ebook img

The Chern-Mather class of the multiview variety PDF

0.16 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Chern-Mather class of the multiview variety

The Chern-Mather class of the multiview variety 7 1 Corey Harrisand Daniel Lowengrub 0 2 January26, 2017 n a J Abstract 4 2 The multiview variety associated to a collection of N cameras records which sequences of imagepointsinP2N canbeobtainedbytakingpicturesofagivenworldpointx ∈ P3 with ] the cameras. In order to reconstruct a scene from its picture under the different cameras it G isimportanttobeabletofindthecriticalpointsofthefunctionwhichmeasuresthedistance A between a general point u ∈ P2N and the multiview variety. In this paper we calculate a . specificdegree3polynomialthatcomputesthenumberofcriticalpointsasafunctionofN. In h ordertodothis,weconstructaresolutionofthemultiviewvariety,anduseittocomputeits t a Chern-Matherclass. m [ 1 Introduction 1 v Suppose that a collection of cameras are used to generate images of a scene. The problem of 9 7 triangulationistodeducetheworldcoordinatesofanobjectfromitspositionineachofthecamera 0 images. Ifweassume thatthe imagepointsaregivenwithinfinite precision, thentwocameras 7 sufficetodeterminetheworldpoint. However,duetothemanysourcesofnoiseinrealimages 0 such as pixelization and distortion, there typically will not be an exact solution and we will . 1 insteadtrytofindaworldpointwhosepictureis“ascloseaspossible”totheimagepoints. 0 More precisely, suppose the cameras are C1,...,CN and the image points are p1,...,pn ∈ 7 R2. Thegoalistofindaworldpointq∈R3 thatminimizestheleastsquareserror 1 : v N Xi error(q)= X(Ci(q)−pi)2. i=1 r a Oneapplicationistheproblemofreconstructingthe3Dstructureofatouristattractionbased on millions of online pictures. It is difficult to obtain the precise configuration of any single camera,soitwouldnotmakesensetouseonlyasmallsubsetofthemanddisregardtherest. A betterapproachistosolveanoptimizationproblemwhichincorporatesasmanyofthecameras aspossible. Thistechniquewasusedin[1]toreconstructtheentirecityofRomefromtwomillion onlineimages. Since the camera function C : R3 R2 is not linear, the standard method for solving the i triangulation problem is to first find th→e critical points of error(q) (e.g, with gradient descent), andthenselecttheonewiththesmallesterror.Inordertogaugethedifficultyofthisproblem,it isimportanttobeabletopredictthenumberofcriticalpointsthatweexpecttofindforagiven configurationofcameras. The goal of this paper is to give an explicit expression for the number of critical points of error(q) as a function of the number of cameras N. In fact, we compute this expression for a variation of the problem in which we allow the world points to take complex values, and we allowthesepointstobeintheprojectivespaceP3 asopposedtotheaffinespaceC3. Ourmain C resultisthatthenumberofcriticalpointsoferror(q)ispolynomialinthenumberofcameras. 