- resolutionspectrumpresentedbyGrahametal.(2015)intheirfig- 3 THEMASSOFTHEABSORBINGGAS ure 3, one can notice time variations of absorption lines at three I first consider the three potassium absorption lines where time- velocities. At velocities of v = −144, −127kms−1, the most variabilityisobserved(Grahametal.2015).Thecolumndensities blueshiftedlinesinKI,theabsorptionlineswereweakeningwith time,whileatthevelocityof−81kms−1 theabsorptionlinebe- oftheneutralpotassiumofthegasabsorbinginthe−144kms−1, −127kms−1, and −81kms−1 lines are 0.50 × 1011cm−2, camestrongerwithtime.Notimevariationwasfoundinanyofthe 4.0×1011cm−2,and1.1×1011cm−2,respectively(Ritcheyetal. sodiumlines. 2014).Grahametal.(2015)findasomewhathighercolumndensity The weakening of the potassium absorption lines can be at- of0.80×1011 cm−2forthe−144kms−1shell.Usinghighercol- tributed to the ionization of neutral atoms by the SN radiation. umndensitieswillstrengthentheconclusionsreachedhere. Grahametal. (2015) find that while K I shows time-variation, no such variation is observed in any of the Na I line. For some Themassofashell,orapartialshell,ataradiusrs witham atomicpotassiumcolumndensityofN(KI)andasolarcomposi- NaIlinesthisinvariabilityisduetotheirsaturation.Grahametal. tion(Asplundetal.2009)isgivenby (2015)arguethatiftheabsorbingmaterialresidesat≈0.6−1.6× 1cr0e1a9secsmsufrbosmtantthiaellSyNw,itthhentimthee, pwohtailsesituhme sioodniiuzamtiosnufffrearcstioonnlyina- Ms =0.53(cid:18)10N11(cKmI)−2(cid:19)(cid:18)2rpsc(cid:19)2 βξM⊙, (1) moderateincreaseinionizationfraction.Thiscanaccount forthe weakening of the v = −144 and −127kms−1 K I absorption where4πβ isthesolidanglecovered bytheshell andξ−1 isthe fractionofthepotassiumintheatomicphase. Bothβ < 1andξ lines. arelikelytobelessthanunity. Theobservationthatonlythetwomostblue-shiftedlinesshow thisbehaviorwasattributedbyGrahametal.(2015)totheseshells The scaling of rs = 2pc is the minimum radius allows by Grahametal.(2015)intheirexplanationforthetimevariationof being theclosest shellstohe SN.Theother shellsintheir expla- nationhavebeensloweddownbytheISM.AsIshowinthenext thetwomost blue-shifted K I lines.For thevalues of rs = 2pc and β/ξ = 1, the masses of the two shells are M(−144) = section,thisexplanation isproblematic, astheimpliedtotalmass intheshellsinsuchamassdistributionislargerthan8M⊙.Thisis 0.26M⊙ and M(−127) = 2.1M⊙. If the mass is spread over a radial distance of ≈ 1pc, the duration of the mass loss pro- morethanaprogenitorofSNIacansupply. cess is ≈ 1pc/140kms−1 ≈ 7000yr. The mass loss rate is Grahametal. (2015) do not study the strengthening of the −81kms−1 KIabsorptionline.Thestrengtheningofabsorption ≈2M⊙/7000yr=3×10−4M⊙yr−1.Thisisaveryhighmass lossrate,morethanisexpectedfromanymodelfortheSDscenario linescanbeattributedtoeithertheoppositeprocessofrecombina- wherealowmasstransferrateisrequiredfromagianttotheWD tion,ortothereleaseofmoreneutralatomsfromdust.Theprocess companion.Theexistenceofshellssuggeststhatthemasslossrate bywhichtheSNIaradiationreleasessodiumfromdustresidingat ≈ 1pcfromtheSN,theNa-from-dustabsorption(NaDA)model wasoverashortertimescalethan7000yr,andmasslossratewas highereven. (Soker2014),issimilartotheprocessesbywhichsolarradiation As mentioned in section 2, the existence of clumps with a releasessodiumfromcometarydustwhencometsapproachadis- velocity spread is observed in some PNe and pre-PNe, and in tanceof. 