Mon.Not.R.Astron.Soc.000,1–11(2006) Printed5February2008 (MNLATEXstylefilev1.4) The chemical evolution of Omega Centauri’s progenitor system ⋆ 1 2 1 1 Donatella Romano, Francesca Matteucci, Monica Tosi, Elena Pancino, 1 3 4 3 Michele Bellazzini, Francesco R. Ferraro, Marco Limongi and Antonio Sollima 1INAF–OsservatorioAstronomicodiBologna,ViaRanzani1,I-40127Bologna,Italy 2DipartimentodiAstronomia,Universita`diTrieste,ViaTiepolo11,I-34131Trieste,Italy 3DipartimentodiAstronomia,Universita`diBologna,ViaRanzani1,I-40127Bologna,Italy 4INAF–OsservatorioAstronomicodiRoma,ViaFrascati33,I-00040MonteporzioCatone,Italy 7 0 Accepted2006December21.Received2006December20;inoriginalform2006November27 0 2 n ABSTRACT a ChemicalevolutionmodelsarepresentedfortheanomalousglobularclusterωCentauri.After J demonstratingthat the chemical features of ωCen can not be reproducedin the framework 7 of the closed-box self-enrichmentscenario, we discuss a model in which this cluster is the remnantofadwarfspheroidalgalaxyevolvedinisolationandthenswallowedbytheMilky 1 Way.Bothinfallofprimordialmatterandmetal-enrichedgasoutflowshavetobeconsidered v inordertoreproducethestellarmetallicitydistributionfunction,theage-metallicityrelation 2 andseveralabundanceratios.Yet, aslongasan ordinarystellar massfunctionandstandard 6 stellar yieldsare assumed,we failby far to getthe enormousheliumenhancementrequired 1 toexplainthebluemainsequence(and,perhaps,theextremehorizontalbranch)stellardata. 1 0 Rotatingmodelsof massivestars producingstellar windswith largeheliumexcessesatlow 7 metallicitieshavebeenputforwardaspromisingcandidatestosolvethe‘heliumenigma’of 0 ωCen(Maeder&Meynet,2006,A&A,448,L37).However,weshowthatforanyreasonable / choice of the initial mass function the helium-to-metal enrichmentof the integrated stellar h population is unavoidably much lower than 70 and conclude that the issue of the helium p enhancement in ωCen still waits for a satisfactory explanation. We briefly speculate upon - o possiblesolutions. r t Keywords: galaxies:dwarf–galaxies:evolution–globularclusters:individual(ωCentauri) s a –stars:abundances–stars:chemicallypeculiar. : v i X r a 1 INTRODUCTION sodium,magnesiumandaluminumcouldbeduetoproton-capture fusion reactionsoccurring during quiescent hydrogen and helium The globular cluster (GC) ωCen (NGC5139) is a unique win- burningwithinthegiantsthemselves,variationsintheabundances dow intoastrophysics (see Smith2004, for arecent review). The of heavier species – such as iron-peak and neutron-capture ele- estimated mass, between (2.5 ± 0.3) × 106 M⊙ (van de Ven ments–shouldbeimmunetosuchprocessesand,therefore,likely et al. 2006) and 5.1 × 106 M⊙ (Meylan et al. 1995) – or even reflectpatternsimprintedontheobservedstarsbypreviousstellar 7.1 × 106 M⊙ (Richer et al. 1991), makes it the most massive generations(LloydEvans1983;Cohen&Bell1986;Norris&Da GC of the Milky Way. Its total mass better compares with that Costa1995;seealsoGratton,Sneden&Carretta2004,foracom- of a small dwarf spheroidal galaxy such as Sculptor (M ≃ Sculptor prehensivereviewonabundancevariationswithinGCs). 6.4 × 106 M⊙; Mateo 1998) rather than with that of a typical Galactic GC (MGGC ∼ 105 M⊙; Harris 1996). The large degree ThefirstindicationthatωCenwaschemicallyinhomogeneous ofchemicalself-enrichmentobservedinωCengiantandsubgiant camefromthelargecolorwidthoftheredgiantbranch(RGB)es- membersalsosetsitapartfromalltheotherGalacticglobulars. tablishedinanearlierphotometricworkbyWoolley(1966).Inthe Indeed,ωCenistheonlyknownGGCtoexhibitalargedegree last decade, both extensive spectroscopic surveys and wide-field ofchemicalself-enrichmentinalltheelementsstudied(Freeman& photometricstudies–mostlyofgiantωCenmembers–havedefi- Rodgers 1975; Cohen 1981; Mallia&Pagel 1981; Gratton1982; nitelyconfirmedtheexistenceofseveral(uptofive)discretestellar Norris & Da Costa 1995; Smith, Cunha & Lambert 1995; Smith populationscoveringalargerangeinmetallicity(Norris,Freeman et al. 2000; Pancino et al. 2002). While star-to-star variations in & Mighell 1996; Suntzeff & Kraft 1996; Lee et al. 1999; Hilker theabundancesoflightelementssuchascarbon,nitrogen,oxygen, &Richtler2000;Hughes&Wallerstein2000;Pancinoetal.2000; Reyetal.2004;Sollimaetal.2005a).Themetallicitydistributions of (sub)giant starsand main sequence turnoff (MSTO)starslook ⋆ E-mail:[email protected] pretty much the same (Stanford et al. 2006). From their spectro- (cid:13)c 2006RAS 2 D. Romanoet al. scopicandphotometricMSTOdata,Stanfordetal.(2006)findthat (e.g.Carraro&Lia2000;Bekki&Freeman2003;Tsuchiya,Kor- theformationofωCentookplacemostlikelyover2–4Gyr;both chagin&Dinescu2004).Thetotalmassoftheparentobjectranges anullagerangeandagerangeshigherthan6Gyraredeemedun- from108 M⊙ tosome109 M⊙ inthose models. Alternativesce- likely (cf. previous works by Norris & Da Costa 1995; Hilker & nariosenvisageanoff-centrestellarsuperclusterseed,whichwould Richtler2000;Hughes&Wallerstein2000;Smithetal.2000;Pan- havetrappedoldergalacticfieldstarsduringitsformationprocess cino et al. 2002; Rey et al. 2004; Sollima et al. 2005a; see also (Fellhauer,Kroupa&Evans2006).Otherpossibleexplanationsfor Kayseretal.2006). Ithasalsobeenfoundthatthefaintmainse- theclusterorigin–namely,mergingbetweentwoormoresmaller quenceofωCensplitsintoatleasttwodistinctbranches(Ander- globularsorbetweenadwarfgalaxyandacluster(Icke&Alcaino son1997;Bedinetal.2004;Sollimaetal.2006b).Thebluemain 1988; Norris et al. 1997), or formation triggered by cloud-cloud sequence (bMS) contains ∼25 per cent of the stars and is 0.3 ± collisions (Tsujimoto & Shigeyama 2003) – have been put for- 0.2dexmoremetal-richthantheredone(rMS;Piottoetal.2005). ward, but seem less likely on the basis of the continuous trends These observations are most likely explained by an anomalously of heavy elements-to-iron and lanthanum-to-iron observed for S highheliumabundanceofbMSstarsofY >0.38(∆Y/∆Z >70; stars in ωCen (Vanture, Wallerstein & Suntzeff 2002, and refer- Norris2004;Piottoetal.2005).Suchanintriguingpossibilityhas encestherein).Clear evidence againsttheparent systemevolving beenquantitativelyinvestigatedintheframeworkofsomewhatide- asaclosedboxhasbeenputforwardbyIkuta&Arimoto(2000). alizedscenariosfortheformationandevolutionofωCen(Bekki& InthispaperwedealwiththechemicalevolutionofωCen.We Norris2006). discusstwopossiblescenariosofformation:inthefirstone,thepre- Ithasbeenshown(Norrisetal.1997)thatthemetal-richcom- cursorofωCenisasmallsystemwhichevolveseitherasaclosed- ponent of thecluster,whichismorecentrallyconcentrated, hasa boxorwithsomeexchangeofmatterwiththesurroundings;inthe smaller line-of-sight velocitydispersion and alower systemicro- secondone,theclusteristheleftoverofanancientnucleateddwarf tation about the cluster’s minor axis than the metal-poor one. A galaxyswallowedbyourGalaxysome10Gyrago.Wepayspecial morerecent analysisbySollimaetal.