ebook img

The Chemical Reactor from Laboratory to Industrial Plant: A Modern Approach to Chemical Reaction Engineering with Different Case Histories and Exercises PDF

574 Pages·2018·22.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Chemical Reactor from Laboratory to Industrial Plant: A Modern Approach to Chemical Reaction Engineering with Different Case Histories and Exercises

Elio Santacesaria · Riccardo Tesser The Chemical Reactor from Laboratory to Industrial Plant A Modern Approach to Chemical Reaction Engineering with Different Case Histories and Exercises The Chemical Reactor from Laboratory to Industrial Plant Elio Santacesaria Riccardo Tesser (cid:129) The Chemical Reactor from Laboratory to Industrial Plant A Modern Approach to Chemical Reaction Engineering with Different Case Histories and Exercises 123 Elio Santacesaria Riccardo Tesser Eurochem Engineerings.r.l. Dipartimento di ScienzeChimiche, Milan,Italy Complesso diMonte Sant’Angelo University of Naples FedericoII Naples, Italy ISBN978-3-319-97438-5 ISBN978-3-319-97439-2 (eBook) https://doi.org/10.1007/978-3-319-97439-2 LibraryofCongressControlNumber:2018949875 ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The contents of this book derive, first of all, from lessons lectured by both of the authors to students of the course, “Principles of Industrial Chemistry and Related Exercises,”takenfortheMaster’sDegreeofIndustrialChemistryattheUniversity Federico II of Naples, Italy. The content is also the result of many years of experimentalandtheoreticalresearchworkconductedbytheauthorsinthefieldof chemical-reaction engineering. During their 30 years of research and teaching, science and technology have made an enormous progress, in particular after the advent of very powerful personal computers. In the old textbooks, many problems of industrialchemistry had approximated analytical or graphicalsolutions toavoid long and tedious hand-made calculations. The first computers—which were slow, expensive, and bulky—allowed for more rigorous calculations but were accessible only to specialists using a rigid software language, such as FORTRAN. The large diffusion of personal computers that are fast, cheap and small—combined with a flexible and powerful software, such as MATLAB—allow everybody to solve many complicated problems with a numerical approach that is simpler, faster, and more satisfactory as to precision. Therefore, in this book, together with the theo- retical approach to different topics, which is necessary to know for understanding the chemical reactor behaviour (e.g., thermodynamics of physical and chemical transformation,catalysis,kinetics,andmasstransfer),manyexercisesareproposed inside the chapters devoted to the mentioned topics. The solutions to the exercises are described in detail inside the text, but the reader can find (at the Springer website)theMATLABcodesrelatedtoanysingleexerciseandcaninteractdirectly with the proposed mathematical models and related solutions. The solutions are based on a numerical approach. A brief description of the main algorithm used, along with simple examples, is also reported on the Springer website with the MATLAB codes for the exercises. The book is organized into seven chapters. Chapter 1 is a brief introduction describingwhatisimportanttoknowfordevelopingindustrialprocesses.Chapter2 isdevotedtothethermodynamicsofchemicalandphysical equilibrium.Chapter3 deals with the role of catalysis in promoting chemical reactions. Chapters 4 and 5 are related to the kinetics in, respectively, the homogeneous and heterogeneous v vi Preface phase and the relation between kinetics and the reaction mechanism. The last two chaptersdescribetheeffectofmassandheattransferin,respectively,gas‒solidand multi-phase reactors. In our opinion, this book could be useful for master’s and doctoralstudentsofchemical-engineeringscienceandindustrialchemistrybutalso for researchers working in the field of catalysis, kinetics, reactor design, and simulation. Milan, Italy Elio Santacesaria Naples, Italy Riccardo Tesser Contents 1 Introduction to the Study of Chemical Industrial Processes . . . . . . . 1 1.1 Structure and Characteristics of Chemical Industrial Plants . . . . . . 1 1.2 Thermodynamics,Catalysis,Kinetics,andTransportPhenomena: Their Role in Modeling and Conducting Chemical Industrial Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Material and Energy Balances. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Introduction to the Numerical Solution of the Most Frequently Employed Algorithms with Examples Developed in Matlab . . . . . 8 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Thermodynamics of Physical and Chemical Transformations. . . . . . 9 2.1 Introduction to Physical and Chemical Equilibrium . . . . . . . . . . . 