ebook img

The chiral partner of the nucleon in the mirror assignment with global symmetry PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The chiral partner of the nucleon in the mirror assignment with global symmetry

The chiral partner of the nucleon in the mirror 9 assignment with global symmetry 0 0 2 n a J 6 2 SusannaGallas ∗ JohannWolfgangGoethe-UniversitätFrankfurtamMain ] h E-mail: [email protected] p - FrancescoGiacosa p e JohannWolfgangGoethe-UniversitätFrankfurtamMain h E-mail: [email protected] [ 1 Dirk H.Rischke v JohannWolfgangGoethe-UniversitätFrankfurtamMain 3 E-mail: [email protected] 4 0 4 ( ) 1. Wecalculatethepion-nucleonscatteringlengthsa0± andthemassparameterm0,whichdescribes 0 thenucleonmassinthechirallimit,attree-levelintheframeworkofagloballysymmetriclinear 9 sigma modelwith parity-doublednucleons. When recentlattice results [1] are used, we obtain 0 ( ) (+) v: m0≃300−600MeV.Whilea0− isinfairagreementwithexperimentaldata,a0 istoosmallbe- i causeoftheemployedlargescalarmesonmass. Thisindicatestheneedtoaccountforadditional X scalardegreesoffreedom. r a 8thConferenceQuarkConfinementandtheHadronSpectrum September1-62008 Mainz,Germany Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Thechiralpartnerofthenucleon SusannaGallas 1. Introduction Effectivemodels which embody chiral symmetryand itsspontaneous breakdown atlow tem- peraturesanddensitiesarewidelyusedtounderstandthepropertiesoflighthadrons. Viablecandi- datesobeyawell-definedsetoflow-energytheorems[2,3]buttheystilldifferinsomecrucialand interesting aspects such asthemass generation ofthe nucleon and thebehavior atnon-zero T and m . Here we concentrate on a linear sigma model with U(2) U(2) symmetry and parity- R L × doubled nucleons. The mesonic sector involves scalar, pseudoscalar, vector, and axial-vector mesons. Inthebaryonicsector,besidestheusualnucleondoubletfieldN,asecondbaryondoublet N∗ with JP = 12− is included. As first discussed in Ref. [4] and extensively analyzed in Ref. [5], inthe so-called mirror assignment thenucleon fields N and N have amassm =0inthechirally ∗ 0 6 symmetricphase. Thechiralcondensatej increasesthemassesandgeneratesamasssplittingofN andN ,butisnolongersolelyresponsible forgenerating themasses. Suchatheoreticalset-uphas ∗ been used in Ref. [6] to study the properties of cold and dense nuclear matter. The experimental assignmentforthechiralpartnerofthenucleonisstillcontroversial: thewell-identifiedresonances N (1535) and N (1650) are two candidates with the right quantum numbers listed in the PDG ∗ ∗ [7], but we shall also investigate the possibility of a very broad and not yet discovered resonance centered atabout1.2GeV,whichhasbeenproposed inRef.[6]. The aim of the present work is the development of an effective model which embodies the chiralpartnerofthenucleoninthemirrorassignmentwithinthecontextofglobalchiralsymmetry involving alsovectorandaxial-vectormesons. Inthiswaymoretermsappearthanthoseoriginally proposed in Ref. [4]. Moreover, we restrict our study to operators up to fourth order (thus not including Weinberg-Tomozawa interaction terms). Theaxial coupling constant ofthenucleon can be correctly described. Using recent information about the axial coupling of the partner [1] and experimental knowledge about its decay width [7] we can evaluate the mass parameter m which 0 describes the nucleon mass in the chiral limit. Then, we further evaluate pion-nucleon scattering lengths andwecomparethemwiththeexperimental values[8]. 