crossmark The Challenge of Efflux-Mediated Antibiotic Resistance in Gram- Negative Bacteria Xian-ZhiLi,aPatrickPlésiat,bHiroshiNikaidoc HumanSafetyDivision,VeterinaryDrugsDirectorate,HealthProductsandFoodBranch,HealthCanada,Ottawa,Ontario,Canadaa;LaboratoiredeBactériologie,Faculté deMédecine-Pharmacie,CentreHospitalierRégionalUniversitaire,UniversitédeFranche-Comté,Besançon,Franceb;DepartmentofMolecularandCellBiology,University ofCalifornia,Berkeley,California,USAc SUMMARY..................................................................................................................................................338 INTRODUCTION............................................................................................................................................339 D BIOCHEMISTRYANDGENETICSOFMULTIDRUGEFFLUXPUMPS........................................................................................339 o ClassesofEffluxPumps...................................................................................................................................339 w RNDTransporters ........................................................................................................................................340 n AcrBofEscherichiacoli.................................................................................................................................340 lo OtherRNDtransportersinE.coli.......................................................................................................................347 a MFSTransporters.........................................................................................................................................347 d e ABCTransporters.........................................................................................................................................348 d SMRTransporters.........................................................................................................................................348 f MATETransporters.......................................................................................................................................349 ro SYNERGYWITHTHEOUTERMEMBRANEBARRIER........................................................................................................349 m PathwaysofDrugInfluxacrosstheOM..................................................................................................................349 h DrugsTraversingtheOMMainlythroughPorinChannels...............................................................................................350 t t DrugsTraversingtheOMthroughtheLipidBilayerRegion..............................................................................................351 p : GAMMAPROTEOBACTERIA:ENTEROBACTERIACEAE.......................................................................................................351 // E.coli......................................................................................................................................................351 c m Fluoroquinolones......................................................................................................................................352 r (cid:2)-Lactams.............................................................................................................................................352 .a Otherdrugs............................................................................................................................................353 s Salmonellaspp. ..........................................................................................................................................353 m Citrobacterspp............................................................................................................................................353 .o EnterobacteraerogenesandEnterobactercloacae.........................................................................................................354 r g Klebsiellapneumoniae....................................................................................................................................354 / Proteus,Providencia,andMorganellaspp.................................................................................................................356 o n Serratiamarcescens.......................................................................................................................................356 Shigellaflexneri............................................................................................................................................356 J a YersiniaenterocoliticaandYersiniapestis..................................................................................................................356 n