1 Theorem1. Thenumberofcriticalpointsoferror(q)onP3 isequalto C p(N)=6N3−15N2+11N−4 whereNisthenumberofcameras. Note that our reformulation of the problem only increases the number of possible critical points. Onecansolvetheoriginalproblembyfirstfindingthesepoints,andthendiscardingthe onesthatarenotinR3. Forasimilarreason,thepolynomialp(N)isanupperboundonthenumberofcriticalpoints intheclassicaltriangulationproblem. In[10],adetailedinvestigationoftheLagrangemultiplier equationswhichdefinethecriticalpointsisusedtocomputethenumberofsuchpointsforN≤7. Basedontheseresults,itwasconjecturedin[4,Conjecture3.4]thatthenumberofpointsshould growasthefollowingpolynomial: 9 21 q(N)= N3− N2+8N−4. 2 2 Wenotethatourupperboundp(N)isfairlyclose. Inordertocomputethenumberp(N),wetakeaslightlydifferentperspectiveonthefunction error(q). BycombiningthecamerasC :R3 R2 weobtainarationalmap i → φ:R3 R2N. → Afterpassingtothecomplexnumbersandtakingtheprojectiveclosureweobtainarational map φ:P3C P2CN. → The image of this map is a three-dimensional variety MV ⊂ P2N which is known as the N multiviewvariety. Wecannowinterprettheerrorfunctionerror(q)asmeasuringthedistancebe- tweenapointq∈ P2N andMV . Withthisformulation,thenumberofcriticalpointsisknown N astheEuclideandistancedegreeofthevarietyMV .ThenotionofEDdegreewasintroducedin[4], N andtheauthorsremarkin[4,ex3.3]thatthetriangulationproblemwastheiroriginalmotivation forthisconcept. Inparticular,byusingresultsfrom[4]weproveinsection5thatthisnumbercanbecomputed intermsoftheChern-MatherclasscM(MV ). Ingeneral,theChern-Matherclassonlyprovides N an upper bound on the ED degree, but in the proof of theorem 4 we show that this inequality canbepromoted toanequalityfor reasonsspecific to the multiviewvariety. One advantageof thisapproachisthatitdependsonlyonthegeometricpropertiesofMV ,andnotonthespecific N featuresofthedefiningequations. Anotheradvantageisthatitreducesmostofthedifficultyto localcalculationsonMV . N OnecommonwayofcalculatingtheChern-MatherclassofasingularvarietyXistofirstfind aresolution X˜ −f X → and then analyze the singularities of f in order to compare the Chern class c(X˜) to the Chern- MatherclasscM(X) Inoursituation,itisnaturaltobuildaresolutionofMV byresolvingtherationalmapφ. In N section3,weconstructsucharesolution φ˜ :P˜3 MV N → andcalculateitsChowringandChernclass. In order to compare the Chern class of P˜3 to the Chern-Mather class of MV , we use the N theory of higher discriminants which was introduced in [9]. One aspect of this theory is that it specifieswhichpartsofthesingularlocusofXweneedtounderstandinordertorelatec(X˜)to cM(X). Aprecisestatementisgiveninproposition5. 2 Asweshowinproposition6,thehigherdiscriminantsofφ˜ aresurprisinglynice. Specifically, itturnsoutthatinordertocalculatecM(MV ),weonlyhavetocomputetheEulerobstruction N ofasinglepointx∈MV . N Moreover, in section 5.2 we show that after intersecting MV with a hyperplane at x, the N resultingsurfacesingularity(S,x)istaut. Inparticular,theEulerobstructionEu (x)isdeter- MVN minedbytheresolutiongraphofxinS. ThisallowsustousetheenumerativepropertiesofP˜3 thatareworkedoutinsection3tocomputeEu (x). MVN Inthefinalsection,weputthesepiecestogetherandobtainthepolynomialp(N). 