(2005b) confirmsthetrend attentiontotheintriguingsubjectofheliumenhancement inbMS ofdecreasingvelocitydispersionwithincreasingmetalabundance stars.Forthefirsttime,thiscriticalissueisfacedintheframework inthemetallicityrange−2.0<[Fe/H]<−1.0,butshowsalsothat ofacomplete,self-consistentchemicalevolutionmodel,takingall intheextrememetal-richextensionofthestellarpopulation, now therelevantphysicsintoaccount.InSection2welisttheobserva- bettersampledthankstonewgenerationinstrumentation(Pancino tionsthatweusetoconstrain our chemical evolution model. The et al. 2000), this decreasing trend is reversed (see fig. 9b of Sol- modelispresentedinSection3.Section4summarizesthemodel limaetal.2005b).Asymmetriesinthedistributionandvelocityof results,thatarediscussedandcomparedtopreviousinvestigations thestarscouldtestifypastaccretioneventswithinωCen(Ferraro, inSection5.InSection5wealsodrawourconclusions. Bellazzini&Pancino2002;Pancinoetal.2003),butevidencefor theseisnotdefinitiveyet (Plataisetal.2003). Tofurther compli- catetheoverallpicture,theorbitofωCenisfoundtobestrongly 2 THENATUREOFTHECHEMICALENRICHMENTIN retrograde,almostcoplanarwiththeMilkyWaydisc,andtohave OMEGACENTAURI smallapogalacticon,unlikeanyknownGalacticGC(e.g.Majewski etal.2000).Atvariancewithmostglobulars,therelaxationtimefor It was recognized several years ago that simple models for clus- ωCenisverylong,uptoafewtimes109 yearsinthecoreanda ter enrichment can not reproduce the number of metal-rich stars fewtimes1010 yearsathalf-massradius(Meylanetal.1995;van observed in the metallicitydistribution function (MDF) of ωCen deVenetal.2006).Indeed, recentresultssuggest thatthecluster giants(Norrisetal.1996;Suntzeff&Kraft1996;Ikuta&Arimoto isnotyetrelaxedeveninthecentralregions(Ferraroetal.2006). 2000).BasedonCaabundancesobtainedfromlow-resolutionspec- Thisclustercouldthenmantainforafairlylongtimetheimprinting tra,Norrisetal.(1996)foundabimodaldistributionwithametal- ofitsinitialconditions,thusallowingonetousethecurrentlyob- poor component, peaking at [Ca/H] ≃ −1.4 dex and comprising serveddistributionofstarsofdifferentpopulationsinordertotrace nearly 80 per cent of the stars, and a metal-rich one, comprising back the cluster formation and evolution (e.g. Merritt, Meylan & nearly20percentofthestarsat[Ca/H]≃−0.9dex(Fig.1,lower Mayor1997). rightpanel).Suntzeff&Kraft(1996)alsofoundasharpriseatlow Thelargemass,spreadinelementabundances,flattenedshape metallicitiesandahigh-metallicitytail,butnoevidenceforasec- androtationallcomeclosetothepicturewhereωCenisthesur- ondaryhumpathighermetallicities(Fig.1,upperrightpanel). viving remnant of alargersystem. Thechemical and kinematical Thesharprisetoameanof[Fe/H]≃−1.6dexandthelong segregationsdetectedinωCenaddevenmorerelevancetothepic- tailathighermetallicitieshavebeenconfirmedbyanumberofsub- tureofadwarfgalaxyprogenitorbeingsubjecttoaccretionevents, sequent studies, usingboth higher resolutionspectroscopy and/or since such gradients are present in nearly all of the Local Group highqualityphotometry(e.g.Hilker&Richtler2000;Frinchaboy dwarf spheroidals (e.g. Harbeck et al. 2001; Tolstoy et al. 2004; et al. 2002; Sollima et al. 2005a; Stanford et al. 2006; Kayser et Kochetal.2006,tonameafew).Severalauthorshavespeculated al. 2006). Some of these works also show that the MDF is more onthepossibilitythatωCenisthenakednucleusofadwarfsatel- complexthanpreviouslythought,withseveralseparatepeaksiden- litegalaxy captured into a retrograde Galactic orbit many billion tifiedintheobserveddistribution(e.g.Sollimaetal.2005a;Fig.1, years ago (Dinescu, Girard & van Altena 1999; Majewski et al. left panel). According to subgiant branch (SGB) data, the differ- 2000;Smithetal.2000;Gnedinetal.2002;Bekki&Norris2006), entpopulationshaveagescomparablewithin2Gyr;actually,they followingmoregeneralideasonanaccretedoriginforGCsinour mightbeevencoeval(Sollimaetal.2005b;seealsoFerraroetal. ownaswellasexternal galaxies(Zinnecker et al.1988; Freeman 2004).Awideragerange,∆t ≃2–4Gyr,isinferredfromMSTO 1993).Self-consistentdynamicalmodelsaswellasN-bodyhydro- data(Stanfordetal.2006;seealsoHilkeretal.2004andKayseret dynamicalsimulationscanbefoundintheliteraturewhichsucceed al.2006). to reproduce the main features of the cluster by assuming that it Theabundanceratiosofdifferentchemicalspeciesprovidean- formedinisolationandthenfellinsidetheGalacticpotentialwell other independent constraint on the evolutionary time-scales. As (cid:13)c 2006RAS,MNRAS000,1–11 The chemicalevolutionofω Cen 3 Piottoetal.2005)cannotbeexplainedaslongastheyoriginated fromtheejectaofrMSstarsinitiallywithinωCen.Rather,mostof thehelium-richgasnecessarytoformthebMShadtocomefrom fieldstellarpopulations surrounding ωCenwhenitwasthecom- pact nucleusof aGalacticdwarf satellite(Bekki&Norris2006). Inotherwords,theoriginaltotalmassoftherMSpopulationmust havebeenlargerthanthepresent-dayoneandmostoftherMSstars must have been removed from the proto-ωCen after their ejecta were used to form the bMS population. Searches for tidal debris from ωCen’s hypothetical parent galaxy in the solar neighbour- hood are possible in principle (Dinescu 2002). Indeed, a distinct populationofstarswithωCen-likephase-spacecharacteristicsand metallicitiesconsistentwiththoseofωCenmembersemergesfrom catalogsofmetal-deficientstarsinthevicinityoftheSun(Dinescu 2002;Mezaetal.2005). Thoughgasfuelingfromanancienthostgalaxystandsasan attractive hypothesis in many respects, to the best of our knowl- edgethispossibilityhasneverbeenstudiedbymeansoffullyself- consistentchemicalevoutionmodelsbefore. 3 THECHEMICALEVOLUTIONMODEL Figure 1.Shown aresomeofthe observed metallicity distribution func- We follow the evolution of the abundances of several chemical tionsforωCengiants.Generalfeaturesofalltheobserveddistributionsare species in the gaseous medium out of which ωCen’s stars form, thesteepriseatlowmetallicities andthehigh-metallicitytail(seetextfor details). in the case of either a GC precursor or a dwarf spheroidal pro- genitor. The adopted chemical evolution model isone zone, with † instantaneous andcompletemixingofgasinsideitandnoinstan- firstdiscussedbyLloydEvans(1983),theenrichmentofs-process taneousrecyclingapproximation(i.e.,thestellarlifetimesaretaken elements (e.g. Ba, La) in the metal-rich ωCen stars is likely to into account in detail). The GC precursor has an initial mass of be that of the gasclouds out of which thestarsformed. Smithet the same order of magnitude of the present one (MωCen = 2.5– al.