OTHERGAMMAPROTEOBACTERIA:VIBRIO,AEROMONAS,LEGIONELLA,ANDPASTEURELLACEAE.......................................................357 u a Vibriospp.................................................................................................................................................357 r Aeromonasspp. ..........................................................................................................................................357 y Legionellaspp. ...........................................................................................................................................357 4 , Pasteurellaceae...........................................................................................................................................358 2 Pasteurellamultocida...................................................................................................................................358 0 Haemophilusinfluenzae................................................................................................................................358 1 9 GAMMAPROTEOBACTERIA:PSEUDOMONAS,ACINETOBACTER,ANDSTENOTROPHOMONAS............................................................358 b Pseudomonasaeruginosa.................................................................................................................................358 y OMpermeability.......................................................................................................................................358 g RNDeffluxpumps. ....................................................................................................................................358 u (continued) e s t Published18March2015 CitationLiX-Z,PlésiatP,NikaidoH.18March2015.Thechallengeofefflux- mediatedantibioticresistanceinGram-negativebacteria.ClinMicrobiolRev doi:10.1128/CMR.00117-14. AddresscorrespondencetoHiroshiNikaido,[email protected]. Copyright©2015,AmericanSocietyforMicrobiology.AllRightsReserved. doi:10.1128/CMR.00117-14 April2015 Volume28 Number2 ClinicalMicrobiologyReviews cmr.asm.org 337 Lietal. (i)MexAB-OprM.....................................................................................................................................358 (ii)MexXY-OprM(OprA)..............................................................................................................................359 (iii)MexCD-OprJ.....................................................................................................................................360 (iv)MexEF-OprN.....................................................................................................................................361 (v)OtherRNDpumps...............................................................................................................................361 Acinetobacterspp.........................................................................................................................................361 OMpermeability.......................................................................................................................................361 RNDeffluxpumps.....................................................................................................................................362 Non-RNDeffluxpumps................................................................................................................................362 Stenotrophomonasmaltophilia...........................................................................................................................363 ALPHAPROTEOBACTERIA:BRUCELLA,BARTONELLA,ANDRICKETTSIA....................................................................................363 Brucellaspp...............................................................................................................................................364 Bartonellaspp. ...........................................................................................................................................364 Rickettsiaspp. ............................................................................................................................................364 BETAPROTEOBACTERIA:ACHROMOBACTER,BURKHOLDERIA,ANDNEISSERIA...........................................................................364 Achromobacterspp.......................................................................................................................................364 D Burkholderiaspp..........................................................................................................................................364 o Neisseriaspp..............................................................................................................................................365 w