2. The model and itsimplications ThescalarandpseudoscalarfieldsareincludedinthematrixF =(s +ih )t0+(−→a0+i−→p ) −→t aannddLthme=(a(xwiaml-+)vefc1mt)otr0fi+e(ld−→rsmar+e−→are1pmr)e·s−→etnt(e−→dt b=y12th−→te,mwahtreicrees−→tRmar=eth(wePm a−ulif1mm )at0tr+ice(s−→ranm d−t0−→a=1m 1)21··−2→t). Thecorresponding Lagrangian describing onlymesonsreads Lmes = Tr (Dm F )†(Dm F ) m2F †F l 2 F †F 2 l 1 Tr[F †F ] 2+c(detF †+detF ) − − − + Tr[hH(F †+F )] 1Tr (Lmn )2+(R(cid:0)mn )2 (cid:1)+im21Tr(cid:0)(Lm )2+((cid:1)Rm )2 −4 2 + h2Tr(F †Lm Lm F +F R(cid:2)m Rm F †)+h3Tr(F(cid:3)Rm F †Lm (cid:2))+Lthree+Lf(cid:3)our , (2.1) 2 Thechiralpartnerofthenucleon SusannaGallas where Dm F =¶ m +ig (F Rm Lm F )and Lmn =¶ m Ln ¶ n Lm ,Rmn =¶ m Rn ¶ n Rm are the field 1 − − − strengthtensorsofthe(axial-)vectorfields. L andL describe3-and4-particleinteractions three four of(axial-)vector fields,whichareirrelevant forthiswork,seeRef.[9]. Thebaryon sector involves thebaryon doublets Y and Y ,whereY haspositive parity and 1 2 1 Y negative parity. In the so-called mirror assignment, Y and Y transform in the opposite way 2 1 2 underchiralsymmetry,namely: Y U Y ,Y Y U†, Y U Y ,Y Y U†, (2.2) 1R −→ R 1R 1R −→ 1R R 2R −→ L 2R 2R−→ 2R L andsimilarly fortheleft-handed fields. Suchfieldtransformations allowtowritedownabaryonic Lagrangian withachirallyinvariant masstermforthefermions,parametrized bym : 0 Lbar = Y 1Ligm D1mLY 1L+Y 1Rigm D1mRY 1R+Y 2Ligm D2mRY 2L+Y 2Rigm D2mLY 2R g Y YF +Y F †Y g Y F †Y +Y YF 1 1L 1R 1R 1L 2 2L 2R 2R 2L − − m0(cid:0)(Y 1LY 2R Y 1RY 2L Y 2(cid:1)LY 1R+(cid:0)Y 2RY 1L), (cid:1) (2.3) − − − b b where Dm = ¶ m ic Rm , Dm = ¶ m ic Lm and Dm = ¶ m ic Rm , Dm = ¶ m ic Lm are the 1R − 1 1L − 1 2R − 2 2L − 2 covariant derivatives for the nucleonic fields. The coupling constants g and g parametrize the 1 2 interaction of the baryonic fields with scalar and pseudoscalar mesons and j = 0 s 0 =Zfp is h | | i thechiralcondensate emerginguponspontaneous chiralsymmetrybreakbingintbhemesonicsector. Theparameter fp =92.4MeVisthepiondecayconstantandZisthewavefunctionrenormalization constant ofthepseudoscalar fields[11]. Thetermproportional tom generatesalsoamixingbetweenthefieldsY andY .Thephys- 0 1 2 ical fields N and N , referring to the nucleon and to its chiral partner, arise by diagonalizing the ∗ baryonic partoftheLagrangian. Asaresultwehave: N Y 1 ed /2 g e d /2 Y =M 1 = 5 − 1 . (2.4) N∗! Y 2! √2coshd g5e−d /2 ed /2 ! Y 2! − b Themassesofthenucleon anditspartnerareobtained upondiagonalizing themassmatrixM: 1 (g g )j m = 4m2+(g +g )2j 2 1− 2 , b(2.5) N,N∗ 2 0 1 2 ± 2 i.e., the nucleon mass is not only gqenerated by the chiral conbdensbate j but also by m0. The pa- b b rameter d in Eq. (2.4) is related to the masses and the parameter m by the expression: d = 0 Arcosh mN2+mm0N∗ .Let us consider two important limiting cases. (i) When d →¥ , corresponding tom0 h0,nomiixingispresentandN=Y 1,N∗=Y 2.InthiscasemN =g1j /2andmN =g2j /2, → ∗ thus the nucleon mass is generated solely by the chiral condensate as in the linear sigma model. (ii) Inthe chirally restored phase where j 0, one has mass degeneracybm =m =m .bWhen N N 0 → ∗ chiralsymmetryisbroken, j =0,asplitting isgenerated. Bychoosing 0<g <g theinequality 1 2 6 m <m isfulfilled. N N ∗ Notealsothat,wheng =c =c andh =h =h =0,thechiralsymmebtrybebcomeslocal[10, 1 1 2 1 2 3 12]. ThecorrespondingmodelhasbeenstudiedinRef. [13]. Itwasnotpossibletomakeaclear-cut prediction astowhetherthemassofthenucleon isdominantly generated bythechiralcondensate or bymixing withits chiral partner. Inaddition tothis, the