ebook img

The Characterization of Algae Grown on Nutrient Removal Systems and Evaluation of Potential PDF

241 Pages·2017·5.35 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Characterization of Algae Grown on Nutrient Removal Systems and Evaluation of Potential

WWeesstteerrnn MMiicchhiiggaann UUnniivveerrssiittyy SScchhoollaarrWWoorrkkss aatt WWMMUU Dissertations Graduate College 8-2013 TThhee CChhaarraacctteerriizzaattiioonn ooff AAllggaaee GGrroowwnn oonn NNuuttrriieenntt RReemmoovvaall SSyysstteemmss aanndd EEvvaalluuaattiioonn ooff PPootteennttiiaall UUsseess ffoorr tthhee RReessuullttiinngg BBiioommaassss Kristin Hampel Western Michigan University, [email protected] Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Plant Sciences Commons RReeccoommmmeennddeedd CCiittaattiioonn Hampel, Kristin, "The Characterization of Algae Grown on Nutrient Removal Systems and Evaluation of Potential Uses for the Resulting Biomass" (2013). Dissertations. 183. https://scholarworks.wmich.edu/dissertations/183 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. THE CHARACTERIZATION OF ALGAE GROWN ON NUTRIENT REMOVAL SYSTEMS AND EVALUATION OF POTENTIAL USES FOR THE RESULTING BIOMASS by Kristin Hampel A dissertation submitted to the Graduate College in partial fulfillment of the requirements for the degree of Doctor of Philosophy Chemistry Western Michigan University August 2013 Doctoral Committee: John B. Miller, Ph.D., Chair Steven B. Bertman, Ph.D. Andre R. Venter, Ph.D. Carla M. Koretsky, Ph.D. THE CHARACTERIZATION OF ALGAE GROWN ON NUTRIENT REMOVAL SYSTEMS AND EVALUATION OF POTENTIAL USES FOR THE RESULTING BIOMASS Kristin Hampel, Ph.D. Western Michigan University, 2013 Eutrophication resulting from excess nutrient loads is a major environmental issue that affects surface water quality and causes surplus primary production, thereby reducing dissolved oxygen concentrations. A method for managing nutrients in surface waters involves absorption of excess nutrients by deliberately cultivating benthic algal turf biomass, then harvesting it for a variety of uses, including biofuels, soil amendments, or feed supplements, thus coupling nutrient removal to additional economic drivers. The goals of this work are to (1) evaluate the composition of algal biomass grown to remove surface water nutrients, (2) compare biomass grown at different geographic locations and in dissimilar water conditions, and (3) investigate uses for the biomass products. The algal biomasses harvested from a range of locations, were characterized by measuring organic and inorganic carbon, nitrogen, phosphorus, and ash profiles. Algal biomass grown on wastewater effluent has the highest nutrient content and lowest ash (40 wt% C, 7.0 wt% N, >1.0 wt% P, 32 wt% ash) while that grown in brackish water had the lowest nutrient content and highest ash (10 wt% C, 1.0 wt% N, 0.13 wt% P, 79 wt% ash). The algal turfs were also analyzed for silica and toxic metals. Silica in the algal turf was partitioned into biogenic and terragenic origin. Algae harvested from freshwater locations had ≤ 3.5 wt% biogenic silica while mixed fresh-salt water locations had biogenic silica content ranging from 10-27 wt%. Metals composed 0.045 wt% to 0.075 % of the total dry algal biomass, with relative concentrations of As > Cu ≈Cr > Co ≈ Mo > Cd. The potential for using algal biomass as bio-ethanol feedstock was investigated by quantifying the monosaccharides in freshwater algal turf, which include glucose, galactose, xylose, mannose, ribose, and arabinose, varying from 2-30 % based on ash free dry mass. The application of biochar made from algal biomass for sorption of pharmaceuticals from water was assessed using model compounds. The order of sorption was 2-[4-(2-methylpropyl)phenyl]propanoic acid ≈ 2,4-dinitroaniline > 2-phenylethanol ≈ 2-phenylethylamine. Two commonly used analytical methods, the Boehm Titration and molybdenum blue colorimetric method, were investigated for applicability to biomass analysis. Systematic errors inherent in the methods indicate that they are inappropriate for analyzing non-standard materials. Copyright by Kristin Hampel 2013 ACKNOWLEDGMENTS I would like to express my deepest appreciation and gratitude to my advisors Dr. John Miller and Dr. Steven Bertman, whose insight and continuous support helped guide me throughout my studies. I would also like to thank them for being patient and giving me the freedom to explore and develop my own ideas. Furthermore, I would like to thank my committee members, Dr. Andre Venter and Dr. Carla Koretsky, for providing me access to their expertise and challenging me to be a better scientist. I would like to extend my sincere appreciation to my partner Nate for enduring and supporting me though times of stress and frustration. I would also like to thank him for his willingness to discuss and understand my research. Additionally, I would like to acknowledge my mother and father for instilling in me a passion for knowledge and the value of persistence. Kristin Hampel ii TABLE OF CONTENTS ACKNOWLEDGMENTS ...................................................................................... ii LIST OF TABLES .................................................................................................. x LIST OF FIGURES ............................................................................................... xii LIST OF EQUATIONS .......................................................................................... xvii CHAPTER 1 INTRODUCTION ...................................................................................... 1 1.1 Environmental Concerns ............................................................ 1 1.2 Reducing Nutrient Pollution and Mitigating Climate Change ... 4 1.3 Overview of Algae Based Nutrient Removal Technology ......... 5 1.4 Recycling of Algal Biomass ....................................................... 8 1.4.1 Food Applications .............................................................. 9 1.4.2 Animal Feed Applications ................................................. 