EPSILONPROTEOBACTERIA:CAMPYLOBACTERANDHELICOBACTER......................................................................................365 n Campylobacterspp. ......................................................................................................................................366 lo a Helicobacterspp. .........................................................................................................................................366 d BACTEROIDACEAEANDPREVOTELLACEAE.................................................................................................................367 e DRUGEFFLUXGENESONPLASMIDS......................................................................................................................367 d REGULATIONOFMUTLIDRUGEFFLUXPUMPS............................................................................................................369 fr E.coliEffluxPumps.......................................................................................................................................369 o m AcrAB-TolC.............................................................................................................................................369 Regulationofotherpumps............................................................................................................................371 h t SalmonellaEffluxPumps.................................................................................................................................371 t p K.pneumoniaeEffluxPumps..............................................................................................................................371 : / P.aeruginosaEffluxPumps...............................................................................................................................372 /c MexAB-OprM..........................................................................................................................................372 m MexXY.................................................................................................................................................373 r . OtherMexpumps.....................................................................................................................................375 a s A.baumanniiEffluxPumps...............................................................................................................................375 m S.maltophiliaEffluxPumps...............................................................................................................................376 . NeisseriaEffluxPumps....................................................................................................................................376 o r C.jejuniEffluxPumps.....................................................................................................................................376 g / ROLEOFEFFLUXPUMPSINBIOFILMFORMATIONANDRESISTANCE....................................................................................376 o INVOLVEMENTOFMUTLIDRUGEFFLUXPUMPSINOTHERFUNCTIONS.................................................................................377 n BacterialStressResponses................................................................................................................................378 J Fitness,Colonization,andVirulence......................................................................................................................378 a n Entericbacteria........................................................................................................................................378 u P.aeruginosa...........................................................................................................................................379 a Otherbacteria.........................................................................................................................................380 ry MULTIDRUGEFFLUXPUMPSASACHALLENGEINDRUGDEVELOPMENT...............................................................................380 4 EFFLUXPUMPINHIBITORS.................................................................................................................................381 , PA(cid:2)N.....................................................................................................................................................381 2 0 NMP......................................................................................................................................................383 1 D13-9001.................................................................................................................................................384 9 MBX2391.................................................................................................................................................384 