2 Definitions and notation Let P be a 3×4 matrix with values in R. We consider each row l as an affine function on R3. Explicitly, l sends a vector v = (x,y,z) to the dot product of l and (x,y,z,1). We denote these functionsbyf,gandh. ThematrixPdefinesarationalmapφ :R3 99KR2: P v7 (f(v)/h(v),g(v)/h(v)) → which corresponds to the operation of mapping the “world coordinates” R3 to the “image co- ordinates” R2. In other words, it describes the process of taking a picture of the world with a camerawhoseparametersareencodedinP. It is not hard to prove that this description of a camera is equivalent to the pinhole camera model. Inparticular,thecamerahasapositioncalledthecameracenterandispointinginacertain direction.Theplanedefinedbythecameracenteranddirectioniscalledthecameraplane. Itturns outthatwiththeabovenotation,thecameraplaneistheplanedefinedbytheideal(h),andthe camera center is the point defined by (f,g,h). For the purposes of this paper, this observation willbetakenasadefinition. Now, suppose that we have a collection of cameras P ,...,P . By taking a picture of the 1 N worldwitheachofthecameras,weobtainarationalmap: φ ×···×φ :R3 99KR2×···×R2 =∼ R2N P1 PN Thismapclearlyextendstothecomplexnumbers,givingusarationalmapfromC3 99KC2N. Furthermore,byclearingthedenominatorsinthedefinitionofthemapsφ weobtainarational Pi map φ:P3 99KP2N C C definedby φ([x:y:z:w])=(f1h2...hN :g1h2...hN :···:h1...hN−1gN :h1...hN). (1) Theschemetheoreticimageofthismapiscalledthemultiviewvarietyassociatedtothecameras P ,...,P . 1 N Example1. Considerthefollowingthreecameras: 1 0 0 1 0 1 0 1 1 0 0 1 P1 =0 0 1 1, P2 =0 0 1 1, P3 =0 1 0 1. 0 1 0 0 1 0 0 0 0 0 1 0       Theassociatedrationalmapis φ([x:y:z:w])=[(x−w)xz:(z−w)xz:(y−w)yz:(z−w)yz:(x−w)xy:(y−w)xy:xyz]). 3 L 12 H 2 H 1 q 2 q 1 p 123 L 23 q 3 L 13 H 3 Figure1: Schematicofthreecameras Wesaythatacollectionofcamerasisingeneralpositionifthehyperplanesdefinedbythelinear functions{f ,g ,h ,...,f ,g ,h }associatedtotherowsofthecameramatricesareingeneral 1 1 1 N N N position. Finally, we will use the following notation throughout the paper (see figure 1). The camera planeofthei-thcamerawillbedenotedbyH andthecenterofthei-thcamerawillbedenoted i by q . Also, we define L = H ∩H for all 1 ≤ i < j ≤ N, and p = H ∩H ∩H for all i ij i j ijk i j k 1≤i<j<k≤N. 3 A resolution of the multiview variety InthissectionwedescribearesolutionofthemultiviewvarietyassociatedtoNcamerasingen- eralposition. Itisobtainedasaniteratedblowupalongsmoothcenters. Wethenapplystandard theoremstocomputeapresentationoftheChowringoftheresolution,andidentifyacoupleof importantringelements. LetP ,...,P becameramatricesforacollectionofNcamerasingeneralposition,andlet 1 N φ:P3 99KP2N bethecorrespondingrationalmap.WedenotetheassociatedmultiviewvarietybyMV ⊂P2N. N Proposition1. ThebaselocusBofφisthereducedschemesupportedontheunionofthecameracenters q ,...,q andthelinesL =H ∩H forall1≤i<j≤N. 1 N ij i j Proof. It can be seen directly from the equations of φ (equation 1) that B is supported on the cameracenters union the lines L . We will show that the scheme structure of B is the reduced ij structure on this set. By a strategic choice of coordinates on P3, we can assume that h = x, 1 h =yandh =z. 2 3 We now analyze the scheme structure of B in a neighborhood of the point p = (x,y,z). 