The chiral partner of the nucleon in the mirror 9 assignment with global symmetry 0 0 2 n a J 6 2 SusannaGallas ∗ JohannWolfgangGoethe-UniversitätFrankfurtamMain ] h E-mail: [email protected] p - FrancescoGiacosa p e JohannWolfgangGoethe-UniversitätFrankfurtamMain h E-mail: [email protected] [ 1 Dirk H.Rischke v JohannWolfgangGoethe-UniversitätFrankfurtamMain 3 E-mail: [email protected] 4 0 4 ( ) 1. Wecalculatethepion-nucleonscatteringlengthsa0± andthemassparameterm0,whichdescribes 0 thenucleonmassinthechirallimit,attree-levelintheframeworkofagloballysymmetriclinear 9 sigma modelwith parity-doublednucleons. When recentlattice results [1] are used, we obtain 0 ( ) (+) v: m0≃300−600MeV.Whilea0− isinfairagreementwithexperimentaldata,a0 istoosmallbe- i causeoftheemployedlargescalarmesonmass. Thisindicatestheneedtoaccountforadditional X scalardegreesoffreedom. r a 8thConferenceQuarkConfinementandtheHadronSpectrum September1-62008 Mainz,Germany Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Thechiralpartnerofthenucleon SusannaGallas 1. Introduction Effectivemodels which embody chiral symmetryand itsspontaneous breakdown atlow tem- peraturesanddensitiesarewidelyusedtounderstandthepropertiesoflighthadrons. Viablecandi- datesobeyawell-definedsetoflow-energytheorems[2,3]buttheystilldifferinsomecrucialand interesting aspects such asthemass generation ofthe nucleon and thebehavior atnon-zero T and m . Here we concentrate on a linear sigma model with U(2) U(2) symmetry and parity- R L × doubled nucleons. The mesonic sector involves scalar, pseudoscalar, vector, and axial-vector mesons. Inthebaryonicsector,besidestheusualnucleondoubletfieldN,asecondbaryondoublet N∗ with JP = 12− is included. As first discussed in Ref. [4] and extensively analyzed in Ref. [5], inthe so-called mirror assignment thenucleon fields N and N have amassm =0inthechirally ∗ 0 6 symmetricphase. Thechiralcondensatej increasesthemassesandgeneratesamasssplittingofN andN ,butisnolongersolelyresponsible forgenerating themasses. Suchatheoreticalset-uphas ∗ been used in Ref. [6] to study the properties of cold and dense nuclear matter. The experimental assignmentforthechiralpartnerofthenucleonisstillcontroversial: thewell-identifiedresonances N (1535) and N (1650) are two candidates with the right quantum numbers listed in the PDG ∗ ∗ [7], but we shall also investigate the possibility of a very broad and not yet discovered resonance centered atabout1.2GeV,whichhasbeenproposed inRef.[6]. The aim of the present work is the development of an effective model which embodies the chiralpartnerofthenucleoninthemirrorassignmentwithinthecontextofglobalchiralsymmetry involving alsovectorandaxial-vectormesons. Inthiswaymoretermsappearthanthoseoriginally proposed in Ref. [4]. Moreover, we restrict our study to operators up to fourth order (thus not including Weinberg-Tomozawa interaction terms). Theaxial coupling constant ofthenucleon can be correctly described. Using recent information about the axial coupling of the partner [1] and experimental knowledge about its decay width [7] we can evaluate the mass parameter m which 0 describes the nucleon mass in the chiral limit. Then, we further evaluate pion-nucleon scattering lengths andwecomparethemwiththeexperimental values[8]. 