b OtherCompoundsThatInhibitRNDPumps.............................................................................................................385 y METHODOLOGICALCONSIDERATIONS...................................................................................................................386 g CONCLUSIONS.............................................................................................................................................387 u e ACKNOWLEDGMENTS......................................................................................................................................387 s ADDENDUMINPROOF.....................................................................................................................................387 t REFERENCES................................................................................................................................................387 AUTHORBIOS..............................................................................................................................................418 SUMMARY and acquired multidrug resistance (MDR) but also are in- The global emergence of multidrug-resistant Gram-negative volved in other functions, including the bacterial stress re- bacteriaisagrowingthreattoantibiotictherapy.Thechromo- sponseandpathogenicity.Additionally,effluxpumpsinteract somally encoded drug efflux mechanisms that are ubiquitous synergisticallywithotherresistancemechanisms(e.g.,withthe inthesebacteriagreatlycontributetoantibioticresistanceand outer membrane permeability barrier) to increase resistance present a major challenge for antibiotic development. Multi- levels. Since the discovery of RND pumps in the early 1990s, drug pumps, particularly those represented by the clinically remarkablescientificandtechnologicaladvanceshaveallowed relevantAcrAB-TolCandMexpumpsoftheresistance-nodu- foranin-depthunderstandingofthestructuralandbiochem- lation-division(RND)superfamily,notonlymediateintrinsic icalbasis,substrateprofiles,molecularregulation,andinhibi- 338 cmr.asm.org ClinicalMicrobiologyReviews April2015 Volume28 Number2 DrugEffluxinGram-NegativeBacteria tion of MDR pumps. However, the development of clinically (17–19)andisavailableintheTransporterClassificationDatabase usefuleffluxpumpinhibitorsand/ornewantibioticsthatcan (http://www.tcdb.org/). Transporter genes in hundreds of se- bypass pump effects continues to be a challenge. Plasmid- quencedbacterialgenomesareclassifiedinIanPaulsen’sdatabase borne efflux pump genes (including those for RND pumps) (20)foreachofthesegenomes(http://www.membranetransport have increasingly been identified. This article highlights the .org/). Among many families of transporters, several contain recentprogressobtainedfororganismsofclinicalsignificance, prominentmembersofeffluxtransporters:especiallyimportant togetherwithmethodologicalconsiderationsforthecharacter- in bacteria are the RND, MFS (major facilitator superfamily), izationofMDRpumps. MATE(multidrugandtoxiccompoundextrusion),SMR(small multidrug resistance), and ABC (ATP-binding cassette) super- INTRODUCTION familiesorfamilies.ABCtransportersutilizeATPhydrolysisasthe Antibioticresistancehasemergedasamajorthreattopublic energy source, but all others are dependent on proton motive force and are thus secondary transporters or proton/drug anti- healthinthiscentury,asevidentfromglobalsurveillancedata porters. (1).Indeed,withtheancientoriginandwidespreadpresenceof The transporters also differ in their subcellular organization. diverseresistancegenes(2,3),themodernevolutionofresistance D TheRNDpumps,whichareallexportersofdrugsandtoxiccat- hasledtotheglobalemergenceandspreadofalargenumberof o ions,arelocatedintheinnermembrane(IM)(cytoplasmicmem- w resistantbacteriathatpossesssophisticatedgenotypesandpheno- brane) but must interact with the periplasmic adaptor protein n typesagainstantibiotics.Thisphenomenonisaconsequenceof lo (alsocalledmembranefusionprotein)andtheoutermembrane a thenaturalselectionprocessinmicroorganismsandpromotion (OM)channel,thusproducingatripartitecomplexspanningthe d byhumanactivitiesoverthepast70yearsoftheantibioticera(4, e IM, the periplasm, and the OM (represented by E. coli AcrAB- d 5).In2013,theU.S.CentersforDiseaseControlandPrevention (6)listedcurrentresistancethreats,ofwhichmultidrug-resistant TolCandP.aeruginosaMexAB-OprM)(seethemulticomponent fro pumpdepictedinFig.1).SomemembersoftheABCsuperfamily m Gram-negativebacteriaconstitutealargeproportion(e.g.,Enter- (e.g.,MacB),theMATEfamily(e.g.,MdtK),andeventheMFS obacteriaceae, Acinetobacter, and Pseudomonas). Of the various h (e.g.,EmrB)(allfromE.coli)alsoareorganizedinthismanner. t molecularandbiochemicalmechanismsofresistancetoantibiot- tp ics,activeeffluxofantibioticsinbacteriaplaysanimportantrole