(2000)suggestedpreviousgenerationsoflow-massasymptotic 5 × 106 M⊙). Both a closed-box model and models where ex- giant branch (AGB) stars as polluters and argued in favour of a changesofmatterwiththesurroundingsareallowedareanalyzed. protracted period of star formation in ωCen, of the order of 2– For the dwarf galaxy precursor, when the computation starts the 3Gyr.Shortertime-scalesareinferredfromtheobserved kneein baryonicmatter(coolinggas)isembeddedinarelativelymassive the[α/Fe]versus[Fe/H]relation,ifTypeIasupernovae(SNeIa)in (Mdark/Mbar =10),diffuse(Rdark/Reff =10),virializeddarkmat- ωCenrestorethebulkoftheirirontotheinterstellarmedium(ISM) terhalo.Initially,thebaryonicmassinsidethedarkmatterpoten- onthesametime-scaleasinthesolarneighbourhood(∼1Gyr;Pan- tial well is two orders of magnitude higher than the present one. cinoetal.2002).However,onemustbeawarethatthetime-scale Assoonasthestarformationbegins,thethermalenergyofthegas for the maximum enrichment by SNeIa in a specific system de- startstoincreaseasaconsequenceofmultipleSNexplosions,even- pendsstronglyontheassumptionsabouttheSNprogenitors,stel- tuallyexceedingitsbindingenergy‡.Whenthisconditionismet, larlifetimes,initialmassfunction(IMF),starformationrate(SFR) partofthegasescapesthegalacticpotentialwell;weassumethat and, last but not least, possible metal-enriched gasoutflowsfrom thisgasisdefinitivelylostfromthesystem. the system. It has been demonstrated (Matteucci &Recchi 2001, and referencestherein) thattime-scalesaslong as∼4–5 Gyr can beobtainedwithsuitableassumptions.Wewillcomebacktothis 3.1 Basicequations issuelateron,whendiscussingmodelresultsinSection5. Weusethefollowingbasicequation(Tinsley1980) Gnedin et al. (2002) used simple dynamical modeling to demonstrate that if ωCen had always evolved in isolation on its dG (t) dGin(t) dGout(t) i =−X (t)ψ(t)+R (t)+ i − i (1) presentorbitintheMilkyWay,itwouldhavebeenunabletoretain dt i i dt dt thes-process-richwindmaterialfromAGBstarsbecauseofstrip- to track the evolution of the fractional gas mass in the form ping from ram pressure during many passages through the disc. of element i normalized to the initial gaseous mass, G (t) = SubsequentnumericalsimulationsdemonstratedthatanωCen-like X (t)M (t)/M .ThequantityX (t)representstheabuindance objectcanoriginatefromanucleateddwarfgalaxyintrudinginto i gas bar i theMilkyWay.Boththeorbitalparametersandtheobservedsur- facebrightnessprofileofthepresent-dayωCenarereproducedby † Noticethat‘instantaneous’actuallymeans‘ontime-scalesshorterthan atidaldisruptionscenariowherethefallingdwarfhasitsouterstel- theadoptedtimestepforintegrationoftheequations’. larenvelopealmostcompletelystripped,whereasacentral,dense ‡ Wecomputethebindingandthermalenergiesofthegasaccordingtothe nucleusstillsurvivesowingtoitscompactness(Bekki&Freeman recipesofBradamante,Matteucci&D’Ercole(1998).However,weadopt 2003; Tsuchiya et al. 2004; Ideta & Makino 2004). Interestingly atypicalefficiencyofthermalizationfrombothTypeIIandTypeIaSNeof enough, also the number fraction (25 per cent) of the bMS stars ηSNII=ηSNIa=0.20,ratherthan0.03(seeRomano,Tosi&Matteucci2006, withextremeheliumenhancement(∆Y ≈0.12–0.14;Norris2004; andreferencestherein). (cid:13)c 2006RAS,MNRAS000,1–11 4 D. Romanoet al. by mass of the element i at the time t; by definition, the sum- up with a stellar mass Mstars(t = 3) ≃ 5 × 107–108 M⊙. Given mation over all the elements inthe gasmixture isequal tounity. thesimilarityoftheresults,inthecaseofthedwarfgalaxyparent Thefirsttermontherighthandsideaccountsforgasconsumption wewillshowonlythepredictionsforourmostmassivemodel(ν= by star formation; the second term on the right hand side refers 0.35Gyr−1,wmax≃5Gyr−1). i togasreturnbydyingstars.Allthecomplicateddependencieson Thoughinourmodelsthestarformationactivitylasts∼3Gyr, the adopted stellar initial mass function and lifetimes, SNIa pro- itisworthnotingthatmostofthestars(nearly75percentofthe genitors and stellarnucleosynthesis products hidden intheR (t) clusterpopulation)actuallyformduringthefirst1Gyr.Inthedwarf i termarenot madeexplicit here; theinterestedreader can findall progenitorscenario,whilethestarformationproceeds,thegalaxy of them discussed in considerable detail in Matteucci & Greggio getsalmostcompletelydepletedofitsgas,partlyowingtogascon- (1986).Sufficeitheretosaythatinthisworkweuseanextrapo- sumption by the adopted long-lasting star formation activity, but latedSalpeter(1955)IMForaScalo(1986)IMF,bothnormalized mostofallbecauseofefficientgasremovalthroughthelarge-scale tounityoverthe0.1–100M⊙ stellarmassrange,toshowthepre- galacticoutflows. dictionsfromboth steepand flat,although ‘standard’, IMFs.The ThechemicalpropertiesofourωCenprogenitorsystemsare adoptedstellarnucleosynthesisprescriptionsarediscussedinSec- discussed and compared with the available observations in Sec- tion3.3. tion4. InourmodelstheSFRisasimpleSchmidt’s(1963)law: ψ(t)=νGk(t). (2) 3.3 Nucleosynthesisprescriptions Thequantityν isthestarformationefficiency,namelytheinverse Inthisworkweadoptthemetallicity-dependentyieldsofvanden ofthetypicaltime-scaleforstarformation,andisexpressedinunits Hoek & Groenewegen (1997) for single low- and intermediate- ofGyr−1.Theexponentkissettobe1. massstars(LIMSs;0.96 m/M⊙ 6 8)andtheyieldsofNomoto ThelasttwotermsinEquation(1)accountforanygasinflow etal.(1997)formassivestars(136m/M⊙670).Theselatterare and/oroutflow.Fortheclosedsystem,allthegasavailableforstar computedforasolar chemicalcomposition ofthestars.Thestel- formationisinsituwhenthestarformationbeginsatt=0,andno lar yields are then scaled to the current metallicity of the model infallfromoutsideisconsidered.Fortheopensystems,therateof by means of the production matrix formalism (Talbot & Arnett gasinfallisparametrizedas 1973).We(arbitrarily)uselinearinterpolationsandextrapolations dGin(t) Xine−t/τ to cover the 1–100 M⊙ stellar mass range. The effect of adopt- dit = τ(1−ie−tnow/τ), (3) ingdifferentyieldsetswillbethoroughlyanalyzedinaforthcom- ingpaper(Romanoetal.,inpreparation;noticethatchangingthe withτ,theinfalltime-scale,settobe0.5Gyr,andXin,theabun- adopted yieldsetsisnot expected toaffect significantly themain i dances of the infalling gas, set totheir primordial values. In par- resultspresentedinthispaper). ticular,weassume YP =0.248, inagreement withthepredictions For stars evolving in binary systems which will give rise of the standard big bang nucleosynthesis (SBBN) theory and the to SNIa explosions, the nucleosynthesis prescriptions are from constraintsfromthecosmicmicrowavebackground(CMB;seeRo- Iwamotoetal.