2. The model and itsimplications ThescalarandpseudoscalarfieldsareincludedinthematrixF =(s +ih )t0+(−→a0+i−→p ) −→t aannddLthme=(a(xwiaml-+)vefc1mt)otr0fi+e(ld−→rsmar+e−→are1pmr)e·s−→etnt(e−→dt b=y12th−→te,mwahtreicrees−→tRmar=eth(wePm a−ulif1mm )at0tr+ice(s−→ranm d−t0−→a=1m 1)21··−2→t). Thecorresponding Lagrangian describing onlymesonsreads Lmes = Tr (Dm F )†(Dm F ) m2F †F l 2 F †F 2 l 1 Tr[F †F ] 2+c(detF †+detF ) − − − + Tr[hH(F †+F )] 1Tr (Lmn )2+(R(cid:0)mn )2 (cid:1)+im21Tr(cid:0)(Lm )2+((cid:1)Rm )2 −4 2 + h2Tr(F †Lm Lm F +F R(cid:2)m Rm F †)+h3Tr(F(cid:3)Rm F †Lm (cid:2))+Lthree+Lf(cid:3)our , (2.1) 2 Thechiralpartnerofthenucleon SusannaGallas where Dm F =¶ m +ig (F Rm Lm F )and Lmn =¶ m Ln ¶ n Lm ,Rmn =¶ m Rn ¶ n Rm are the field 1 − − − strengthtensorsofthe(axial-)vectorfields. L andL describe3-and4-particleinteractions three four of(axial-)vector fields,whichareirrelevant forthiswork,seeRef.[9]. Thebaryon sector involves thebaryon doublets Y and Y ,whereY haspositive parity and 1 2 1 Y negative parity. In the so-called mirror assignment, Y and Y transform in the opposite way 2 1 2 underchiralsymmetry,namely: Y U Y ,Y Y U†, Y U Y ,Y Y U†, (2.2) 1R −→ R 1R 1R −→ 1R R 2R −→ L 2R 2R−→ 2R L andsimilarly fortheleft-handed fields. Suchfieldtransformations allowtowritedownabaryonic Lagrangian withachirallyinvariant masstermforthefermions,parametrized bym : 0 Lbar = Y 1Ligm D1mLY 1L+Y 1Rigm D1mRY 1R+Y 2Ligm D2mRY 2L+Y 2Rigm D2mLY 2R g Y YF +Y F †Y g Y F †Y +Y YF 1 1L 1R 1R 1L 2 2L 2R 2R 2L − − m0(cid:0)(Y 1LY 2R Y 1RY 2L Y 2(cid:1)LY 1R+(cid:0)Y 2RY 1L), (cid:1) (2.3) − − − b b where Dm = ¶ m ic Rm , Dm = ¶ m ic Lm and Dm = ¶ m ic Rm , Dm = ¶ m ic Lm are the 1R − 1 1L − 1 2R − 2 2L − 2 covariant derivatives for the nucleonic fields. The coupling constants g and g parametrize the 1 2 interaction of the baryonic fields with scalar and pseudoscalar mesons and j = 0 s 0 =Zfp is h | | i thechiralcondensate emerginguponspontaneous chiralsymmetrybreakbingintbhemesonicsector. Theparameter fp =92.4MeVisthepiondecayconstantandZisthewavefunctionrenormalization constant ofthepseudoscalar fields[11]. Thetermproportional tom generatesalsoamixingbetweenthefieldsY andY .Thephys- 0 1 2 ical fields N and N , referring to the nucleon and to its chiral partner, arise by diagonalizing the ∗ baryonic partoftheLagrangian. Asaresultwehave: N Y 1 ed /2 g e d /2 Y =M 1 = 5 − 1 . (2.4) N∗! Y 2! √2coshd g5e−d /2 ed /2 ! Y 2! − b Themassesofthenucleon anditspartnerareobtained upondiagonalizing themassmatrixM: 1 (g g )j m = 4m2+(g +g )2j 2 1− 2 , b(2.5) N,N∗ 2 0 1 2 ± 2 i.e., the nucleon mass is not only gqenerated by the chiral conbdensbate j but also by m0. The pa- b b rameter d in Eq. (2.4) is related to the masses and the parameter m by the expression: d = 0 Arcosh mN2+mm0N∗ .Let us consider two important limiting cases. (i) When d →¥ , corresponding tom0 h0,nomiixingispresentandN=Y 1,N∗=Y 2.InthiscasemN =g1j /2andmN =g2j /2, → ∗ thus the nucleon mass is generated solely by the chiral condensate as in the linear sigma model. (ii) Inthe chirally restored phase where j 0, one has mass degeneracybm =m =m .bWhen N N 0 → ∗ chiralsymmetryisbroken, j =0,asplitting isgenerated. Bychoosing 0<g <g theinequality 1 2 6 m <m isfulfilled. N N ∗ Notealsothat,wheng =c =c andh =h =h =0,thechiralsymmebtrybebcomeslocal[10, 1 1 2 1 2 3 12]. ThecorrespondingmodelhasbeenstudiedinRef. [13]. Itwasnotpossibletomakeaclear-cut prediction astowhetherthemassofthenucleon isdominantly generated bythechiralcondensate or bymixing withits chiral partner. Inaddition tothis, the description of themesonic decays was 3 Thechiralpartnerofthenucleon SusannaGallas not correct