1AUfromtheSun.TheNaDAmodel wassuggested somecaseswithalinearvelocity-distancerelation.Inthesecases toaccountfortime-varyingsodiumlinesinSNIa(forobservations the mass ejection was a short event, most probably a CE phase, ofNaIlinesinSNIasee,e.g.,Patatetal.2007;Simonetal.2009; andpossiblyanintermediate-luminosityopticaltransients(ILOT) Sternbergetal. 2011, 2014; Maguireetal. 2013). Dust in the so- event(Kashi&Soker2011;Akashi&Soker2013).AbipolarPN lar system is known to release potassium in addition to sodium, isformedwithasolidanglecoverageofβ<1. e.g., Fulleetal. (2013). I here suggest that the deepening of the −81kms−1 absorptionlineinthespectrumofSN2014Jisare- To examine this CD scenario, I do the following exercise. I taketheblue-shiftedshellslistedbyRitcheyetal.(2014)toorigi- sultofpotassiumreleasefromdust,asintheNaDAmodel. natefromtheprogenitorofSN2014J,andobey ThevelocityofthelineisexplainedwithintheCDscenario,if wthaeya.bSsoomrbeinogrgaallsoifstihnedeaebdsoarCbiSnMgcalonuddnso/sthaenllIsSwMe,rienetjheectfeodllobwyitnhge rs(i)=tejcvs(i)=1.53(cid:18)1.5×te1jc04yr(cid:19)(cid:18)100vksm(i)s−1(cid:19) pc, progenitor withinaveryshorttimeperiod,thecommon envelope (2) (cid:13)c 0000RAS,MNRAS000,000–000 Thecircumstellarmatterofsupernova2014Jand thecore-degeneratescenario 3 wherers(i)andvs(i)aretheradiusandthevelocityofshelli,and 4 DISCUSSIONANDSUMMARY tejcisthetimesincetheshellswereejectedinashorteventbythe InthepresentstudyIdonotgetintothequestionwhetherthegas progenitorofSN2014J.Equation(2)takesSN2014Jtobeinthe responsible for thepotassium absorption linesisof CSMor ISM restframeofM82.However,SN2014Jisintheapproachingsideof origin.Thisquestionisnotsettledyet.Iconsidertheimplications M82,anditislikelythattherelativeshellsvelocitiestoSN2014J of the CSM case. Namely, where some, or all, of the absorbing aresomewhatlower.Inthatcasetheabsorbinggaslikelihoodtobe clouds/shellswereoriginatedfromtheprogenitorofSN2014J,as ofISMoriginishigher.InthepresentstudyIexaminetheimplica- arguedmostrecentlybyGrahametal.(2015).Butonemustkeepin tionsoftheabsorbinggasbeingofCSMorigin,andtaketheshells mindthatitisquitepossiblethatalltheabsorbinggasclouds/shells distancesfromtheexplosionaccordingtoequation(2). areISM.Inanycase,thediscussioninthissectionisrelevantfor The outer shell has v = −144kms−1 with rs(−144) = futureobservationsofCSMaroundSNIa,asIconfronteachofthe 2.2(tejc/1.5×104yr)pc.AftersummingoveralltheshellsIfind fivescenarioslistedinsection1withthepropertiesoftheabsorbing theCSMmassintheCDscenario(assumingallblue-shiftedshells gasofSN2014JifitisofCSMorigin. belongtotheCSM)tobe 4.1 Thecore-degenerate(CD)scenario MCSM−Cd =5.4(cid:18)1.5×te1jc04yr(cid:19)βξ¯¯M⊙, (3) ISnNt2h0e1C4JDlasstceednaforiroatrheelatpivree-leyxsphloorstiotinmem,aastsmeojsetcfteiownheupnidsroeddesoinf years,whichistheCEevolutiontime.Thedistancesoftheshells fromtheexplosionismoreorlesstheirvelocitytimesthetimefrom massejectiontoexplosion,asgiveninequation(2). where β¯and ξ¯are average values for the solid angle covered by The merger of the core with the WD could have energize theshellsandthefractionofpotassiumintheatomicstate;bothare