ebook img

the characterization of some methacrylate and acrylate homopolymers, copolymers and fibers via ... PDF

198 Pages·2013·3.68 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview the characterization of some methacrylate and acrylate homopolymers, copolymers and fibers via ...

THE CHARACTERIZATION OF SOME METHACRYLATE AND ACRYLATE HOMOPOLYMERS, COPOLYMERS AND FIBERS VIA DIRECT PYROLYSIS MASS SPECTROSCOPY A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY SURİYE ÖZLEM GÜNDOĞDU IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN POLYMER SCIENCE AND TECHNOLOGY DECEMBER 2012 Approval of the thesis: THE CHARACTERIZATION OF SOME METHACRYLATE AND ACRYLATE HOMOPOLYMERS, COPOLYMERS AND FIBERS VIA DIRECT PYROLYSIS MASS SPECTROSCOPY submitted by SURİYE ÖZLEM GÜNDOĞDU in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Polymer Science and Technology Department by, Prof. Dr. Canan Özgen Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Teoman Tinçer Head of Department, Polymer Science and Technology Prof. Dr. Jale Hacaloğlu Supervisor, Chemistry Dept., METU Examining Committee Members: Prof. Dr. Nursel Dilsiz Chemical Engineering Dept., Gazi University Prof. Dr. Jale Hacaloğlu Chemistry Dept., METU Prof. Dr. Göknur Bayram Chemical Engineering Dept., METU Prof. Dr. Cevdet Kaynak Metallurgical and Materials Engineering Dept., METU Prof. Dr. Ahmet M. Önal Chemistry Dept., METU Date: 19.12.2012 ii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name : SURİYE ÖZLEM GÜNDOĞDU Signature : iii ABSTRACT THE CHARACTERIZATION OF SOME METHACRYLATE AND ACRYLATE HOMOPOLYMERS, COPOLYMERS AND FIBERS VIA DIRECT PYROLYSIS MASS SPECTROSCOPY Özlem Gündoğdu, Suriye Ph.D., Department of Polymer Science and Technology Supervisor: Prof. Dr. Jale Hacaloğlu December 2012, 177 pages Poly(methyl methacrylate) possesses many desirable properties and is used in various areas. However, the relatively low glass transition temperature limits its applications in textile and optical-electronic industries. Monomers containing isobornyl, benzyl and butyl groups as the side chain are chosen to copolymerize with MMA to increase Tg and to obtain fibers with PMMA. In this work, thermal degradation characteristics, degradation products and mechanisms of methacrylate homopolymers, poly(methyl methacrylate), poly(butyl methacrylate), poly(isobornyl methacrylate) and poly(benzyl methacrylate), acrylate homopolymers, poly(n-butyl acrylate), poly(t-butyl acrylate), poly(isobornyl acrylate), two, three and four component copolymers of MMA and fibers are analyzed via direct pyrolysis mass spectrometry. The effects of substituents on the main and side chains, the components present in the copolymers and fiber formation on thermal stability, degradation characteristics and degradation mechanisms are investigated. According to the results obtained, the depolymerization mechanism yielding mainly the monomer is the main thermal decomposition route for the methacrylate polymers, acrylate polymers degradation occurs by H-transfer reactions from the main chain to the carbonyl groups. However, when the alkoxy group involves γ-H, then, H-transfer iv reactions from the alkoxy group to the CO group also takes place leading to a complex thermal degradation mechanism. The thermal degradation mechanisms and the relative yields of products are affected by copolymerization due to the inter and intra-molecular interactions. As a consequence of transesterification reactions new fragments can be generated. In general, the samples taken from different parts of the fibers do not show different thermal degradation behavior. However, upon fiber formation, enhancements in intermolecular interactions decreasing the thermal stability and changing the product distribution are detected. Keywords: PMMA copolymers, fiber formation, thermal degradation, direct pyrolysis mass spectrometry. v ÖZ BAZI METAKRİLAT VE AKRİLAT HOMOPOLİMERLERİNİN, KOPOLİMERLERİN VE FİBERLERİNİN DİREKT PİROLİZ KÜTLE SPEKTROMETRESİ İLE KARAKTERİZASYONU Özlem Gündoğdu, Suriye Doktora, Polimer Bilimi ve Teknolojisi Bölümü Tez Yöneticisi: Prof. Dr. Jale Hacaloğlu Aralık 2012, 177 sayfa Poli(metil metakrilat) fiziksel ve kimyasal özellikleri nedeniyle oldukça geniş uygulama alanı olan bir polimer türü haline gelmiştir. Buna rağmen, oldukça düşük olan T ’si bu g polimerin tekstil ve optik-elektronik endüstrisinde kullanımını kısıtlamaktadır. Bu nedenle, PMMA, T ’si arttırılmak amacıyla yan zincir olarak bütil, benzil ve izobornil g grupları içeren monomerlerle kopolimerleştirilmekte ve fiberleştirilmektedirler. Bu çalışmada, metakrilat homopolimerler, poli(metil metakrilat), poli(bütil metakrilat), poli(izobornil metakrilat), poli(benzil metakrilat) akrilat homopolimerler, poli(n-bütil akrilat), poli(t-bütil akrilat), poli(izobornil akrilat), ve bu monomerlerin ikili, üçlü ve dörtlü kopolimerlerinin, elyaflarının ısıl bozunum karakterleri, ürünleri ve mekanizmaları doğrudan piroliz kütle spektrometresi yöntemi kullanılarak analiz edilmiştir. Bu çalışmalar neticesinde, ana ve yan zincirlerdeki moleküllerin çeşitliliği, kopolimeri oluşturan her bir parçanın birbiri üzerindeki etkisi ve elyaf oluşumunun ısıl kararlılık, bozunum karakteristiği ve ısıl bozunum mekanizması üzerindeki etkisi incelenmiştir. Elde edilen sonuçlara göre, metakrilat polimerleri için temel bozunum mekanizmasının monomer oluşumuna neden olan depolimerizasyon olduğu görülmüştür, akrilat polimerlerinin bozunumu ise ana zincirden karbonil gruba hidrojen transfer reaksiyonuyla başlamaktadır. Fakat