(1999).Inourmodels,asubstantialfractionofCu manoetal.2003,andreferencestherein). and Zn is produced by SNeIa, following the suggestions of Mat- TherateofgaslossviaSN-drivenlarge-scaleoutflowsisdif- teuccietal.(1993). ferentfromzeroonlyfortheopenmodels,andsimplyproportional totheamountofgaspresentatthetimet: dGiout(t) =w X (t)G(t). (4) 4 RESULTS dt i i 4.1 Theclosed-boxpicture The quantity w is a free parameter which describes the effi- i ciencyofthegalacticwind;itisexpressedinGyr−1andmayhave Inthissectionwebrieflydiscusstheresultsobtainedintheframe- different values for different elements (e.g. Recchi, Matteucci & workoftheclosed-boxself-enrichmentscenario,whereanymatter D’Ercole2001). exchange betweentheproto-ωCenanditsenvironment isstrictly forbidden. InFig.2,thetheoreticalmetallicitydistributionasafunction 3.2 Theevolutivecontext of[Fe/H]or[Ca/H](thicksolidlines)iscomparedwiththephoto- metricandspectroscopic empirical ones(thindashed histograms; AccordingtoBekki&Freeman(2003,andreferencestherein),in thedwarfprogenitorscenariotheinitialstellarmassofωCen’shost Norriset al. 1996; Suntzeff & Kraft 1996; Sollimaet al. 2005a). was significantly higher than that currently observed and can be This comparison shows the shortcomings of this simple picture. Inthecontextofaclosed-boxevolution,metallicitiesmuchhigher estimatedas thanobserved arequicklyattained,sothatmostof thestarsform M M = ωCen , (5) frommatterwithachemicalcompositionfromonetenthofsolarto dwarf (1−f )f lost n supersolar,atvariancewiththeobservations. where f = 0.05 is the mass fraction of the compact nucleus TheresultsdisplayedinFig.2arefortheScalo(1986)IMF, n and flost = 0.2 is the stellar mass fraction that gets lost through that – owing to its steeper slope for m > 2 M⊙ with respect to long-term (∼10 Gyr) tidal interaction with the Milky Way. If Salpeter’s, x = 1.7 rather than 1.35 – allows a lower fraction of MωCen ≃ 5 × 106 M⊙ (Meylan et al. 1995), one gets Mdwarf = high-massstarstopollutetheISMwiththeirmetal-richejecta.Ob- 1.25×108M⊙.SinceMωCenmightbeafactoroftwolower(van viously,byadoptingaSalpeterIMFthepredicteddistributiongoes deVenetal.2006),werunseveralmodels,startingwithaninitial towards even higher metallicities. Flattening the IMF in the very gaseousmassMgas(t=0)=Mbar=5×108–109M⊙andending lowstellarmassdomain,asinaKroupaetal.’s(1993) IMF,does (cid:13)c 2006RAS,MNRAS000,1–11 The chemicalevolutionofω Cen 5 Figure2.Comparisonofobserved(thindashedhistograms)andpredicted Figure3.Comparisonofobserved(thindashedhistograms)andpredicted (thicksolidlines)metallicitydistributionfunctionsofωCenstars.Theoret- (thicksolidlines)metallicitydistributionfunctionsofωCenstars.Theoreti- icalpredictionsrefertotheclosed-boxself-enrichmentscenario.Thethe- calpredictionsrefertotheevolutivepicturewhereωCenistheremnantofa oreticaldistributionsareconvolvedwithaGaussianofdispersionσ=0.2 largersystemevolvedinisolationandthenaccretedandpartiallydisrupted dexinorderto(generously)takeobservationalerrorsintoaccount. bytheMilkyWay.ThetheoreticaldistributionsareconvolvedwithaGaus- sianofdispersionσ=0.2dexinorderto(generously)takeobservational errorsintoaccount. notpreventthesystemfromsuddenlyreachingtoomuchhighmetal abundances.Evenintheframeworkofextremescenarioswherethe formation of SNIa progenitors is suppressed and lower Fe yields metallicitysystem.Thus,theprogenitorofωCenmusthavebeena fromcorecollapseSNeareassumed(Chieffi&Limongi,inprepa- massiveenoughsystemtoallowdynamicalfrictiontodragittothe ration),westillfailtoreproducetheobservedMDF.Sincewithin innerGalacticregions(Bekki &Freeman2003). Inlightof these theschemeofaclosed-boxself-enrichmentwecannotfulfileven considerations,inthefollowingwediscusstheresultsforanucle- such a basic observational constraint, we deem it meaningless to ateddwarfhostingωCenwithinitialmassMbar=109M⊙.Aftera analyzefurtherthemodelresultsandswitchtothe‘open’scenar- 3Gyrevolution,theparentsystemhaslostmostofitsgasthrough ios. galacticwindsandendedupwithastellarmassMstars ∼108M⊙, Indeed,onlyifasubstantialfractionofSNejectaescapesfrom whichisconsistentwiththatofωCen’sparentgalaxyaccordingto thecluster,theobservedMDFcanbereproduced. Ourresultsup- thecomputationsofBekki&Freeman(2003). portsthefindingsofIkuta&Arimoto(2000) that significantout- flowfromtheclusterisneededinordertoreducetheeffectiveyield perstellargeneration.Ikuta&Arimoto(2000)obtainedthebestfit 4.2.1 Stellarmetallicitydistributionandage-metallicityrelation to the observed MDF with a model involving gas outflow, infall TheobservedMDFoflong-livedstarsinagalaxyisanimportant atthevery earlystage ofchemical evolutionand abimodal IMF. record of its past evolution. In fact, the relative numbers of stars However,thedurationofstarformationfortheirbest-fitmodelwas whichformedatanymetallicitytestifytheinterplayoffundamental only0.28Gyr,muchshorterthanthatinferredfromcurrentobser- processessuchasstarformation, infallofgasfromthesurround- vationsandassumedhere. ingsandmetal-enrichedgasoutflowsatanytime.Reproducingthe currentlyobservedMDFofωCen’sstarssignificantlyrestrainsthe freeparameterspaceofourdwarfgalaxymodel.Wefindthatafast 4.2 Astrippeddwarfgalaxy? earlycollapsecoupledwithanintense(perunitmass)starforma- Anopen,small-massmodelhenceoffersaviablesolution,butthe tionactivity,hψi≃0.1M⊙ yr−1 duringthefirst1Gyrevolution, questionable assumption has to be made that, while SN products givesrisetoadistributionpeakedat[Fe/H]∼ −1.6,asobserved easily leavethe cluster, thestellar wind ejecta arecompletely re- (Fig.3, leftpanel), thanks to thestrong galactic wind whicheffi- tainedandthesurroundingmediumremainsunperturbed.Thecur- cientlyremovesthemetalsfromtheproto-ωCen.Inourmodel,the rentmassofωCenisunlikelytogeneratesufficientdynamicalfric- thermal energy of the gas exceeds its binding energy nearly 200 tion to modify its orbit to its present small size (Majewski et al. millionyearsaftertheonsetofthestarformation,owingtomulti- 2000).Dynamicalmodeling,however,pointsoutthatthelongand pleSNexplosions:thegasisthensweptawaybyastronggalactic complex star formation history of ωCen is inconsistent with the windandthestarformationslowlyfades.Weimposethatthewind cluster originating on itspresent orbit: withaperiod of only 120 isdifferential,namelythattheSNejectaleavethegalaxymoreeas- Myr(Dinescuetal.1999),thefrequentdisccrossingswouldhave ily than the stellar wind ejecta (see also Recchi et al. 2001). In swept out all the intracluster gas very soon, leading to a mono- particular, by assuming a wind efficiency w ≃ 5 Gyr−1 for the i (cid:13)c 