the shells to the high velocities, up to 140kms−1, more than expectedtobelessthatunity.Thetotalmassofthethreeshellsthat thetypicalvelocitiesofpost-CEnebulae,few×10kms−1.Taking showtime-variabilitywiththesamescalingis2.2M⊙.Overall,the theshells radii used inprevious sections (based on Grahametal. progenitorhadtoexpel≈2−6M⊙overarelativelyshorttimeof 2015),theageofthenebulais≈ 1.5×104yr.Theevolutionof .104yr.Themasslossrateduringtheformationoftheshells,if coresofAGBstarswithmassesof& 0.6M⊙ israpidenoughthat theyareindeedCSM,was≫ 10−4M⊙yr.Asinglestarofmass theirluminosityandtemperatureafter≈1.5×104yrofpost-AGB < 8M⊙ isnotexpectedtohavesuchahighmasslossrate.ACE evolution are Lc ≈ 200 − 250L⊙ and Teff ≈ 105K, respec- interactionseemsthemostnaturalexplanationforsuchamassloss tively, e.g., Bloecker (1995). This luminosity is below the upper rate. limitontheluminosityoftheprogenitorofSN2014Jof≈103L⊙ Otherrelevantpointstotheproposedmassdistributionareas (Kellyetal.2014). follows. Theejectionoftheentireenvelopeexplainsthelargemassof (1)Ifallshellsresideoutside2pc,assuggestedbyGrahametal. theshells,≈2−6M⊙,foundinsection3. (2015), then the mass with the above scaling is > 8M⊙. Larger By the post-CE time of 1.5 × 104yr the wind mass loss thanwhataprogenitorofaSNIcansupply. rate from the central star is ≈ 10−10M⊙yr−1 and its velocity (2)Johanssonetal.(2014)limitthedustmasswithin≈ 1017cm is thousands of kms−1 (Scho¨nberneretal. 2014). This gives a from SN 2014J to be . 10−5M⊙. The inner shell in the very low density gas close to the explosion, r . 1018cm, that structure discussed above is taken to be the one with a veloc- issafelycompatiblewiththelimitsetbyPe´rez-Torresetal.(2014) ity of −19kms−1. Its distance from the center is rs(−19) = andMarguttietal.(2014)onthemasslossratefromtheprogenitor 9 × 1017(tejc/1.5 × 104yr)cm, and its mass is Ms(−19) = hundredsofyearbeforeexplosion. 0.004β/ξM⊙ under the assumptions employed here. The loca- Despitethehot-luminouscentralstar,mostofthematerialcan tion and mass of the shell is compatible with the limit set by bestayneutral,asrequiredbytheobservedabsorption.Thehydro- Johanssonetal. (2014).If themassdistributionemployed here is genionizingphotonrateperunitsolidanglefromapost-AGBstar correct,thenwithinabouttwoyearsfromtheexplosion,sometime withaneffectivetemperatureofT =105Kis eff in2016,theinfraredradiationfromwarmingCSMdustmightstart toincrease. n˙γ(105K)=1.7×1045 Lc s−1sr−1. (4) (3)Nielsenetal.(2014)arguethatSN2014Jcomesfromayoung (cid:18)300L⊙(cid:19) population. A mass transfer from the initially more massive pri- Thehydrogenrecombinationrateofapartialshellcoveringasolid marystar,M10 ≈5−8M⊙,tothesecondarycouldleaveamassive angle of 4πβ, for a gas temperature of 104K, and almost fully secondaryonthemainsequence, M2 ≈ 7−8M⊙,thatexpelled ionizedis suchalargemassduringtheCEphase(Ilkov&Soker2013),asin tthheeCcaSsMeowfaPsTmFu1c1hkcxlo(sSeorkteortehteael.xp2l0o1d3in).g(Nstaort.e)thatinPTF11kx n˙rec−i =1.9×1045β−1(cid:18)0.3mMi⊙(cid:19)2 (5) (s4h)owInttihmise-svtuadriyabIidliotyn,obtudtenaoltwthiethotthheerqsu.eIsttimonigohftbwehryetlhatreedestohetlhles × ri −3 ∆ri −1 s−1sr−1. density of the shells, or some other properties. This might actu- (cid:16)1018cm(cid:17) (cid:18)0.1ri(cid:19) ally