description of themesonic decays was 3 Thechiralpartnerofthenucleon SusannaGallas not correct in a locally symmetric framework as shown in Ref. [14]. Also, the expression for the axial charge reads gN = tanhd . Since tanhd <1 for all d and Z >1, we obtain gN <1, at odds A Z2 | | A with the experimental value gN =1.267 0.004. Thus, in the context of local symmetry one is A ± obligedtointroducetermsofhigherordersuchastheWeinberg-Tomozawaone. Asafinalremark, notethatbysettingZ=1(whichinturnmeansg =0)thevectormesonsandaxial-vectormesons 1 drop out and only the (pseudo-)scalar and nucleonic terms survive in the Lagrangian. Then, for gN∗avaluemuchlargerthan0.5ispredicted, whichisindisagreement withlatticedata[1]. A In Ref. [6] a large value of the parameter m ( 800 MeV) is claimed to be needed for a 0 ∼ correct description of nuclear matter properties, thus pointing to a small contribution of the chiral condensate to the nucleon mass. Validating this claim through the evaluation of pion-nucleon scattering atzerotemperature anddensityisthesubjectofthepresentpaper. Theexpressions fortheaxialcoupling constants ofthenucleonandthepartneraregivenby: d d d d e e e e gN = g(1)+ − g(2), gN∗ = − g(1)+ g(2), (2.6) A 2coshd A 2coshd A A −2coshd A 2coshd A where c 1 c 1 (1) 1 (2) 2 g =1 1 , g = 1+ 1 (2.7) A −g −Z2 A − g −Z2 1 1 (cid:18) (cid:19) (cid:18) (cid:19) refertotheaxialcouplingconstantsofthebare,unmixedfieldsY andY .Notethatwhend ¥ 1 2 → one has gNA = g(A1) and gNA∗ = g(A2). Also, when c1 = c2 = 0 (or Z = 1) we obtain the results of Ref. [4]: gN =tanhd and gN∗ = tanhd ,which in the limit d ¥ reduces to gN =1 and gN∗ = A A − → A A 1. However, in our model the interaction with the (axial-)vector mesons generates additional − contributions togN andgN∗,whicharefixedviatheexperimentalresultforgN andthelatticeresult A A A forgNA∗,seethenextsection. FromtheLagrangian (2.3)onecancomputethedecayN∗→Np and ( ) thescattering amplitudes a ± [15]. 0 3. Results anddiscussion We consider three possible assignments for the partner of the nucleon. (1) The resonance N∗(1535), with mass MN (1535) = 1535 MeV and G N (1535) Np = (67.5 23.6) MeV, which – ∗ ∗ → ± beingthelightestbaryonicresonancewiththecorrectquantumnumbers–surelyrepresents oneof the viable and highly discussed candidates for the nucleon partner. (2) The resonance N (1650), ∗ with a mass lying just above, MN (1650) =1650 MeV and G N (1650) Np =(92.5 37.5) MeV. (3) ∗ ∗ → ± A speculative candidate N (1200) with a mass M 1200 MeV and a very broad width ∗ N (1200) ∗ ∼ G N (1650) Np &800MeV,suchtohaveavoided experimental detection uptonow[6]. ∗ → For all these scenarios, we want to determine the values of the parameters c , c , and m . 1 2 0 Beyond the width, which isdifferent inthethree cases mentioned above, wealso usegN∗ =0.2 A ± 0.3, aspredicted by lattice QCD[1], and gN =1.26. Werepeat the evaluation fordifferent values A ofZ.Remarkably, m doesnotdependonZ. 0 Figure 1 shows the mass parameter m as a function of the axial coupling constant of N for 0 ∗ differentmassesofN∗. FortherangeofgNA∗ givenbyRef.