9 2.2 Thermodynamic Properties and Equilibrium Conditions of Physical Tranformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 The First Thermodynamic Law. . . . . . . . . . . . . . . . . . . . 10 2.2.2 Transformations at Constant Pressure . . . . . . . . . . . . . . . 12 2.2.3 Transformations at Constant Volume. . . . . . . . . . . . . . . . 13 2.2.4 Transformations at Constant Temperature . . . . . . . . . . . . 14 2.2.5 Adiabatic Transformations . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.6 The Second Thermodynamic Law. . . . . . . . . . . . . . . . . . 16 2.2.7 CriteriaforDefiningtheThermodynamicEquilibriumof Physical Transformations . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Thermodynamic Equilibrium in Chemical-Reacting Systems . . . . . 19 2.3.1 Introduction to the Thermodynamics of Chemical Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Equilibrium of Reactions Between Ideal Gases . . . . . . . . 22 2.3.3 Generalities About Chemical Equilibrium for Reactions Between Real Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.4 The Van der Waals EOS and the Corresponding State Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 vii viii Contents 2.3.5 Alternative Equations of State. . . . . . . . . . . . . . . . . . . . . 43 2.3.6 Fugacity Evaluation from an EOS. . . . . . . . . . . . . . . . . . 47 2.3.7 Evaluation of Critical Parameters with Semi-Empirical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.3.8 Chemical Equilibrium in Liquid Phase . . . . . . . . . . . . . . 58 2.3.9 Equilibrium Constants and the Reference Systems . . . . . . 59 2.3.10 Heterogeneous Equilibrium. . . . . . . . . . . . . . . . . . . . . . . 60 2.3.11 Dependence of the Chemical Equilibrium Constant on Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.3.12 Estimation of Thermodynamic Properties Starting from Molecule Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.3.13 Heat of Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.14 Heat-Capacity Calculation . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.15 Gibbs Free Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.16 Simultaneous Chemical Equilibria. . . . . . . . . . . . . . . . . . 67 2.3.17 AnExampleCalculationofEquilibriumCompositionin a Complex System Characterized by the Presence of Multiple Reactions. . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.3.18 Influence of Operative Conditions on the Yields of a Process: A Qualitative Approach . . . . . . . . . . . . . . . 71 2.3.19 Thermodynamics of Some Hydrocarbons Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.3.20 ProceduresforCalculatingtheComponentsActivitiesof a Liquid-Phase Mixture and Related Coefficients . . . . . . . 74 2.4 Calculations Related to Physical Equilibria . . . . . . . . . . . . . . . . . 81 2.4.1 Physical Equilibria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.4.2 VLE of a Single Pure Component. . . . . . . . . . . . . . . . . . 82 2.4.3 Vapour–Liquid Equilibrium (VLE) for a Multi- component System at Moderate Equilibrium Pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.4.4 The Equilibrium of Solubility at Moderate Pressures . . . . 91 2.4.5 Vapour–LiquidEquilibriaandGasSolubilityinLiquids at Elevated Pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 2.4.6 The Flash Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 2.4.7 Vapour–Liquid Equilibrium and Distillation . . . . . . . . . . 101 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3 The Role of Catalysis in Promoting Chemical Reactions . . . . . . . . . 117 3.1 Introduction to Catalytic Phenomena . . . . . . . . . . . . . . . . . . . . . . 117 3.2 Catalyst Classification and Generalities . . . . . . . . . . . . . . . . . . . . 120 3.3 Homogeneous Catalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.3.1 Acid–Base Homogeneous Catalysis. . . . . . . . . . . . . . . . . 122 3.3.2 Catalysis Promoted by Metal-Transition Complexes. . . . . 123 Contents ix 3.3.3 Enzymatic Catalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 3.3.4 Heterogenization of Homogeneous Catalysts . . . . . . . . . . 130 3.4 Heterogeneous Catalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.4.2 Physical Adsorption, Specific Surface-Area Measurement, and Porosity. . . . . . . . . . . . . . . . . . . . . . . 134 3.4.3 Chemical Adsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 3.4.4 Factors Determining Catalyst Deactivation: Poisoning, Aging, and Sintering . . . . . . . . . . . . . . . . . . . 153 3.4.5 A Brief Survey on Catalyst- and Support-Preparation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 3.4.6 Acid–Base Heterogeneous Catalysts . . . . . . . . . . . . . . . . 156 3.4.7 Surface Acidity of Binary Mixed Oxides. . . . . . . . . . . . . 159 3.4.8 Zeolites, Structures, Properties, and Synthesis . . . . . . . . . 160 3.4.9 Templating Mesoporous Zeolites. . . . . . . . . . . . . . . . . . . 