2006RAS,MNRAS000,1–11 6 D. Romanoet al. Figure4.PredictedAMRforωCen(thicksolidline)comparedto(i)the AMRinferredfromasampleof∼250SGBstarswith[Fe/H]errorsless than0.2dexandageerrors lessthan 2Gyr,fortwodifferent choices of distance modulus and reddening (stars; Hilker et al. 2004); (ii) the age- metallicity diagram fortheMSTOsampleofStanfordetal. (2006;dots, only stars with V < 18 are considered). Notice, however, that the most metal-richstarsat[Fe/H]> −1.0mighthaveanaccretedoriginandages comparabletothatofthemainclusterpopulation(seetextforreferences). SNejecta,nostarswith[Fe/H]> −0.4dexareformed,inagree- mentwiththeobservations(Fig.3,leftpanel).Suchhighoutflow rates–morethantentimestheSFR–areoftenrequiredtorepro- ducethehigh-qualitydataofnearbydwarfspheroidals(Lanfranchi &Matteucci2003,2004).InFig.3wecomparethepredictionsof thismodel(thicksolidlines)withthesameobserveddistributions ofFigs.1and2.Boththesteepriseatlowmetallicitiesandtheex- tendedmetallicitytailarewellreproduced;inparticular,theagree- ment with the up-to-date distribution of Sollima et al. (2005a) is strikinglygood.Thisisencouraging,butthemodelhastobetested against many more observational constraints inorder toprove its validity. InarecentstudybyHilkeretal.(2004;seealsoKayseretal. 2006), newly derived spectroscopic abundances of ironfor ∼400 ωCenmembers havebeenused incombination withthelocation ofthestarsintheCMDtoinfertheage-metallicityrelation(AMR) ofthesystem.Thesuggestedagespreadisabout 3Gyrandthere is some indication that the AMR could level off above [Fe/H] ≃ Figure 5. Predicted (solid lines) versus observed (filled circles; see text −1.0dex. Thisisclearly seen inFig.4, wherethe starswiththe forreferences) abundance ratios ofseveral chemical species to iron as a errorbarsrepresenttheAMRforthesubsampleofstarswithmost function of[Fe/H].Theαelements oxygen(panel a),magnesium (panel reliableageandmetallicitydeterminations,fortwochoicesofthe b),silicon(panelc)andcalcium(paneld)areshown,aswellastheiron- reddeninganddistancemodulusvalues(seeHilkeretal.2004;their peakelementcopper(panele).Conservativeerrorsareshownintheright table 1). Evidence for the most metal-rich stellar populations of handcornerofeachpanel. Thecrossesinpanelemarkthetimeelapsed ωCenbeingyoungerby2–4Gyrthanthemostmetal-pooronehas sincethebeginningofstarformation(0.1,0.3,1,2,2.6Gyr);theyarenot been found also by Stanford et al. (2006) from extensive Monte superimposed on the track in all panels in order to avoid confusion and § overcrowdedplots. CarlosimulationsontheirMSTOdata(Fig.4,dots) .Althougha largedispersionispresentinthedata,ourmodelclearlypredictsthe correctrunofmetallicitywithage(Fig.4,thicksolidline).Notice thatinourmodeltheSFRgoestozeroaftera3Gyrevolution,when 4.2.2 Abundanceratios [Fe/H]≃−0.4dex,becauseofthestronggalacticoutflowswhich InFig.5wedisplayourpredictionsforseveralabundanceratiosas efficientlyremoveanyresidualgasfromthegalaxy(seeprevious afunctionof[Fe/H](thicksolidlines).ThedatadisplayedinFig.5 paragraph). (circles) have been collected fromthe literature. Data from high- resolution optical spectra (Franc¸ois, Spite & Spite 1988; Brown &Wallerstein1993; Norris&DaCosta1995; Smithet al. 1995, § Notethatsuchanagedifferenceseemsinconsistentwiththeresultsob- 2000;Cunhaetal.2002;Pancinoetal.2002;Vantureetal.2002) tainedbyFerraroetal.(2004)andSollimaetal.(2005b)fromthemagni- areshownassmallcircles.Datafromlow-andmedium-resolution tudelevel,shapeandextensionoftheturnoffregion. infraredspectra(Origliaetal.2003)areshownasbigcircles. (cid:13)c 2006RAS,MNRAS000,1–11 The chemicalevolutionofω Cen 7 Wehavecheckedthatallliteratureabundanceratiosareinrea- sonableagreementwitheachother(weconsidertwostudiesinrea- sonableagreementwhentheabundancesofthestarsincommondo not differ,onaverage,bymorethan0.1dex, whichisthetypical uncertainty of the measurements). Asfar as [Fe/H]is concerned, mostpapersagreewitheachotherwiththeexceptionsofFranc¸ois etal.(1988),Pancinoetal.(2002),Vantureetal.(2002)andOriglia etal.(2003),allhaving[Fe/H]∼0.2dexlower,whichisamarginal (∼2σ)discrepancy.Wethereforecomparedatmosphericparame- ters(T ,logg andv ),atomicdata(loggf)andequivalentwidth eff t (EW)measurementsamongtheabovestudies,tofindpossibleex- planationsforthediscrepancies.InthecaseofFranc¸oisetal.,the turbolent velocities are significantly lower (∼ 0.5 km s−1) and theadoptedsolarcompositionissignificantlyhigher,logε(Fe)⊙= 7.67.Vantureetal.haveinsteadamuchlowerv (by0.4kms−1) t than average, and loggf slightlylower (∼ 0.06 dex). In the case Figure6.TheoreticalTypeII(solidline)andTypeIa(dashedline)SNrates ofPancinoetal.,allparametersappearingoodagreementwiththe (numberpercentury)fortheωCenprogenitor.TheSNIarateismultiplied otherliteraturesources,butfortheonlystarincommon(ROA371) byafactoroftentomakeitclearlyvisible. thereisanaveragedifferenceinEWof∼6.5mA˚.Allthesefactors togethersuggestthatweshouldrevisetheFranc¸oisetal.,Pancino etal.andVantureetal.[Fe/H]valuesupwardsby0.2dex.Origliaet seenfromfig.6ofCunhaetal.(2002).However,ifweadoptthe al.haveonlystarsincommonwithPancinoetal.,withdifferences Grevesse&Sauval(1998)solarcompositionforCunhaetal.,asin inTeff(∼150K),logg(∼0.3dex)andvt(∼0.3kms−1),butvery Fig.5,thediscrepancyrisesto0.3dex([Cu/Fe]=−0.61inCunha similarabundances. Evenifwedonot havethetoolstofullyun- et al.). We choose to use the same solar abundance (Grevesse & derstandthecauseofthediscrepancies(themethod,resolutionand Sauval1998),toputintoevidencetherealdiscrepancybetweenthe spectralrangeemployedbyOrigliaetal.areverydifferentfromthe twostudies,whichreflectstheactualuncertaintyinthederivation restofthepapers),wechoosetorevisethe[Fe/H]valuesupwards ofCuabundances. by0.2dex,inconformitywithwhatdoneforFranc¸oisetal.(1988), Theoretical values are normalized to the solar ones of Pancinoetal.(2002)andVantureetal.(2002). Grevesse&Sauval(1998).Elementssuchascarbonandnitrogen Concerningtheα-elements,thereisagoodagreementamong arenotconsidered,astheiroriginalabundancescouldbeeasilyal- various studies, except for a few notable exceptions. Oxygen is teredintheatmospheresofthesampledgiantstars¶.Theneutron a very difficult element to measure, since only one line, [OI] at capture elements Y, Ba, La and Eu deserve special attention and 6300 A˚,isusedbymost authors, thatliesinaregionplagued by willbetreatedindetailelsewhere(Romanoetal.,inpreparation). atmospheric O2 absorption and is blended with a NiI and a ScII It can be seen that the model reproduces satisfactorily the line.However,someauthorsalsoincludetheweak6363A˚ linein decreasing trend of various [α/Fe] ratios with time (metallicity), their analysis, whileonlypart of theauthors performafull spec- with the possible exception of Mg, which is underestimated for tralsynthesis ontheregion. Inspiteof this,theabundance deter- [Fe/H]>−1.0.Appropriateadjustmentoftheadoptednucleosyn- minations are in reasonable agreement with each other, with the thesisprescriptionsandIMFslopewouldmakethemodelpredic- marginalexceptionofVantureetal.