in a locally symmetric framework as shown in Ref. [14]. Also, the expression for the axial charge reads gN = tanhd . Since tanhd <1 for all d and Z >1, we obtain gN <1, at odds A Z2 | | A with the experimental value gN =1.267 0.004. Thus, in the context of local symmetry one is A ± obligedtointroducetermsofhigherordersuchastheWeinberg-Tomozawaone. Asafinalremark, notethatbysettingZ=1(whichinturnmeansg =0)thevectormesonsandaxial-vectormesons 1 drop out and only the (pseudo-)scalar and nucleonic terms survive in the Lagrangian. Then, for gN∗avaluemuchlargerthan0.5ispredicted, whichisindisagreement withlatticedata[1]. A In Ref. [6] a large value of the parameter m ( 800 MeV) is claimed to be needed for a 0 ∼ correct description of nuclear matter properties, thus pointing to a small contribution of the chiral condensate to the nucleon mass. Validating this claim through the evaluation of pion-nucleon scattering atzerotemperature anddensityisthesubjectofthepresentpaper. Theexpressions fortheaxialcoupling constants ofthenucleonandthepartneraregivenby: d d d d e e e e gN = g(1)+ − g(2), gN∗ = − g(1)+ g(2), (2.6) A 2coshd A 2coshd A A −2coshd A 2coshd A where c 1 c 1 (1) 1 (2) 2 g =1 1 , g = 1+ 1 (2.7) A −g −Z2 A − g −Z2 1 1 (cid:18) (cid:19) (cid:18) (cid:19) refertotheaxialcouplingconstantsofthebare,unmixedfieldsY andY .Notethatwhend ¥ 1 2 → one has gNA = g(A1) and gNA∗ = g(A2). Also, when c1 = c2 = 0 (or Z = 1) we obtain the results of Ref. [4]: gN =tanhd and gN∗ = tanhd ,which in the limit d ¥ reduces to gN =1 and gN∗ = A A − → A A 1. However, in our model the interaction with the (axial-)vector mesons generates additional − contributions togN andgN∗,whicharefixedviatheexperimentalresultforgN andthelatticeresult A A A forgNA∗,seethenextsection. FromtheLagrangian (2.3)onecancomputethedecayN∗→Np and ( ) thescattering amplitudes a ± [15]. 0 3. Results anddiscussion We consider three possible assignments for the partner of the nucleon. (1) The resonance N∗(1535), with mass MN (1535) = 1535 MeV and G N (1535) Np = (67.5 23.6) MeV, which – ∗ ∗ → ± beingthelightestbaryonicresonancewiththecorrectquantumnumbers–surelyrepresents oneof the viable and highly discussed candidates for the nucleon partner. (2) The resonance N (1650), ∗ with a mass lying just above, MN (1650) =1650 MeV and G N (1650) Np =(92.5 37.5) MeV. (3) ∗ ∗ → ± A speculative candidate N (1200) with a mass M 1200 MeV and a very broad width ∗ N (1200) ∗ ∼ G N (1650) Np &800MeV,suchtohaveavoided experimental detection uptonow[6]. ∗ → For all these scenarios, we want to determine the values of the parameters c , c , and m . 1 2 0 Beyond the width, which isdifferent inthethree cases mentioned above, wealso usegN∗ =0.2 A ± 0.3, aspredicted by lattice QCD[1], and gN =1.26. Werepeat the evaluation fordifferent values A ofZ.Remarkably, m doesnotdependonZ. 0 Figure 1 shows the mass parameter m as a function of the axial coupling constant of N for 0 ∗ differentmassesofN∗. FortherangeofgNA∗ givenbyRef.