be an argument for that the shells are ISM shells, and not whereri istheradius,∆i isthethickness,andmi isthemassof CSMshells.However,thenonewillhavetoexplainwhymostof theionizedshell(orpartialshell). theshellsshowblue-shiftedabsorption.Idonotethatevenifonly Comparingequations(4)and(5)showsthataninnershellof thethreetime-variableshellsbelongtotheCSM,thediscussionto about 10% ofthetotalshellmass,i.e.,mi ≈ 0.2−0.6M⊙,can comestillholds. shield the outer shells from the pre-explosion ionizing radiation. (cid:13)c 0000RAS,MNRAS000,000–000 4 Noam Soker Thiscanaccountfortheneutralpotassiumandsodiumphasethat percent of all SN Ia (e.g., Sokeretal. 2014; see section 2 in the isrequiredfortheobservedabsorption. firstastro-phversionofthatpaper,arXiv:1309.0368v1). ManganeseproductionisnotaccountedforintheWWCsce- nario. Tamagawaetal. (2009) identified X-ray lines from man- 4.2 Thedouble-degenerate(DD)scenario ganese in the Tycho SNR. Seitenzahletal. (2013) further claim ThemassiveshellsrequireaCEevolution.Theshellswereejected that at least 50% of all SN Ia come from near Chandrasekhar < 2×104yrago,whichisthepost-CEperiod.Thisimpliesthat mass(MCh)WDs,asthedensityrequiredtosynthesizemanganese (a) the core is still very hot during the WD-core merger, and (b) is ρ & 2 × 108gcm−1 (Seitenzahletal. 2013 and references therein). The WWC scenario does not reach these densities, and that for about athousand yearsthecoreisstilllarger thanacold cannot account fortheproduction ofmanganese. Thesameprob- WD,aradiusof&0.1R⊙ (Bloecker1995).Forgravitationalradi- ationtobringthecore-WDsystemtomergewithin< 2×104yr lemholdsfortheDDetscenario. Another problem seems to be the iron distribution in the theorbitalseparationshouldbe. 0.1R⊙.Atthisseparationtidal SN remnant (SNR). Dongetal. (2014) consider the presence of interactionwiththelargercorewouldcausethemergerratherthan doubly-peakedlineprofilesofcobaltandironasapossiblesmoking gravitationalradiation.ForthesetworeasonstheCDscenarioisa gun for theWWCscenario. Although Dongetal. (2014) account moreappropriatedescriptionoftheevolutionthanaDDscenario. forthedoubly-peaked lines,itseemsthattheirpredictedirondis- tributionisincontradictionwithirondistributionoftworesolved 4.3 Thedouble-detonation(DDet)scenario SNRs.Yamaguchietal.(2012)presentthe2Dirondistributionin theSNRofthepossibleSNIaG344.7-0.1,andFesenetal.(2015) There are two issues here. (1) The time from the formation of a present the iron and calcium 2D distributions in the SNR 1885 donor He-WDtothemasstransferphaseformtheHe-WDtothe in the Andromeda galaxy. In both SNRs the iron distribution is CO-WDintheDDetscenarioisverylong(Shenetal.2013),much clumpy,anddoesnotshowtwoprominentdistributionsasexpected longerthanthepost-CEevolutionofSN2014J. (2)Theexpected fromtheWWCscenario. CSMmassintheDDetscenarioisverylow,≪ 1M⊙ (Shenetal. 2013).ForthesetworeasontheDDetscenariocannotaccountfor the potassium absorbing gas of SN 2014J if it is of CSM origin. 4.6 Summary Lundqvistetal.