alkoksi grup γ-H içeriyorsa bu gruptan karbonil gruba hidrojen transfer reaksiyonları da oluşabilmektedir ve bu tür durumlarda genellikle reaksiyon, karmaşık termal bozunum mekanizmalarıyla devam etmektedir. vi Kopolimerleşme nedeniyle moleküller arası etkileşimin farklılaşmasının, maddelerin ısıl bozunum mekanizmalarını ve ürünlerinin bağıl verimliliğini etkilediği gösterilmiştir. Transesterifikasyon reaksiyonları sonucunda da yeni ürünler oluşmuştur. Genel olarak, elyafların farklı bölgelerinden alınan örnekler farklı ısıl bozunum davranışları sergilemezler. Fakat elyaf oluşumun etkisiyle moleküller arası etkileşimin farklılaşması nedeniyle termal bozunum ürünlerinde ve bu ürünlerin ısıl kararlılıklarında bazı değişikliklerin olabildiği gösterilmiştir. Anahtar Kelimeler: PMMA kopolimerleri, elyaf oluşumu, ısıl bozunum, doğrudan piroliz kütle spektrometresi. vii To my lovely husband, Gençay…….. viii ACKNOWLEDGEMENTS I would like to express my deepest gratitude to my thesis supervisor Prof. Dr. Jale Hacaloğlu for her guidance, patience, understanding, kind support, encouraging advices, criticism, and valuable discussions throughout my thesis. I thank Prof. Dr. Ahmet M. Önal, Prof. Dr. Göknur Bayram, Prof. Dr. Cevdet Kaynak and Prof. Dr. Nursel Dilsiz for their helpful comments and suggestions as committee members. I would sincerely thank to Dr. Yusuf Nur for his guidance, patience and valuable friendship during my learning stage of using the concerning laboratory instruments and Dr. Evren Güler for her contribution in providing most of the polymers used in my experiments. My special thanks go to my mother, father and my brother for their continuous support, patience and encouragement. Last but not the least; I wish to express my sincere thanks to my husband Gençay Gündoğdu for his support, understanding and endless love. ix TABLE OF CONTENTS ABSTRACT ...................................................................................................................... iv ÖZ ..................................................................................................................................... vi ACKNOWLEDGEMENTS ................................................................................................ ix TABLE OF CONTENTS .................................................................................................... x LIST OF TABLES ............................................................................................................ xiii LIST OF FIGURES .......................................................................................................... xv LIST OF SCHEMES ....................................................................................................... xix LIST OF ABBREVIATIONS ............................................................................................. ix CHAPTERS 1. INTRODUCTION .......................................................................................................... 1 1.1 Polymers and Fibers ................................................................................................. 1 1.1.1 Fiber Spinning ................................................................................................... 2 1.1.1.1 Wet Spinning ............................................................................................. 3 1.1.1.2 Dry Spinning .............................................................................................. 4 1.1.1.3 Melt Spinning ............................................................................................. 4 1.1.1.4 Gel Spinning .............................................................................................. 5 1.1.2 Application Areas of Polymers .......................................................................... 5 1.2 Thermal Degradation of Polymers ............................................................................. 6 1.2.1 Depolymerization ........................................................................................... 7 1.2.2 Random Chain Scission ............................................................................... 7 1.2.3 Side Group Elimination ................................................................................. 7 1.3 Thermal Degradation Techniques ............................................................................. 7 1.3.1 Thermogravimetric Analysis (TGA) ................................................................... 8 1.3.2 Thermal Volatilization Analysis (TVA) ............................................................... 9 1.3.3 Differential Scanning Analysis (DSC) .............................................................. 10 1.3.4 Pyrolysis (Py) ................................................................................................... 11 1.3.4.1 Pyrolysis GC/MS (Py-GC/MS) ................................................................ 12 1.3.4.2 Direct Pyrolysis-MS (DP-MS) .................................................................. 13 1.4. Acrylate Polymers .................................................................................................. 15 x

Description:
fibers with PMMA. In this work, thermal degradation characteristics, degradation products and .. 1.4.3 Poly(butyl acrylate) and It's Copolymer with PMMA . polymeric fibers have been in textiles and furnishings. For example, the experiment conducted by Vinu and coworkers to investigate the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.