123 Firstofall,recallthatthei-thcameracontributesthetwoequationsf · h andg · h i Qj6=i j i Qj6=i j totheidealofB. Byourgenericityassumptions,allofthef ’s,alloftheg ’s,andh fori ≥ 4areinvertiblein i i i someZariskineighborhoodofp . Thisimpliesthatinaneighborhood ofp , theidealofB 123 123 hastheform: (xy,xz,yz). 4 Thus, the ideal defined by this scheme is reduced and supported on the coordinate axes. The sameargumentshowsthatallofthelinesL inthebaselocushavethereducedschemestructure. ij Asimilarargumentimpliesthepointsq arereduced. i 3.1 Constructing a resolution of φ InthissectionweconstructaresolutionofMV intwostages.First,weblowupP3atthepoints N q ,...,q andatthepointsp forall1≤i<j<k≤N. Thisgivesusamap 1 N ijk b :Y P3. 1 1 → LetL˜ ⊂ Y denotethepropertransformofL . Note thatthesepropertransformsaredisjoint ij 1 ij linesinY . 1 Forthesecondstep,weblowupeachofthelinesL˜ andobtainaresolution ij b :Y Y 2 2 1 → LetusdenoteY byP˜3, and denotethe composition b ◦b byπ. Sincethe pullbackof the 2 1 2 base locus π−1(B) is a Cartierdivisor on P˜3, there exists a canonicalmap P˜3 −ψ Bl P3 which B fitsintothefollowingdiagram: → P˜3 ψ //Bl P3 ❋❋❋❋❋❋π❋❋❋"" B(cid:15)(cid:15)b❍❍❍❍❍B❍l❍B❍φ## P3 ❴ ❴ ❴ ❴//P2N φ werebistheblowupmapandBl φistheresolutionoftherationalmapφ. B Finally,wedefineφ˜ =Bl φ◦ψ. SinceP˜3 issmooth,wethusobtainthefollowingresolution B ofMV : N P˜3 (cid:15)(cid:15)π▲▲▲▲▲▲φ▲˜▲▲▲%% P3 ❴ ❴ ❴//MV ⊂P2N N φ Byanabuseofnotation,wewillsometimesthinkofφ˜ asamaptoP2N,andothertimesasa maptoMV . N 3.2 The Chow ringof P˜3 Since P˜3 is an iterated blowup of P3 along smooth centers, we can use standard theorems to computeitsChowring. Wewilluseastatementin[6]whichwestatehereforconvenience. Theorem 2. [6, Appendix, Thm.1] Let X −i Y be a closed embedding ofsmoothschemes. Let Y˜ be the blowup ofY along Xand let X˜ denotetheex→ceptionaldivisor. Supposethemapi∗ : A•(Y) A•(X) is surjective. Then,A•(Y˜)isisomorphicto → A•(Y)[T] (P(T),T ·ker(i∗)) whereP (T)∈A•(Y)[T]isadegreedpolynomialwhoseconstanttermis[X],andwhoserestrictionto X/Y XistheChernpolynomialofN . Inotherwords, X/Y i∗PX/Y(T)=Td+c1(NX/Y)Td−1+···+cd−1(NX/Y)T +cd(NX/Y). The isomorphism is induced by the map f∗ : A•(Y) A•(Y˜), and by sending −T to the class of the exceptionaldivisor. → 5 ThepolynomialP iscalledthePoincare´polynomialofXinY. X/Y Byapplyingtheorem2firsttoY −b−1 P3 andthentoP˜3 = Y −b−2 Y wefindthatA•(P˜3)is 1 2 1 aquotientofthepolynomialalgebra → → A=Z[{h}∪{Q } ∪{P } ∪{T } ]. i 1≤i≤N ijk 1≤i<j<k≤N ij 1≤i<j≤N The meaning of the generators is as follows. Let q˜ ∈ P˜3 denote the exceptional divisor of i the camera center q , p˜ ∈ P˜3 the exceptional divisor of the point p , and L˜ ⊂ P˜3 the i ijk ijk ij exceptionaldivisorofthelineL . ij Then,wehavethefollowingidentitiesinA•(P˜3): [q˜ ]=−Q , [p˜ ]=−P , [L˜ ]=−T . i i ijk ijk ij ij Inthenextsection,wewillneedtoevaluatethedegreemap deg:A3(P˜3) Z. → SinceP˜3 isirreducible,A3(P˜3)hasrankone. Inaddition, deg(h3) = 