164 3.4.10 Catalytic Properties of Metal Oxides as Semiconductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 3.5 Preparation and Characterization of the Most Common Catalytic Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 3.5.1 Alumina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 3.5.2 Silica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 3.5.3 Silica–Alumina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 3.5.4 Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 3.5.5 Monolithic Supports. . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 3.5.6 Metal Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 3.6 Catalyst Forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 3.6.1 Forming Micro Granules . . . . . . . . . . . . . . . . . . . . . . . . 183 3.6.2 Forming Grains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 4 Kinetics of Homogeneous Reactions and Related Mechanisms . . . . . 191 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 4.2 Relation Between the Kinetic Law and the Reaction Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 4.3 Elementary Background of Kinetics. . . . . . . . . . . . . . . . . . . . . . . 196 4.3.1 Reaction-Rate Definition: Relation with Mass Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 4.3.2 Reaction Order and Formal Kinetics . . . . . . . . . . . . . . . . 198 4.3.3 Laboratory Reactors for Studying Single Fluid-Phase Reactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 4.3.4 Hints on the Factorial Programming of Kinetic Runs . . . . 207 4.3.5 Exercises on the Evaluation of Reaction Order and the Simulation of Kinetic Runs. . . . . . . . . . . . . . . . . 209 x Contents 4.3.6 Complex Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 4.3.7 Complex Reaction Scheme: A Unified Approach. . . . . . . 251 4.4 DescriptionoftheReactionMechanismsandTheirRelationwith Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 4.4.1 Heterolytic Mechanisms and Kinetics . . . . . . . . . . . . . . . 254 4.4.2 Nucleophilic Substitutions of Type S 1. . . . . . . . . . . . . . 255 N 4.4.3 Nucleophilic Substitutions of Type S 2. . . . . . . . . . . . . . 255 N 4.4.4 Substitution with Electrophilic Attack . . . . . . . . . . . . . . . 256 4.4.5 Nucleophilic Additions. . . . . . . . . . . . . . . . . . . . . . . . . . 256 4.4.6 Electrophilic Additions. . . . . . . . . . . . . . . . . . . . . . . . . . 257 4.4.7 Nucleophilic Eliminations—E (Monomolecular) . . . . . . . 257 1 4.4.8 Nucleophilic Eliminations—E (Bimolecular) . . . . . . . . . 257 2 4.4.9 Electrophilic Eliminations. . . . . . . . . . . . . . . . . . . . . . . . 258 4.4.10 Molecular Rearrangement. . . . . . . . . . . . . . . . . . . . . . . . 258 4.4.11 Description of Catalytic Cycles. . . . . . . . . . . . . . . . . . . . 259 4.4.12 TheWackerProcess:AnExampleofHeterolyticRedox Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 4.4.13 Kinetics of Reaction Catalysed by Acid–Base . . . . . . . . . 261 4.4.14 Radical-Chain Reactions: Homolytic Mechanisms and Related Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 4.4.15 Kinetics of Enzymatic Reactions. . . . . . . . . . . . . . . . . . . 274 4.5 Comparison of the Performances of CSTRs and PFRs . . . . . . . . . 281 4.6 Gas-Phase Reactions and Kinetic Theory. . . . . . . . . . . . . . . . . . . 284 4.7 Flash with Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 5 Kinetics of Heterogeneous Reactions and Related Mechanisms. . . . . 291 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 5.2 Definition and Evaluation of Reaction Rate, Mass Balance, and Kinetic Equations in Heterogeneous Fluid–Solid Systems. . . . 293 5.3 Reaction Scheme, Stoichiometry, Thermodynamic Constraints, and Analysis of Reaction Networks. . . . . . . . . . . . . . . . . . . . . . . 294 5.4 Kinetic Equations Based on the Mechanisms of Chemical Adsorption and Chemical Surface Reaction: The Langmuir– Hinshelwood Kinetic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 5.4.1 Dual-Site Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 300 5.4.2 Eley–Rideal Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . 301 5.4.3 Redox Mechanism According to Mars and van Krevelen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 5.4.4 Adsorption on Non-uniform Surfaces . . . . . . . . . . . . . . . 302 5.4.5 The Kinetics for Heterogeneous Complex Reaction Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 5.4.6 The Collection and Processing of Kinetic Data with the Scope of Determining the Kinetic Equation. . . . . . . . . . . 308

Description:
This graduate textbook, written by a former lecturer, addresses industrial chemical reaction topics, focusing on the commercial-scale exploitation of chemical reactions. It introduces students to the concepts behind the successful design and operation of chemical reactors, with an emphasis on qualit
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.