(2002),thatwechoosetoleave tionsfitthedataevenbetter.Indeed,Franc¸oisetal.(2004)findthat asitis,sincetheoverallscatterin[O/Fe]issignificantlylargerthan theNomoto etal.(1997) yieldsofMg weareusingneedsignifi- forotherelements(seeFig.5).ForMgI,Smithetal.(2000)have cantcorrectionstobest fittheabundance dataofverymetal-poor anabundance ∼ 0.2 dexhigher than average, which ispartlyex- Galactichalostars,andthestellarmassfunctionisknowntoflat- plainedbythelowerloggf (∼0.1dex)oftheemployedlines.We teninthe very-low stellar massdomain (e.g.Kroupa et al. 1993; therefore lower the Smith et al. [Mg/Fe] abundances by 0.1 dex, Chabrier 2003). However, what really matters here is to provide bringingtheminreasonableagreementwithotherdeterminations. an overall, coherent interpretative framework for the whole body Silicon abundances are a tricky business, since there isa general ofdataforωCen,ratherthantoattempttopreciselyfitaspecific disagreementamongauthors(onlyFranc¸oisetal.1988andSmith observationalconstraint. etal.2000appeartobeonthesamescale),butnoclearcausefor The high ratios of [O/Fe], [Mg/Fe], [Si/Fe] and [Ca/Fe] for thediscrepanciesemergesfromouranalysis,sowechoosetoapply [Fe/H]< −1.2clearlypoint toSNeIIasthemajordriversof the nocorrectionforthisparticularelement.TheCaIdeterminationby chemical enrichment. Yet, the indication of a decrease of these Norris&DaCosta(1995)is∼0.2dexhigherthanallotherstudies abundanceratiosintheintermediateandmetal-richsubpopulations consideredhere,thatisfullytakenintoaccount bythe∼0.2dex (Pancinoetal.2002;Origliaetal.2003)aretheunmistakablesign lowerloggf valuesadoptedbythoseauthors,sowereviseNorris ofsignificantTypeIaSNpollution,occuringatlatertimesbutbe- &DaCosta’s[Ca/Fe]downwardsby∼0.2dex. forestarformationstops. Finally, only two papers have studied Cu in ωCen so far, Asfarascopperisconcerned,itisworthstressingthattheflat namelyPancinoetal.(2002)andCunhaetal.(2002),havingonly behaviourofthe[Cu/Fe]dataindicatesnoevolutioninthecopper- onestarincommon,ROA371.Thelinelistforthesynthesisofthe CuI5782A˚ lineusedisdifferentinthetwopapers. Theadopted atmosphericparametersareverysimilar,butthesolarcopperabun- ¶ Actually, a large scatter is present also in the abundances of oxygen. dances differ by 0.09 dex. All this together makes an ∼ 0.2 dex AlthoughcommonlyexplainedasthesignatureofprocessingintheCNO differencebetweenthetwostudiesofROA371([Cu/Fe]=−0.33 cycle(e.g.Norris&DaCosta1995),itisworthstressingthatitcouldbeat inPancino et al.and [Cu/Fe]= −0.52 inCunha et al.)as can be leastpartlyduetothewealthofobservationalproblemsdiscussedabove. (cid:13)c 2006RAS,MNRAS000,1–11 8 D. Romanoet al. to-iron yields over much of the chemical evolution within ωCen (see Fig. 5, panel e, circles, and Cunha et al. 2002, their fig. 6). Yet, from Fig. 5, panel e, it is seen that our chemical evolution model(thicksolidcurve)overpredictsthecopper-to-ironratioover the whole metallicity range. The predicted behaviour of [Cu/Fe] results from the assumption that the major astrophysical site for the synthesis of Cu are SNeIa (Matteucci et al. 1993), and these stellar factories happen to contribute to the chemical enrichment ofωCenalreadyatthelowestmetallicities.Thisisapparentfrom Fig.6,whereweshowtheTypeII(solidline)andTypeIa(dashed line)SNratespredictedbyourmodelforωCen.TheSNIaratehas beenmultipliedbyafactoroftentomakeitclearlyvisible.SNeII appear soon (a few million years) after their massive progenitors are born, thus their rate closely follows the SFR. SNeIa, instead, comefromintermediate-tolow-massstellarprogenitorsinbinary systems (Matteucci & Greggio 1986), which explode on varying Figure7.RelativeHeabundanceasafunctionofmetallicity.Thetheoret- time-scales: they start to contribute significantly to the chemical ical relation (thick line) is compared tothe empirical one obtained from enrichment of the proto-ωCen ∼400 Myr after the beginning of RRLyræstardata(filledcircles;seeSollimaetal.2006a,andreferences starformation,whentheISMhasattainedametallicityof[Fe/H]≃ therein, fordetails about the derivation of the relative Heabundances in −1.6(Fig.6,upperxaxis),whilethemaximumenrichmenttakes thesevariablestarsviathemass-luminosityparameterA).Theboxrepre- k sentsthelevelofHeenhancementrequiredinordertoexplainthebMSdata placeonlyseveralMyrlater,att≃1.1Gyr,when[Fe/H]≃−1.2 . (Norris2004;Piottoetal.2005). Lateron, att ≃2.6Gyr([Fe/H]≃ −0.6),thecontributionfrom SNeIanearlyequalsthatfromSNeII,butonlyafewstarsformfrom this SNIa-enriched material before the star formation stops. It is thelevelofHeenhancementrequiredtoexplainthebMSandhor- worthemphasizingherethatthemetal-enrichedoutflowlengthens izontal branch (HB) data (∆Y = 0.12–0.14; Norris 2004; Piotto theenrichmenttime-scale,i.e.thetimethatittakesfortheISMto et al. 2005). Yet, our model predictions are fully consistent with reachagivenmetallicity:intheabsenceofsuchanenrichedwind, thetinychangeinheliumabundance(∆Y =0.035±0.066)over it would take only 0.7 Gyr for the ISM to reach a metallicity of awidemetallicityrange(−2.26[Fe/H]6 −1.1)impliedbythe [Fe/H]≃−1.2and1.8Gyrtoreach[Fe/H]≃−0.6. observations of 74 RR Lyræ variables by Sollima et al. (2006a). In their 1993 paper, in order to fit the solar neighbourhood Thefactthatthereisapopulationofmetal-intermediateRRLyræ data, Matteucci and coworkers adopted Cu yields from SNeIa a starsinωCen withluminosity and pulsational properties that are factorof100higherthanpredictedbycurrentSNIamodels.When incompatible with a significant helium overabundance adds new adopting the lower Cu yields from SNeIa predicted by Iwamoto complexity to the peculiar chemical features of ωCen, as it en- etal.(1999),wefindaflatbehaviourof[Cu/Fe]versus[Fe/H]in tailsthe coexistence of twopopulations withsimilar metallicities ωCen (Fig. 5, panel e, thin solid curve). While this is consistent butverydifferentheliumabundancesinthecluster(Sollimaetal. withthedataofCunhaetal.(2002),itdoesnotaccountfortherise 2006a). for[Fe/H]>−1.0pointedoutbyPancinoetal.