1. This meansthatcalcu- latingthedegreemapisequivalenttoexpressingeverymonomialα ∈ A3(P˜3)asamultiple of h3: α=deg(α)·h3. To simplify the calculation, note that product of two generators that correspond to disjoint subschemesofP˜3iszero.Forexample,Q ·P =0foralli,j,kandl. i jkl Thus, the maindifficultyis dealingwith self intersections such asT3. In orderto dealwith ij these,wewillcalculatethePoincare´polynomialsofq ⊂Y ,p ⊂Y andL ⊂Y .Bytheorem i 1 ijk 1 ij 2 2,thiswillgiveusrelationsinvolvingtheselfintersections,whichinthiscaseturnouttosuffice forthedegreecalculation. Sinceq ⊂Y isapoint,itsPoincare´ polynomialis i 1 P (Q )=Q3+h3, qi/Y1 i i andsimilarly, P (P )=P3 +h3. pijk/Y1 ijk ijk Finally, note thatL ⊂ Y is a line that passes through N−2 blown up points. We deduce ij 1 fromthisthat PLij/Y2(Tij)=Ti2j−2(N−3)hTij+h2+ X Pi2jk. k∈/{i,j} 3.3 The Chernclass of the resolution In this section we compute c(P˜3) as an element of A•(P˜3) and find its pushforward to P2N (proposition4). Ourmaintoolwillbethefollowingproposition. Proposition2. [5,Example15.4.2]LetY beasmoothschemeandX ⊂ Y beaclosedsmoothsubscheme withcodimensiond. Considerthefollowingblowupdiagram. X˜ j //Y˜ g f (cid:15)(cid:15) (cid:15)(cid:15) // X Y i Supposethatc (N ) = i∗c forsomec ∈ Ak(Y), and thatc(X) = i∗αforsomeα ∈ A•(Y). Let k X/Y k k η=c (O (X˜)). Then, 1 Y˜ c(Y˜)−f∗c(Y)=f∗(α)·β 6 where d d β=(1+η)X(1−η)if∗cd−i−Xf∗cd−i. i=0 i=0 OnetakeawayofthispropositionisthattheChernclassoftheblowupalongadisjointunion ofsubvarietiesisobtainedbysummingovercontributionsfromtheindividualcomponents. Proposition3. TheChernclassoftheresolutionP˜3isequalto c(P˜3)=(1+h)4+ X αi+ X βij+ X γijk 1≤i≤N 1≤i<j≤N 1≤i<j<k≤N where α =(1−Q )(1+Q )3−1, i i i β =(1+h)2·[(1−T )((1+T )(−2(N−3)h)+(1+T )2)−(1−2(N−3)h)], ij ij ij ij γ =(1−P )(1+P )3−1. ijk ijk ijk Proof. Ourstrategywillbetouseproposition2tocomputethecontributions totheChernclass ofeachofthevarietiesthatareblownupduringtheconstructionofP˜3. Wefirstapplyproposition2tothesituationwhereY =P3andX=q forsomei.Inthiscase, i wecantakec =1,c =0fork>0andα=1. Byproposition2theblowupatq willcontribute 0 k i α =(1−Q )(1+Q )3−1. i i i Similarly,γ representsthecontributionfromtheblowupofthepointp . ijk ijk Finally, we compute the contribution from the blowup along a line f : L ֒ Y . Since L ij 1 ij passesthrough N−2 of the blown up points in Y , a quick calculationshows t→hat we cantake 1 c = 1, c = −2(N−3)h, and the rest to be zero. In addition, since L =∼ P1, we can take 0 1 ij α=(1+h)2. ThisimpliesthatthecontributioncomingfromL is ij β =(1+h)2·[(1−T )((1−η)(−2(N−3)h)+(1+T )2)−(1−2(N−3)h)]. ij ij ij Wenowcomputethepullbackofc1(OP2n(1))inA•(P˜3)alongthemapφ˜. Lemma1. Thepullbackofc1(OP2n(1))toP˜3is φ˜∗(c1(OP2n(1)))∩[P˜3]=N·h+2· X Pijk+ X Qi+ X Tij. 1≤i<j<k≤N 1≤i≤N 1≤i<j≤N Proof. Itiswellknown(e.g[5,4.4])thatifLisalinebundleonX,V ⊂H0(X,L)isalinearsystem and X˜ (cid:15)(cid:15)π❉❉❉❉❉❉f❉❉❉"" X❴ ❴ ❴//P(V∗) istheinducedresolution,then f∗O(1)=π∗(L)⊗O(−E) whereE⊂X˜ istheexceptionaldivisor. In our case, one can show by a local calculation that the preimage of the base locus of the cameramaptoP˜3hasclass c1(O(−E))∩[P˜3]=2· X Pijk+ X Qi+ X Tij, 1≤i<j<k≤N 1≤i≤N 1≤i<j≤N sothatc (φ˜∗(O(1)))=c (π∗O(N))+c (O(−E))givesthestatedexpression. 