Thetripartitetransportersexcretedrugsdirectlyintotheexternal :/ mediumsothatthereentryofdrugsrequirestheslowtraversalof /c in both intrinsic and acquired multidrug resistance (MDR) of m theOM,aneffectivepermeabilitybarrier(21,22).Forthisreason, clinicalrelevance.Italsointerplayswithotherresistancemecha- r nisms,suchasthemembranepermeabilitybarrier,enzymaticin- thesepumpsarefarmoreefficientincreatingdetectableresistance .a toantibiotics(especiallyAcrB,aconstitutiveRNDtransporterof s activation/modificationofdrugs,and/orantibiotictargetchang- m E. coli [9]) (see Gammaproteobacteria: Enterobacteriaceae, be- es/protection,insignificantlyincreasingthelevelsandprofilesof .o resistance. low).Incontrast,thepumpsthatarenotorganizedinthismanner rg andexistassingle-componentor“singlet”pumpsintheIM(Fig. / Energy-dependentdrugeffluxwasdiscoveredinthe1970s,ini- 1),includingthevastmajorityofMFSandSMRpumps,areless o tiallywithP-glycoproteininmammaliancells(7)andlaterwith n effectiveinproducingadetectabledecreaseinsusceptibility,be- Tet proteins in Escherichia coli isolates resistant to the specific J causethedrugmoleculesareexcretedonlyintotheperiplasmand a antibioticclasstetracyclines(8).Thesubsequentdiscoveryinthe n canspontaneouslydiffusebackintothecytosol,sincemostanti- u early1990sofMDRpumpsinE.coliandPseudomonasaeruginosa, a bioticsarerelativelylipophilicmoleculesthatcancrossthephos- representedbytheresistance-nodulation-division(RND)super- ry pholipidbilayerregionoftheIM.However,RNDpumps,which familyexporters(9–13),hasmadeanimportantcontributionto 4 arethoughttocaptureantibioticsmostlyfromtheperiplasm(23, , our understanding of resistance mechanisms (14). Since then, 2 24),cancollaboratewiththesingletpumpsandthusincreasetheir withrapidtechnologicaladvancesinbiochemistryandmolecular 0 efficacy(25,26). 1 biology,therehavebeenever-growingidentificationandcharac- 9 Themostdetailedinformationonthecontributionofvarious terizationofMDRpumpsinnumerousbacterialspeciesofpublic b pumpstodrugsusceptibilityisavailableforE.coliK-12,andTable y healthconcern(e.g.,intheESKAPE[Enterococcusfaecium,Staph- 1listsdataonknownandpredictedmultidrugpumpsidentifiedin g ylococcusaureus,Klebsiellapneumoniae,Acinetobacterbaumannii, u theTransporterClassificationDatabasementionedabove.Anob- e P.aeruginosa,andEnterobacterspecies]pathogens),whichcom- s pellinglydemonstratetheirpredominantroleinclinicalsettings vious way to detect the contribution of individual pumps is to t measuretheMICsofdrugsindefectivemutants.Thiswasdonein (15,16).Meanwhile,effortsofscientistsledtotheunderstanding 2001 by Sulavik and coworkers (27) and showed that the RND ofnotonlythestructuralandfunctionalbasisofthesedrugtrans- transporter AcrB (in cooperation with its periplasmic and OM portersbutalsotheirregulationandinhibition.Inthisreview,we partnersAcrAandTolC)playsatrulypredominantroleinraising aim to provide a comprehensive and up-to-date description of theMIClevelsinawild-typestrain.Thisalsocreatesaproblem efflux-mediatedantibioticresistanceinGram-negativebacteria. because deletion of other pumps rarely produces detectable changes in MICs in the presence of the active AcrB-AcrA-TolC BIOCHEMISTRYANDGENETICSOFMULTIDRUGEFFLUX system.Asimilarproblemwasreportedinastudy(28)examining PUMPS theMICvaluesofnearly4,000deletionmutantsofallnonessential ClassesofEffluxPumps E. coli genes (the “Keio collection” [29]). Thus, although that Becausetherearesomanydifferenteffluxtransporters,theonly studyshowedthatthefunctionsofmanymetabolicgeneshavean feasiblewayfortheirclassificationistousephylogeneticgrouping, unsuspectedinfluenceondrugsensitivity,intermsoftransporter based on protein sequences. Such a classification for all trans- genes, it essentially identified the effect of only the acrAB-tolC porter proteins has been established by Milton Saier’s group complexandnothingelse.Onepossibleexceptionisthedeletion April2015 Volume28 Number2 ClinicalMicrobiologyReviews cmr.asm.org 339 Lietal. D o w n lo a d e d f r o FIG1LocationofdrugeffluxpumpsandpathwaysofdruginfluxandeffluxacrosstheOMandIMinGram-negativebacteria.Theinfluxofdrugs(shownas m pills)throughtheOMoccursinoneormoreofthefollowingthreepathways:porinchannels(e.g.,OmpFofE.coliandOprFofP.aeruginosa),specificprotein h channels(e.g.,CarOofA.baumanniiandOprDofP.aeruginosaforcarbapenems),andtheLPS-containingasymmetriclipidbilayerregion.Aftertheirentryinto tt theperiplasmicspace,thedrugmoleculescanfurtherpenetratetheIMviadiffusion.However,thesedrugscanbeextrudedoutofthecellbyeffluxtransporters, p : whichexistaseithersingle-componentpumps(“singlet”;e.g.,Tetpumps)ormulticomponentpumps(e.g.,AcrAB-TolCandMexAB-OprMtripartiteefflux // c systemsthateachtypicallycontainapump,anOMchannelprotein[OMP],andanaccessorymembranefusionprotein[MFP]).Whilethesingletpumpsmay m