(2015)putfurtherconstraintonanyheliumdonor Undertheassumptionthatthegasresponsibleofthepotassiumab- companiontoSN2014Jtobeatarelativelylargeseparation. sorption lines in SN 2014J, either only time-variable lines or all lines,isCSMformedbytheprogenitorofSN2014J,Ifoundinthis 4.4 Thesingle-degenerate(SD)scenario studythattheCDscenarioistheonlyscenariothatcanaccountfor themassandmomentumoftheabsorbinggas. IntheSDscenariothereisnostronginteractionbetweenthedonor Thisdoesnotmeanthattheissueiscompletelysettled.There starandtheWD.Themasslossrateisnotexpectedtobeashighas areseveralopenquestionsintheCDscenariothatstillneedtobe inferredinsection3,&3×10−4M⊙yr−1.Theradialmomentum workedout.SpecificallyforSN2014Jthetime-variabilityofthree discharge of the shells is defined as the radial momentum of the absorption linesand invariability of theother lines should be ex- shellsdividedbytheejectiontime.Ifindthisvaluefortheshells, plained.Moregenerally,theprocessesofthecore-WDmerger,the ifofCSMorigin,tobep˙&1029gcms−2.Theradiationmomen- evolutiontillignition,andtheignitionmustbeworkedout inthe tum discharge is L∗/c = 1.3×1028(L∗/105L⊙)gcms−2. A CDscenario. windfromasinglegiantstarofmass< 8M⊙ cannotexplainthe IftheabsorbingmaterialinSN2014JisindeedCSM,itadds momentumintheabsorbingshells. toPTF11kxinsupportingtheCDscenario.InPTF11kxtheCD Anotherproblemisthetimespanbetweenmassejectionand scenarioistheonlyoneamongthescenariosstudiedherethatcan explosion.Sincethepresentluminosityofthecompanionislimited accountforthemassandpropertiesoftheCSM(Sokeretal.2013). to. 103L⊙ (Kellyetal.2014),anycompanionwithsuchamas- IncludingotherobservationalpropertiesofSNIathatwerelistedby siveCSMmustbebrighterontheasymptoticgiantbranch(AGB). Tsebrenko&Soker(2015a)intheirtable1,IfindtheCDscenario ToexplainthemassiveCSM,thegiantdonorshouldhavelostmost tobe thefavorableone for SNIa, possibly together withtheDD ofitsenvelopewithin< 2×104yrpriortoexplosion.IntheSD scenario. The automatic attribution of any CSM material around scenariothereisnoexplanationwhyexplosionshouldoccurwithin SNIatotheSDscenarioshouldbeabandon.TheCDscenariodoes thistimescale.ThisisunliketheCDscenario,wherethetimescale muchbetter. isexplainedasapost-CEevolution. ThisresearchwassupportedbytheAsherFundforSpaceRe- searchattheTechnion. 4.5 TheWD-WDcollision(WWC)scenario IntheWWCscenariothetwoprogenitorsofthetwoWDsshould REFERENCES have no interaction at all before the final collision. As explained for the SD scenario above, a single AGB star cannot account for Akashi,M.,&Soker,N.2013,MNRAS,436,1961 themomentumandmasslossratethatformedtheshells,ifofCSM Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, origin. ARA&A,47,481 This adds to the several problems the WWC scenario en- Aznar-Sigua´n,G.,Garc´ıa-Berro,E.,Lore´n-Aguilar,P.,Jose´,J.,& counters when compared with observations (Tsebrenko&Soker Isern,J.2013,MNRAS,434,2539 2015a), despite the one strong character that the ignition is easy Bloecker,T.1995,A&A,299,755 toachieveinthecollisionprocess.Themostseverproblemofthe Bujarrabal, V., Alcolea, J., Sahai, R., Zamorano, J., & Zijlstra, WWCscenario isthat it cannot account for more than about one A.A.1998,A&A,331,361 (cid:13)c 0000RAS,MNRAS000,000–000 Thecircumstellarmatterofsupernova2014Jand thecore-degeneratescenario 5 Dickel,J.R.,&Jones,E.M.1985,ApJ,288,707 Seitenzahl,I.R.,Cescutti,G.,Ro¨pke,F.K.,Ruiter,A.J.,&Pak- DiStefano,R.,Voss,R.,&Claeys,J.S.W.2011,ApJLett.,738, mor,R.2013,A&A,559,L5 LL1 