1 1 1 7 Wecannowcomputethepushforwardφ˜∗c(P˜3)asanelementoftheChowringofP2N. Proposition4. ThepushforwardtoP2N ofc(P˜3)is N N N N φ˜ c(P˜3)= N3−(4+N) −N−2 [P3]+ 4N2−2 −6 −2N [P2] ∗ (cid:18) (cid:18)2(cid:19) (cid:18)3(cid:19)(cid:19) (cid:18) (cid:18)3(cid:19) (cid:18)2(cid:19) (cid:19) N N N + 6N+(N−4) [P1]+ 4+2N+2 +2 [P0] (cid:18) (cid:18)2(cid:19)(cid:19) (cid:18) (cid:18)3(cid:19) (cid:18)2(cid:19)(cid:19) Proof. Since we have already calculated c(P˜3) ∈ A•(P˜3) and φ˜∗(c1(OP2n(1))) ∈ A•(P˜3), the calculationofφ˜∗c(P˜3)isreducedtocalculatingthedegreesoftheintersections π∗(c (O (1)))k∩c(P˜3) 1 P2n for0 ≤ k ≤ 3. UsingtherelationsinA•(P˜3)thatwedescribedinsection3.2,theresultfollows byadirectcalculation. 4 Higher discriminants Higherdiscriminants,introducedin[9],provideaframeworkinwhichtostudythesingularities of a map. In particular, we will use them to understand how the Chern class of P˜3 computed abovepushesforwardalongφ˜. Wenowrecallthedefinitionsfrom[9],andphrasetheminaway thatwillbeeasiesttouseinourcontext. Definition1. Letf:Y Xbeamapofsmoothmanifolds. Thei-thhigherdiscriminantofthemapf isthelocusofpointsx ∈→Xsuchthatforeveryi−1dimensionalsubspaceV ⊂ TxX,thereexistsapoint y∈f−1(x)suchthat: hV,f∗TyYi6=TxX Wedenotethei-thhigherdiscriminantby∆i(f). Forexample,apointx∈Xisin∆1(f)ifandonlyifitisacriticalvalueoff. Indeed,according tothedefinitionthishappensexactlywhenthereisapointy∈f−1(x)whoseJacobian J(f) :T Y T X y y x → isnotsurjective. On the other extreme, x ∈ ∆dim(X)(f) if and only if for every codimension one subspace V ⊂TxX,thereexistsapointy∈f−1(x)thatsatisfies: f∗TyY ⊂V. It is instructive to consider the blow down map: f : Y = BlpP2 P2. For every point y ∈ Ep = f−1(p), f∗TyY is one dimensional. This means that p ∈ ∆1(→f). In addition, it is not hardtoseethatforeveryonedimensionalsubspaceV ⊂ TpP2,thereisapointy∈ Ep suchthat f∗TyY =V. Thisimpliesthatp∈∆2(f). Lemma2. [9,Rem.3]LetY Xbeapropermapofsmoothschemes.Thenallofthehigherdiscriminants offareclosed,andwehaveth→efollowingstratificationofX: ∆dim(X)(f)⊂··· ⊂∆2(f)⊂∆1(f)⊂X. Furthermore, codim(∆i(X))≥i. Thesignificanceofthehigherdiscriminantsisthattheytelluswhichstrataappearwhenwrit- ingf∗1Y inthebasisofEulerobstructionfunctionsonX. ForbackgroundonEulerobstructions werecommend[8]. 8 Proposition 5. [9, Cor. 3.3] Let f : Y X be a proper map of complex varieties. Let {∆i,α} be the codimensionicomponentsof∆i(f). Then,→ f∗1Y =Xηi,αEu∆i,α forsomeintegersηi,α. 4.1 Higher discriminantsof the resolution φ˜ Inthissectionwedescribethehigherdiscriminantsofthemap φ˜ :P˜3 MV ⊂P2N. N → Sincethedefinitionofhigherdiscriminantsassumesthatthesourceandtargetaresmooth,inthis sectionweconsiderφ˜ asamaptoP2N. LetX =∼ P1 ⊂MV denotetheimageofthepropertransformofthecameraplaneofthei-th i N camera. The restrictionof φ˜ to the complement of the preimageof the X ’s is anisomorphism, i whichmeansthatthesettheoreticsingularlocusofφ˜ iscontainedinthedisjointunion∐ X . i i Thefollowingpropositiondescribesthehigherdiscriminantsofφ˜. Proposition6. Thehigherdiscriminantsofφ˜ aregivenasfollows: • ∆2N−3(φ˜)=∆2N−2(φ˜)=MV N • ∆2N−1(φ˜)=∐ X i i • ∆2N(φ˜)=∅ To prove this proposition, we use the following lemma, which follows almost immediately fromthedefinitionofthehigherdiscriminants. Lemma3. Letf : Y Xbeamapofsmoothcomplexalgebraicvarieties. LetC ⊂ Xbeasmoothcurve. Supposethattherestr→ictionofftoChasnocriticalvalues. ThenC∩∆dim(X) =∅. Proof. Since f| has no critical values, for every point x ∈ C and every point y ∈ f−1(x) the C one dimensional space TxC ⊂ TxX is contained in f∗TyY. Therefore, if V ⊂ TxX is the or- thogonal complement to TxC, then f∗TyY is not contained in V. By definition, this implies that x∈/∆dim(X)(X). WeapplythislemmatoeachoftheP1’sX ⊂P2N.Letf:Y P1 =∼ X denotetherestriction i i of φ˜ toX . ThenY isisomorphic tothe blowup of P2 at1+ N→−1 points: q = q andp for i 2 i ijk j,k6=i. (cid:0) (cid:1) Themapfisobtainedasfollows. First,let g:BlqP2 P1 → betheresolutionoftheprojectionawayfromq. Then,let h:Blq,pijk(P2) Blp(P2) → betheblowupalongallofthepointsp forj,k6=i. ijk ∼ Finally,weclaimthatf=g◦h.Inparticular,fhasnocriticalvalues.Accordingtothelemma, thisprovesproposition6. 5 The Chern-Mather class of the multiview variety InthissectionwecomputetheChern-MatherclassofMV usingthetheoryofhigherdiscrimi- N nants. WethenusetheresulttodeterminetheEDdegreeofMV . N 9 5.1 The basicsetup Bypropositions5and6,thereexistsandintegerαsuchthat N φ˜∗(1P˜3)=EuMVN+α·XEuXi. (2) i=1 Atageneralpointx∈X ,χ(φ˜−1(x))=χ(P1)=2andEu (x)=1. Thisimpliesthat i Xi 2=Eu (x)+α α=2−Eu (x). MVN MVN ⇒ For the moment, suppose we knew the Euler obstruction Eu (x). Then, by taking the MVN Chern-Schwartz-MacPhersonclass(see[8])ofbothsidesofequation2andrecallingthatX =∼ P1 i weobtain φ˜∗(c(P˜3))=cM(MVN)+(2−EuMVN(x))cM(P1). (3) Sincewehavealreadycalculatedφ˜∗(c(P˜3))forallN,thiswouldgiveustheChern-Matherclass ofthemultiviewvarietyMV . N 5.2 Calculating Eu (x) MV N To compute Eu (x), first note that we can intersect MV with a general hypersurface H MVN N passingthroughx. Asaresult,weobtainasurfacesingularity: x∈S=MV ∩H. N ByawellknowntheoremaboutEulerobstructions(see[3,Sec.3]), Eu (x)=Eu (x). MVN S Now,supposewerestricttheresolutionφ˜ toS. Lemma4. φ˜| isaresolutionofSsuchthatthepreimageofxisarationalcurvenormalwithselfinter- S section−(N−1). Proof. LetEbethepreimageofx. NotethatEisthepropertransformofalineinthecameraplane of the i-th camera. To compute the self intersection of E in S˜ = φ˜−1(S) consider the following embeddings: E֒−i S˜ ֒−j P˜3. → → BytheWhitneysumformula,wehave (ji)∗(c(NE/S˜))=(ji)∗c(NE/P˜3)∩φ˜∗(OP2N(−1)). Aswehavealreadycomputedφ˜∗(OP2N(1)) ∈A•(P˜3),wejusthavetocalculate(ji)∗c(NE/P˜3). ByintersectingEwiththegeneratorsofA2(P˜3)wefind [E]=h2+Q2i +hXTij. j6=i UsingthisidentitytogetherwithourpresentationofA•(P˜3)gives (ji)∗c(NE/P˜3)=[E]−(N−1)h3. PluggingeverythingintotheWhitneysumformulashowsthatthedegreeofc(N )is−(N−1), E/S whichcompletestheproof. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.