[1],m0=300−600MeVforN∗(1535) andN (1650), meaningthathalfofthenucleonic masssurvives inthechirally restored phase. On ∗ the contrary, for N (1200) the value for m lies above 1000 MeV. This result suggests that the ∗ 0 4 Thechiralpartnerofthenucleon SusannaGallas contribution of the chiral condensate to the nucleonic mass should be negative, which is rather unnatural. Wecan then discard the possibility that a hypothetical, not yet discovered N (1200) is ∗ thechiralpartnerofthenucleon. According to Ref. [16], when the fields N and N belong to a parity doublet, gN 1 and ∗ A ∼ gNA∗ ∼−1. Then,inRef. [16]thelattice resultof[1]isusedagainsttheidentification ofN∗(1535) asthepartner ofthenucleon. However,within ourmodelwecanstill accommodate N (1535) (or ∗ alsoN∗(1650))asthepartnerofthenucleon. ThesmallvalueofgNA∗ arisesbecause ofinteractions ofthepartnerwiththeaxial-vector mesons. Figure1: m0asafunctionofgNA∗. In Figure 2 we plot the isospin-odd and isospin-even scattering lengths as a function of the axialchargegN∗forZ=1.5. Acomparisonofourresultstotheexperimentaldataonp N scattering A lengths, as measured in Ref. [8] by precision X-ray experiments on pionic hydrogen and pionic ( ) deuterium, yields the following: (a) the isospin-odd scattering length a − is close to the experi- 0 mentalrange, butweexpectanevenbetterresultwiththeintroduction oftheD resonance. (b)The (+) isospin-even scattering length a is an order of magnitude smaller than the experimental band 0 a(+) =( 8.85783 7.16)10 6 MeV.Thereason forthis isthestrong dependence ofa(+) onthe 0,exp − ± − 0 scalarmesons. Hereweusems =1370MeV.Asmallermassofthesigmamesonmaybefavored, howeverthisresultseemstobeexcluded [9]. Figure2: Thescatteringlengths(a)a(0−)and(b)a(0+)asafunctionofgNA∗. 5 Thechiralpartnerofthenucleon SusannaGallas 4. Summary andoutlook We have computed the pion-nucleon scattering lengths at tree-level in the framework of a globally symmetric linear sigma model with parity-doubled nucleons. Within the mirror assign- ment the mass of the nucleon originates only partially from the chiral condensate, but also from the mass parameter m . Using the lattice results of Ref. [1] we find that m 300 600 MeV. 0 0 ≃ − Approximately half of the nucleon mass survives in the chirally restored phase. The isospin-odd scattering lengthliesclosetotheexperimental band,butcouldbeimprovedinfurtherstudies. The isospin-even scattering length istoo small: future inclusion of alight tetraquark state givesrise to alargecontribution, andthusisexpectedtoimprovetheresults. Wealsoplantoextendourmodel by including the D resonance, necessary to correctly reproduce the p-wave scattering lengths [17] andtoevaluatetheradiativeh -photoproduction. Acknowledgements TheauthorsthankT.Kunihiro, T.TakahashiandD.Parganlijaforusefuldiscussions. References [1] T.T.TakahashiandT.Kunihiro,Phys.Rev.D78(2008)011503 [2] U.G.Meissner,Phys.Rept.161(1988)213. [3] S.GasiorowiczandD.A.Geffen,Rev.Mod.Phys.41(1969)531. [4] C.DeTarandT.Kunihiro,Phys.Rev.D39(1989)2805. [5] D.Jido,M.Oka,andA.Hosaka,Prog.Theor.Phys.106(2001)873[arXiv:hep-ph/0110005]. [6] D.Zschiesche,L.Tolos,J.Schaffner-Bielich,andR.D.Pisarski,arXiv:nucl-th/0608044. [7] C.Amsleretal.Phys.Lett.B667(2008) [8] H.C.Schroderetal.,Eur.Phys.J.C21(2001)473. [9] D.Parganlija,F.Giacosa,andD.Rischke,theseproceedings. [10] P.KoandS.Rudaz,Phys.Rev.D50(1994)6877. [11] S.StrüberandD.H.Rischke,Phys.Rev.D77(2008)085004 [12] R.D.Pisarski,arXiv:hep-ph/9503330. [13] S.Wilms,F.Giacosa,andD.H.Rischke,Proceedingsof19thInternationalConferenceon Ultra-RelativisticNucleus-NucleusCollisions: QuarkMatter2006(QM2006),Shanghai,China, 14-20Nov2006 [14] D.Parganlija,F.Giacosa,andD.H.Rischke,AIPConf.Proc.1030(2008)160[arXiv:0804.3949 [hep-ph]]. [15] S.Gallas,F.Giacosa,andD.H.Rischke,inpreparation [16] L.Y.Glozman,Phys.Rept.444(2007)1[arXiv:hep-ph/0701081]. [17] M.Procura,B.U.Musch,T.R.Hemmert,andW.Weise,Phys.Rev.D75(2007)014503 [arXiv:hep-lat/0610105]. 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.