(2002).Clearly,the ThestarsonthebluesideoftheMSshownospreadinmetal- issueofcopperproductioninstarsneedtobefurtherinvestigated. licity(Piottoetal.2005),thussuggestingthattheyformedfroma Apartfromtheflatness,anevenmorestrikingfeatureistheoverall well-homogenizedmedium.Ontheotherhand,inordertoelevate Cudeficiencyinconjunctionwithastrongs-processenhancement. Y fromitsprimordialvalue0.248to∼0.40onemustassumethat ThesamechemicalsignatureappearstocharacterizetheSagittar- the material from which the bMS stars formed was made up al- iusdwarf spheroidal galaxy, thus lending support totheideathat mostentirelyofpureejectafrompreviousstellargenerations(Nor- ωCenistheremainingnucleusofanaccreteddwarfGalacticsatel- ris2004).Infact,aslongasthefreshejectaofdyingstarsaredi- lite(McWilliam&Smecker-Hane2005). lutedandmixedupwithpre-existinggasintheframeworkofaho- mogeneouschemicalevolutionmodel,thereisnowayofattaining asignificantheliumenrichmentoftheISMbythetimethemetal- 4.3 HeliumenrichmentinωCen licity increases from [Fe/H] ∼ −2.0 to ∼ −1.2 dex (see Fig. 7, In this section, we explore the issue of the helium enrichment in solidline).Thisresultisindependentoftheadoptedstellaryields, ωCenwithinthepicturewherethisclusteristhecompactsurvivor ascanbeimmediatelyunderstoodfromaninspectionofFigs.8and of alargersatellitesystem ingestedby theMilkyWaymanyGyr 9.There,weshowthemassfractionofHeintheejectaofLIMSs ago. andmassivestarsasafunctionofstellarmass,calculatedas In Fig. 7 we compare the theoretical ∆Y versus [Fe/H] re- Y =Y + mpHe , (6) ejecta ini lation(thick solidline) tothe data (box and filledcircles). When m−mrem using standard stellar yields (see Section3.3), after a 3 Gyr evo- whereY istheinitialheliumabundanceofthestar,p isthestel- ini He lutionweobtainanegligibleincreaseoftheHeabundanceinthe laryield,namelythefractionalmassofthestarofinitialmassm ISM(∆Y =0.01),thusunderestimatingbyanorderofmagnitude which is restored to the ISM in the form of newly produced He, andm isthemassoftheremnant. Thequantitiesdisplayedin rem Fig. 8 have been computed using the tables of van den Hoek & k Noticethatabimodaldistributionofthedelaytimesfortheexplosion, Groenewegen (1997) for LIMSs and Nomoto et al. (1997; stars) with‘prompt’and‘tardy’events,hasrecentlyproventobestmatchpresent andWoosley&Weaver(1995; filledcircles)formassivestars.In SNIadata(Mannucci,DellaValle&Panagia2006). thecaseofvandenHoek&Groenewegen’syields,thebiggerthe (cid:13)c 2006RAS,MNRAS000,1–11 The chemicalevolutionofω Cen 9 much lower Heamount (Fig.9). Since, according totheSalpeter IMFweareusing,ineachstellargenerationabout 85percentof themassfallsinthe0.1–8M⊙ massrange,itiseasytoguessthat afterthe∼1Gyrevolutionneededtoachieve[Fe/H]≃−1.2inthe ISM, the average helium abundance of the medium out of which thebMSstarsformwillbedefinitelylowerthanrequired.Indeed, whenincludingtheyieldsoftheGenevagroupinourhomogeneous chemicalevolutionmodel,wealwaysfindY <0.30(∆Y <0.05). WewillcomebacktotheissueoftheheliumenrichmentinωCen inafuturepaper(Romanoetal.,inpreparation). 5 DISCUSSIONANDCONCLUSIONS Inthisworkwestudytheformationandevolutionoftheanomalous Figure8.MassfractionofHeintheejectaofLIMSsaswellasmassive globular cluster ωCen. The constraints established by the wealth starsasafunctionofstellarmass.Yejectavalueswerecalculatedusingthe ofverygood-qualityabundancedataforitsmemberstarscollected tables byvandenHoek&Groenewegen (1997)forLIMSsandWoosley overthelastdecadesignificantlyrestraintheevolutivepicture.We &Weaver(1995;filledcircles)andNomotoetal.(1997;stars)formassive showthatintheframeworkoftheclosed-boxself-enrichmentsce- stars.InthecaseofvandenHoek&Groenewegen’syields,thebiggerthe nario(stillanoftenusedapproximation)themetallicitydistribution sizeofthesymbol,thehighertheinitialmetallicityofthestar(Z=0.001, functionofωCen’sstarscannotbereproduced.Ontheotherhand, 0.004,0.008).Forcomparison,theY valuesuggestedforthebMSstarsof themainchemicalpropertiesofωCenarenicelyreproducedifitis ωCenisalsodisplayedasadashedline.Theadoptedstellarlifetimesare thecompactremnantofadwarfspheroidalgalaxyevolvediniso- reported(forafewobjects)ontheupperxaxis. lationandthenaccreted–andpartlydisrupted–bytheMilkyWay. Thisevolutivepicturehasalreadyalloweddifferentauthorstoex- plainthepresent-daypeculiarlocationneartheGalacticcentreand surface brightness profile of ωCen (see, e.g., Bekki & Freeman 2003; Tsuchiya et al. 2004; Ideta & Makino 2004); our analysis givesfurtherstrengthtotheaccreteddwarfpicturebyprovingthat theingestedsatellitewouldalsohavesimilarchemicalpropertiesto ωCen.Indeed,byassumingarelativelylong-lastingstarformation activity(thoughwithmostofthestarsformingwithin1Gyr),stan- dardIMFandstandardstellaryields,ourmodelssatisfactorilyre- produceseveralobservedabundanceratiosasafunctionof[Fe/H]. Regarding the helium abundances of ωCen, a great deal of work has been recently devoted to the enigma of the anomalous helium-to-metalenrichmentofbMSandhotHBstars(Norris2004; Leeetal.2005;Piottoetal.2005;Bekki&Norris2006;Maeder& Meynet2006).Starswhichpopulatethe‘bluehook’regioncould havesufferedanunusuallylargemasslossontheRGBand,con- sequently,experiencedtheheliumcoreflashwhiledescendingthe Figure9.MassfractionofHeintheejectaofrotatingstarsasafunction white dwarf cooling curve (Moehler et al. 2002). Therefore, it is ofstellarmass.Yejecta values werecalculated usingthetablesbyMeynet not clear which fraction of the He enhancement truly reflectsthe & Maeder (2002), Hirschi (2006) and Meynet et al. (2006) fordifferent pristine abundance. Stars on the bMS, instead, likely give more initial metallicities and/or rotational velocities of the stars. Upside-down triangles:Z=10−8;stars:Z=10−5;circles:Z=0.004.Emptysymbols: trustworthyindication:theypointto∆Y =0.12–0.14(∆Y/∆Z> vini=800kms−1;filledsymbols:vini=300kms−1,exceptforthe9M⊙ 70).Recent observations ofRRLyræstarssuggest thatapopula- and40M⊙ starsatZ =10−8,forwhichvini=500kms−1and700km tionwithanormal(i.e.nearlyprimordial)heliumcontentinhabits s−1,respectively.Forcomparison,theY valuesuggestedforthebMSstars theclusteraswell,thuscomplicating theoverallpicture(Sollima ofωCenisalsodisplayedasadashedline.Theadoptedstellarlifetimesare etal.2006a). Ourhomogeneous chemical evolutionmodel,when reported(forafewobjects)ontheupperxaxis. adopting a3Gyr long starformation history, standard yieldsand Salpeter’sIMF,predictsthattheheliumabundanceintheISMal- mostdoesnotchangeduringthecluster’sprogenitorevolution,in sizeofthesymbol,thehighertheinitialmetallicityofthestar(Z= agreement withtheRRLyræstardata,butinsharpdisagreement 0.001,0.004,0.008).ThequantitiesdisplayedinFig.9havebeen withtheabundancesinferredforthebMS.Wecompareexistinghe- computed using the tables of Meynet & Maeder (2002), Hirschi liumyieldsforlow-metallicityrotatingstarstotheoutputsofstan- (2006)andMeynetetal.