[1],m0=300−600MeVforN∗(1535) andN (1650), meaningthathalfofthenucleonic masssurvives inthechirally restored phase. On ∗ the contrary, for N (1200) the value for m lies above 1000 MeV. This result suggests that the ∗ 0 4 Thechiralpartnerofthenucleon SusannaGallas contribution of the chiral condensate to the nucleonic mass should be negative, which is rather unnatural. Wecan then discard the possibility that a hypothetical, not yet discovered N (1200) is ∗ thechiralpartnerofthenucleon. According to Ref. [16], when the fields N and N belong to a parity doublet, gN 1 and ∗ A ∼ gNA∗ ∼−1. Then,inRef. [16]thelattice resultof[1]isusedagainsttheidentification ofN∗(1535) asthepartner ofthenucleon. However,within ourmodelwecanstill accommodate N (1535) (or ∗ alsoN∗(1650))asthepartnerofthenucleon. ThesmallvalueofgNA∗ arisesbecause ofinteractions ofthepartnerwiththeaxial-vector mesons. Figure1: m0asafunctionofgNA∗. In Figure 2 we plot the isospin-odd and isospin-even scattering lengths as a function of the axialchargegN∗forZ=1.5. Acomparisonofourresultstotheexperimentaldataonp N scattering A lengths, as measured in Ref. [8] by precision X-ray experiments on pionic hydrogen and pionic ( ) deuterium, yields the following: (a) the isospin-odd scattering length a − is close to the experi- 0 mentalrange, butweexpectanevenbetterresultwiththeintroduction oftheD resonance. (b)The (+) isospin-even scattering length a is an order of magnitude smaller than the experimental band 0 a(+) =( 8.85783 7.16)10 6 MeV.Thereason forthis isthestrong dependence ofa(+) onthe 0,exp − ± − 0 scalarmesons. Hereweusems =1370MeV.Asmallermassofthesigmamesonmaybefavored, howeverthisresultseemstobeexcluded [9]. Figure2: Thescatteringlengths(a)a(0−)and(b)a(0+)asafunctionofgNA∗. 5 Thechiralpartnerofthenucleon SusannaGallas 4. Summary andoutlook We have computed the pion-nucleon scattering lengths at tree-level in the framework of a globally symmetric linear sigma model with parity-doubled nucleons. Within the mirror assign- ment the mass of the nucleon originates only partially from the chiral condensate, but also from the mass parameter m . Using the lattice results of Ref. [1] we find that m 300 600 MeV. 0 0 ≃ − Approximately half of the nucleon mass survives in the chirally restored phase. The isospin-odd scattering lengthliesclosetotheexperimental band,butcouldbeimprovedinfurtherstudies. The isospin-even scattering length istoo small: future inclusion of alight tetraquark state givesrise to alargecontribution, andthusisexpectedtoimprovetheresults. Wealsoplantoextendourmodel by including the D resonance, necessary to correctly reproduce the p-wave scattering lengths [17] andtoevaluatetheradiativeh -photoproduction. Acknowledgements TheauthorsthankT.Kunihiro, T.TakahashiandD.Parganlijaforusefuldiscussions. References [1] T.T.TakahashiandT.Kunihiro,Phys.Rev.D78(2008)011503 [2] U.G.Meissner,Phys.Rept.161(1988)213. [3] S.GasiorowiczandD.A.Geffen,Rev.Mod.Phys.41(1969)531. [4] C.DeTarandT.Kunihiro,Phys.Rev.D39(1989)2805. [5] D.Jido,M.Oka,andA.Hosaka,Prog.Theor.Phys.106(2001)873[arXiv:hep-ph/0110005]. [6] D.Zschiesche,L.Tolos,J.Schaffner-Bielich,andR.D.Pisarski,arXiv:nucl-th/0608044. [7] C.Amsleretal.Phys.Lett.B667(2008) [8] H.C.Schroderetal.,Eur.Phys.J.C21(2001)473. [9] D.Parganlija,F.Giacosa,andD.Rischke,theseproceedings. [10] P.KoandS.Rudaz,Phys.Rev.D50(1994)6877. [11] S.StrüberandD.H.Rischke,Phys.Rev.D77(2008)085004 [12] R.D.Pisarski,arXiv:hep-ph/9503330. [13] S.Wilms,F.Giacosa,andD.H.Rischke,Proceedingsof19thInternationalConferenceon Ultra-RelativisticNucleus-NucleusCollisions: QuarkMatter2006(QM2006),Shanghai,China, 14-20Nov2006 [14] D.Parganlija,F.Giacosa,andD.H.Rischke,AIPConf.Proc.1030(2008)160[arXiv:0804.3949 [hep-ph]]. [15] S.Gallas,F.Giacosa,andD.H.Rischke,inpreparation [16] L.Y.Glozman,Phys.Rept.444(2007)1[arXiv:hep-ph/0701081]. [17] M.Procura,B.U.Musch,T.R.Hemmert,andW.Weise,Phys.Rev.D75(2007)014503 [arXiv:hep-lat/0610105]. 6