10 1.4.3 Fertilizer Application ......................................................... 11 1.4.4 Additional Uses for Algal Biomass ................................... 12 1.5 Project Overview ........................................................................ 13 1.6 Objectives and Organization of Thesis ...................................... 20 1.7 Bibliography ............................................................................... 22 2 NUTRIENT ANALYSES OF ALGAL BIOMASS ................................... 28 2.1 Introduction ................................................................................ 28 iii Table of Contents-Continued CHAPTER 2.2 Experimental Details .................................................................. 30 2.3 Methods ...................................................................................... 31 2.3.1 Biomass Harvesting ........................................................... 31 2.3.2 Phosphorus Analysis by Colorimetry ................................ 32 2.3.3 Carbon, Hydrogen, and Nitrogen Analyses ....................... 35 2.3.4 Monosaccharide Analysis .................................................. 36 2.3.5 Quantitative Analyses ........................................................ 39 2.3.6 Floway Position Experiment .............................................. 39 2.3.7 Carbon Dioxide Addition Experiment ............................... 41 2.3.8 Water Analyses .................................................................. 42 2.4 Results and Discussion ............................................................... 43 2.4.1 CHN Analyses ................................................................... 43 2.4.2 Great Wicomico River Site ................................................ 48 2.4.3 York River Site .................................................................. 51 2.4.4 Lake Erie CHN Algae Analyses ........................................ 54 2.4.5 Monosaccharide Analyses ................................................. 56 2.4.6 Phosphorus Analyses ......................................................... 62 2.5 Summary .................................................................................... 69 2.6 Bibliography ............................................................................... 71 iv Table of Contents-Continued CHAPTER 3 SILICA, ASH, AND METAL CONTENT IN ALGAL BIOMASS .......... 74 3.1 Introduction ................................................................................ 74 3.1.1 Importance of Ash ............................................................. 74 3.1.2 Silica .................................................................................. 75 3.1.3 Metals ................................................................................. 77 3.2 Experimental Details .................................................................. 79 3.3 Methods ...................................................................................... 79 3.3.1 Ash Analyses ..................................................................... 79 3.3.2 Total Silica Analyses ......................................................... 80 3.3.3 Biogenic Silica Analyses ................................................... 81 3.3.4 Silica ICP Analyses ........................................................... 82 3.3.5 Biogenic Silica Results ...................................................... 82 3.3.6 Metal Analyses .................................................................. 83 3.3.7 Mass Balance ..................................................................... 84 3.4 Results and Discussion ............................................................... 85 3.4.1 Ash Analyses ..................................................................... 85 3.4.2 Total Silicon Dioxide Analyses ......................................... 87 3.4.3 Biogenic Silica ................................................................... 94 3.4.4 Heavy Metals ..................................................................... 101 v Table of Contents-Continued CHAPTER 3.4.5 Mass Balance ..................................................................... 110 3.5 Summary .................................................................................... 113 3.6 Bibliography ............................................................................... 114 4 BIOCHAR APPLICATION OF ALGAL BIOMASS ................................ 117 4.1 Introduction ................................................................................ 117 4.2 Experimental Details .................................................................. 119 4.3 Methods ...................................................................................... 120 4.3.1 Pre-treatment and Production of Biochar .......................... 120 4.3.2 Biochar Characterization ................................................... 122 4.3.3 Ash and Elemental Analyses ............................................. 124 4.3.4 Sorption Experiments ........................................................ 125 4.3.5 Quantitation ....................................................................... 128 4.3.6 Statistical Analyses ............................................................ 129 4.4 Discussion and Results ............................................................... 129 4.4.1 Biochar Characterization ................................................... 129 4.4.2 Sorption Experiments ........................................................ 136 4.5 Summary .................................................................................... 146 4.6 Bibliography ............................................................................... 147 vi

Description:
Algal biomass grown on wastewater effluent has the highest nutrient content and lowest ash (40 wt% C, 7.0 wt% N, >1.0 wt% P, 32 wt% ash) while that grown in brackish water had the lowest nutrient Tett, P.; Wither, A.; Burt, J.; Jones, R.; Winpenny, K. Marine Pollution Bulletin. 2007, 55, 74–90.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.