Shen, K.J.,Guillochon, J.,&Foley,R.J.2013, ApJLett.,770, Dong, S., Katz, B., Kushnir, D., & Prieto, J. L. 2014, L35 arXiv:1401.3347 Simon,J.D.,Gal-Yam,A.,Gnat,O.,etal.2009,ApJ,702,1157 Fesen, R. A., Hoeflich, P., & Hamilton, A. J. S. 2015, Soker,N.2011,arXiv:1109.4652 arXiv:1412.3815 Soker,N.2014,MNRAS,444,L73 Foley,R.J.,Fox,O.D.,McCully,C.,etal.2014,MNRAS,443, Soker,N.,Garc´ıa-Berro,E.,&Althaus,L.G.2014,MNRAS,437, 2887 L66 Fulle,M.,Molaro,P.,Buzzi,L.,&Valisa,P.2013,ApJLett.,771, Soker,N.,Kashi,A.,Garc´ıa-BerroE.,Torres,S.,&Camacho,J. LL21 2013,MNRAS,431,1541 Graham, M. L., Valenti, S., Fulton, B. J., et al. 2015, Sparks,W.M.,&Stecher,T.P.1974,ApJ,188,149 arXiv:1412.0653 Sternberg, A., Gal-Yam, A., Simon, J. D., et al. 2011, Science, Han,Z.,&Podsiadlowski,P.2004,MNRAS,350,1301 333,856 Iben,I.,Jr.,&Tutukov,A.V.1984,ApJSuppl.Ser.,54,335 Sternberg,A.,GalYam,A.,Simon, J.D.,et al.2014, MNRAS, Ilkov,M.,&Soker,N.2012,MNRAS,419,1695 443,1849 Ilkov,M.,&Soker,N.2013,MNRAS,428,579 Szyszka,C.,Zijlstra,A.A.,&Walsh,J.R.2011,MNRAS,416, Johansson, J., Goobar, A., Kasliwal, M. M., et al. 2014, 715 arXiv:1411.3332 Tamagawa,T.,Hayato, A.,Nakamura,S.,etal.2009, PASJ,61, Justham,S.2011,ApJLett.,730,LL34 167 Kashi,A.,&Soker,N.2011,MNRAS,417,1466 Thompson,T.A.2011,ApJ,741,82 Katz,B.,&Dong,S.2012,arXiv:1211.4584 Tsebrenko,D.,&Soker,N.2013,MNRAS,435,320 Kelly,P.L.,Fox,O.D.,Filippenko,A.V.,etal.2014,ApJ,790,3 Tsebrenko,D.,&Soker,N.2015a,MNRAS,447,2568 Kushnir,D.,Katz,B.,Dong,S.,Livne,E.,&Ferna´ndez,R.2013, Tsebrenko,D.,&Soker,N.2015b,arXiv:1407.6231 ApJLett.,778,L37 vanKerkwijk,M.H.,Chang, P.,&Justham,S.2010,ApJLett., Lundqvist, P., Nyholm, A., Taddia, F., et al. 2015, 722,L157 arXiv:1502.00589 Webbink,R.F.1984,ApJ,277,355 Levanon,N.,Soker,N.,&Garc´ıa-Berro,E.2015,MNRAS,447, Whelan,J.,&Iben,I.,Jr.1973,ApJ,186,1007 2803 Woosley,S.E.,&Weaver,T.A.1994,ApJ,423,371 Livio,M.,&Riess,A.G.2003,ApJLett.,594,L93 Yamaguchi,H.,Tanaka, M.,Maeda, K.,Slane,P.O.,Foster,A., Livne,E.,&Arnett,D.1995,ApJ,452,62 Smith,R.K.,Katsuda,S.,&Yoshii,R.2012,ApJ,749,137 Lore´n-Aguilar, P., Isern, J., & Garc´ıa-Berro, E. 2010, MNRAS, 406,2749 Maguire, K., Sullivan, M., Patat, F., et al. 2013, MNRAS, 436, 222 Maoz,D.,Mannucci,F.,&Nelemans,G.2014,arXiv:1312.0628 Margutti,R.,Parrent,J.,Kamble,A.,Soderberg,A.M.,Foley,R. J., Milisavljevic, D., Drout, M. R., & Kirshner, R. 2014, ApJ, 790,52 Meaburn, J.,Lloyd, M.,Vaytet,N.M.H.,&Lo´pez, J.A.2008, MNRAS,385,269 Moll,R.,Raskin,C.,Kasen,D.,&Woosley,S.E.2014,ApJ,785, 105 Nielsen, M. T. B., Gilfanov, M., Bogda´n, A´., Woods, T. E., & Nelemans,G.2014,MNRAS,442,3400 Nomoto,K.1982,ApJ,253,798 Pakmor,R.,Kromer,M.,Taubenberger,S.,&Springel,V.2013, ApJLett.,770,L8 Patat,F.,Chandra,P.,Chevalier,R.,etal.2007,Science,317,924 Pe´rez-Torres, M. A., Lundqvist, P., Beswick, R. J., et al. 2014, ApJ,792,38 Raskin,C.,Kasen,D.,Moll,R.,Schwab,J.,&Woosley,S.2014, ApJ,788,75 Raskin,C.,Timmes,F.X.,Scannapieco,E.,Diehl,S.,&Fryer,C. 2009,MNRAS,399,L156 Ritchey, A. M., Welty, D. E., Dahlstrom, J. A., & York, D. G. 2014,arXiv:1407.5723 Rosswog,S.,Kasen,D.,Guillochon,J.,&Ramirez-Ruiz,E.2009, ApJLett.,705,L128 Scho¨nberner, D.,Jacob, R.,Lehmann,H.,Hildebrandt,G.,Stef- fen, M., Zwanzig, A., Sandin, C., & Corradi, R. L. M. 2014, AstronomischeNachrichten,335,378 (cid:13)c 0000RAS,MNRAS000,000–000