(2006)forrotatingstars,fordifferentini- dardstellarevolutionwhichdoesnottakerotationintoaccount,and tial metallicities and/or rotational velocities of the stars (see fig- findthatthewindsofmassivestarsofintermediaterotationveloc- urecaption).Werefertothoseauthorsfordetailsaboutthestellar ities do indeed eject significant amounts of He (see also Maeder modelassumptions.Inthecaseofthestandardyields(Fig.8),Y &Meynet2006).However,onceweightedwithanormalIMF,the ejecta isalwaysbelowthequantityneededtoexplainthebMSdata.Ro- heliumyieldofastellargenerationturnsouttobelowerthanthat tatingstars, instead, doactually (slightly) exceed Y =0.38in requiredtoexplainthebMSanomalies(seeSection4.3).Itisworth ejecta thehigh-mass domain, but below 8 M⊙ theyalways contributea noticingatthispointthateveniftheescapeofSNejectathrough (cid:13)c 2006RAS,MNRAS000,1–11 10 D. Romanoet al. galacticwindshelpstokeeptheglobalmetalcontentofthegalaxy FreemanK.C.,1993,inSmithG.H.,BrodieJ.B.,eds,ASPConf. Ser. low, thus favouring high ∆Y/∆Z values, it also leads to longer Vol.48,Theglobularclusters-galaxyconnection.Astron.Soc.Pac.,San enrichmenttime-scales(seeSection4.2.2),thusallowinglow-and Francisco,p.608 intermediate-massstarstospreadtheirrelativelyhelium-poor gas FreemanK.C.,RodgersA.W.,1975,ApJ,201,L71 FrinchaboyP.M.,RheeJ.,OstheimerJ.C.,MajewskiS.R.,PattersonR. throughtheISM.Adhocscenariosinwhichthewindsofmassive J.,JohnsonW.Y.,Dinescu D.I.,PalmaC.,Westfall K.B.,2002, in stars remain confined and pollute only the central regions where vanLeeuwenF.,HughesJ.D.,PiottoG.,eds,ASPConf.Ser.Vol.265, theHe-richMSstarsareactuallymoreconcentratedmayrepresent OmegaCentauri: AUnique Window into Astrophysics. Astron. Soc. awayoutoftheproblem.Heliumdiffusionhasrecentlybeenpro- Pac.,SanFrancisco,p.143 posed asa viable mechanism tosignificantly increase the helium GnedinO.Y.,ZhaoH.,PringleJ.E.,FallS.M.,LivioM.,MeylanG.,2002, contentofprotostellarclouds(Chuzhoy2006). ApJ,568,L23 AssuminganIMFstronglybiasedtowardsmassivestarscould GrattonR.G.,1982,A&A,115,336 alsosolvetheproblem,butcurrentobservationalevidenceseemsto GrattonR.,SnedenC.,CarrettaE.,2004,ARA&A,42,385 favouraSalpeter-likeIMFindwarfspheroidalsaswellasGalac- GrevesseN.,SauvalA.J.,1998,SpaceSci.Rev.,85,161 ticglobulars(Wyse2005,andreferencestherein).Anotheroption HarbeckD.,etal.,2001,AJ,122,3092 wouldbethatthebMSwasformedapartasastarclusterandthen Harris,W.E.,1996,AJ,112,1487 HilkerM.,RichtlerT.,2000,A&A,362,895 mergedwiththerMSinthecentralregionofωCen’shostgalaxy, HilkerM.,KayserA.,RichtlerT.,WillemsenP.,2004,A&A,422,L9 apossibilityfirstpointedout byBekki &Norris(2006). Wenote HirschiR.,2006,A&A,inpress(astro-ph/0608170) that if the star cluster originated mostly from matter ejected by HughesJ.,WallersteinG.,2000,AJ,119,1225 slowwindsfromrotatingmassivestarswith[Fe/H]∼ −1.2,then IckeV.,AlcainoG.,1988,A&A,204,115 itwouldhaveboththehighheliumabundanceanduniformmetal- IdetaM.,MakinoJ.,2004,ApJ,616,L107 licityinferredfrombMSobservations.Measuringtheheliumabun- IkutaC.,ArimotoN.,2000,A&A,358,535 dancesofstarsmoremetal-richthan[Fe/H]∼−1.0wouldhelpus IwamotoK.,BrachwitzF.,NomotoK.,KishimotoN.,UmedaH.,HixW. todiscriminatebetweenascenariowheretheheliumabundancein R.,ThielemannF.-K.,1999,ApJS,125,439 theISMmonotonically increaseswithtimeand ascenario where KayserA.,HilkerM.,RichtlerT.,WillemsenP.G.,2006,A&A,458,777 theformationofahelium-richpopulationisafortuitouseventoc- KochA.,GrebelE.K.,WyseR.F.G.,KleynaJ.T.,WilkinsonM.I.,Har- beckD.R.,GilmoreG.F.,EvansN.W.,2006,AJ,131,895 curredonashorttime-scaleunderveryspecialconditions.Wewill KroupaP.,ToutC.A.,GilmoreG.,1993,MNRAS,262,545 examinethesescenariosindetailinaforthcomingpaper,together LanfranchiG.A.,MatteucciF.,2003,MNRAS,345,71 withthemostupdated(evenadhoc)nucleosynthesisprescriptions. LanfranchiG.A.,MatteucciF.,2004,MNRAS,351,1338 LeeY.-W.,JooJ.-M.,SohnY.-J.,ReyS.-C.,LeeH.-C.,WalkerA.R.,1999, Nat,402,55 ACKNOWLEDGMENTS LeeY.-W.,eta.,2005,ApJ,621,L57 LloydEvansT.,1983,MNRAS,204,975 We thank L. Stanford for kindly providing her data in machine- MaederA.,MeynetG.,2006,A&A,448,L37 readableformat. MajewskiS.R.,PattersonR.J.,DinescuD.I.,JohnsonW.Y.,OstheimerJ. C.,KunkelW.E.,PalmaC.,2000,inNoelsA.,MagainP.,CaroD.,Je- hinE.,ParmentierG.,ThoulA.A.,eds,TheGalacticHalo:FromGlob- ularClustertoFieldStars.Institutd’AstrophysiqueetdeGe´ophysique, REFERENCES Lie`ge,p.619 AndersonA.J.,1997,Ph.D.Thesis,Univ.California,Berkeley MalliaE.A.,PagelB.E.J.,1981,MNRAS,194,421 Bedin L. R.,Piotto G.,Anderson J.,Cassisi S.,KingI. R.,Momany Y., MannucciF.,DellaValleM.,PanagiaN.,2006,MNRAS,370,773 CarraroG.,2004,ApJ,605,L125 MateoM.L.,1998,ARA&A,36,435 BekkiK.,FreemanK.C.,2003,MNRAS,346,L11 MatteucciF.,GreggioL.,1986,A&A,154,279 BekkiK.,NorrisJ.E.,2006,ApJ,637,L109 MatteucciF.,RecchiS.,2001,ApJ,558,351 BradamanteF.,MatteucciF.,D’ErcoleA.,1998,A&A,337,338 MatteucciF.,RaiteriC.M.,BussoM.,GallinoR.,GrattonR.,1993,A&A, BrownJ.A.,WallersteinG.,1993,AJ,106,133 272,421 CarraroG.,LiaC.,2000,A&A,357,977 McWilliamA.,Smecker-HaneT.A.,2005,ApJ,622,L29 ChabrierG.,2003,PASP,115,763 MerrittD.,MeylanG.,MayorM.,1997,AJ,114,1074 ChuzhoyL.,2006,MNRAS,369,L52 MezaA.,NavarroJ.F.,AbadiM.G.,SteinmetzM.,2005,MNRAS,359, CohenJ.G.,1981,ApJ,247,869 93 CohenJ.G.,BellR.A.,1986,ApJ,305,698 MeylanG.,MayorM.,DuquennoyA.,DubathP.,1995,A&A,303,761 CunhaK.,SmithV.V.,SuntzeffN.B.,NorrisJ.E.,DaCostaG.S.,PlezB., MeynetG.,MaederA.,2002,A&A,390,561 2002,AJ,124,379 MeynetG.,Ekstro¨mS.,MaederA.,2006,A&A,447,623 DinescuD.I.,2002,invanLeeuwenF.,HughesJ.D.,PiottoG.,eds,ASP MoehlerS.,SweigartA.V.,LandsmanW.B.,DreizlerS.,2002,A&A,395, Conf.Ser.Vol.265,OmegaCentauri: AUniqueWindowintoAstro- 37 physics.Astron.Soc.Pac.,SanFrancisco,p.365 NomotoK.,HashimotoM.,TsujimotoT.,ThielemannF.-K.,KishimotoN., DinescuD.I.,GirardT.M.,vanAltenaW.F.,1999,AJ,117,1792 KuboY.,NakasatoN.,1997,Nucl.Phys.A,616,79c FellhauerM.,KroupaP.,EvansN.W.,2006,MNRAS,372,338 NorrisJ.E.,2004,ApJ,612,L25 FerraroF.R.,BellazziniM.,PancinoE.,2002,ApJ,573,L95 NorrisJ.E.,DaCostaG.S.,1995,ApJ,447,680 FerraroF.R.,SollimaA.,PancinoE.,BellazziniM.,StranieroO.,Origlia NorrisJ.E.,FreemanK.C.,MighellK.J.,1996,ApJ,462,241 L.,CoolA.M.,2004,ApJ,603,L81 NorrisJ.E.,FreemanK.C.,MayorM.,SeitzerP.,1997,ApJ,487,L187 FerraroF.R.,SollimaA.,RoodR.T.,OrigliaL.,PancinoE.,BellazziniM., OrigliaL.,FerraroF.R.,BellazziniM.,PancinoE.,2003,ApJ,591,916 2006,ApJ,638,433 PancinoE.,FerraroF.R.,BellazziniM.,PiottoG.,ZoccaliM.,2000,ApJ, Franc¸oisP.,SpiteM.,SpiteF.,1988,A&A,191,267 534,L83 Franc¸oisP.,MatteucciF.,CayrelR.,SpiteM.,SpiteF.,ChiappiniC.,2004, PancinoE.,PasquiniL.,HillV.,FerraroF.R.,Bellazzini M.,2002,ApJ, A&A,421,613 568,L101 (cid:13)c 2006RAS,MNRAS000,1–11