takeupthedrugfromthecytosolandtheperiplasmandfunctionwithporinsorothertypesofproteinchannelstomaketheeffluxprocesseffective,the r multicomponentexporterscapturetheirsubstratesfromtheperiplasmandtheIManddirectlypumpthemintothemedium.Thecompetitionbetweentheinflux .a andeffluxprocessesultimatelydeterminesthesteadystateofdrugmoleculesinbacterialcells.WiththelipophilicdrugmoleculesthatcrosstheOMslowlyorthe s m hydrophilicdrugsthatpenetratetheA.baumannii/P.aeruginosalow-permeabilityporins(i.e.,“slowporins”),theeffluxmechanismbecomeveryeffective,thus . beingabletoyieldMDR.Incontrast,withthelesshydrophobicandsmallerdrugmoleculesthatcanrapidlypenetrate,forexample,E.coliporins,effluxisnot o effectivetocounteractdruginflux,thushardlydecreasingtheconcentrationsofthedruginthecell. rg / o n J oftheycdZgene,whichproducedhypersusceptibilitytotetracy- RNDTransporters a n clineandmaycodeforanexporter.However,thisconclusionis AcrBofEscherichiacoli.TheconstitutivelyexpressedpumpAcrB u a notsupportedbyastudyfromtheCarolGrossgroup,whoquan- ofEscherichiacoliplaysamajorroleinraisingtheMICsofmost r y titated the growth phenotype of the same set of mutants in the antibiotics,duemostlytothefactthatitexistsastheAcrB-AcrA- 4 presence of sub-MICs of various drugs (30). This approach is TolCtripartitecomplexsothattheexporteddrugmoleculesend , 2 moresensitivethanthedeterminationofMICvaluesand,indeed, upintheexternalmedium,notintheperiplasm,andthuscannot 0 aspresentedinTable1,showedthatthedeletionofpracticallyall 1 easilyreenterthecellsexceptbycrossingtheeffectiveOMperme- 9 knownandsuspectedpumpsproduceshypersusceptibilitytoat abilitybarrier(24).Therefore,theeffectivenessofRNDpumpsis b leastoneagenttested.Theseresults,however,mustbeinterpreted y intimatelytiedtothestrengthoftheOMbarrier;permeabilizing withcare,sincethisapproachisverysensitiveandcouldproduce g theOMdestroystheeffectofRNDpump-mediatedeffluxalmost u false-positiveresultsinspiteofeffortstoavoidthem(Table1). e aseffectivelyastheinactivationofthepumpitself(42,43).Avail- s Acompletelydifferentapproachistheplasmid-basedover- t ablereviewsonRNDpumpsincludethoseemphasizingthestruc- expression of putative efflux genes. This analysis by Nishino tureandmechanism(24,44–49),computationalapproaches(50), and Yamaguchi (31) indeed detected efflux activity in those rolesinsolventtolerance(51),andfunctionsotherthandrugre- genes whose activity was difficult to detect by deletion-based sistance(34,52–54). approaches. However, these data do not tell us whether the AcrB has been studied most intensively as the prototype of pumps are functioning in the wild-type or even mutant cells, although the level of expression of most pumps can be in- RNDpumps.Ithasanextremelywidespecificity,includingprac- creasedbyregulatorysignals(seeRegulationofMultidrugEf- ticallyalltypesofantibacterialagents(exceptaminoglycosides), fluxPumps,below). detergents,microbicides,dyes(Table1),freefattyacids(55),and Reviews describing various types of efflux pumps include evensimplesolvents(56).Inareconstitutionassay(57),AcrBwas thosewrittenbyPoole(32,33),Piddock(34–36),Paulsenetal. showntoalsoextrudemodifiedphospholipids.Acommonprop- (37),Saierandothers(38),VanBambekeandothers(39),and erty of these AcrB substrates is the presence of a hydrophobic Higgins(40).AreviewbyAlekshunandLevy(41)isuseful,as domain (24, 58). Such a wide specificity appeared surprising at italsoemphasizesthecontributionofnoneffluxmechanismsof first.However,aspointedoutbyNeyfakh(59),thismaybeex- resistance. pected.Thus,whenatypicalsolubleenzymecapturesitshydro- 340 cmr.asm.org ClinicalMicrobiologyReviews April2015 Volume28 Number2 DrugEffluxinGram-NegativeBacteria philicsubstratefromtheaqueousmedium,theprocessrequires externalspace,theactivitieswereratherweak,anditseemslikely the removal of the substrate molecule, already stabilized by its thatAcrD(andpossiblyalsootherRNDpumps)atleastprefersto numeroushydrogen-bondinginteractionswiththesurrounding captureitssubstratesfromtheperiplasm.Interestingly,theaddi- water.Stablebindinginthebindingsiteoftheenzymetherefore tionofAcrAwasnecessaryforthefunctionofAcrD.Becausethe mustinvolveprecise,stronginteractionswiththeresiduesinthe assaydoesnotrequirethejuxtapositionofvesicles,AcrAislikely site,inordertoovercomethisenergybarrier,anditrequiresthat tostimulatedirectlythefunctionofAcrD(andAcrB)bysimply thesiteissmallandcarefullydesignedtobindstringentlyonlyone bindingtothetransporter. substratespecies.However,withthemultidrugpumpsthatcap- Sincereconstitutionassaysarequitecumbersome,methodsfor turedrugswithsizeablehydrophobicdomains,thedrugsarenot quantitative,real-timedeterminationofpumpingactivityinin- stronglystabilizedintheaqueousenvironment,astheirpresence tact cells were needed. Fluorescent probes [e.g., N-phenyl-1- involvesalargeentropiccostaccompanyingtheorderingofthe naphthylamine, ethidium bromide, and 2-(4-dimethylamino)s- surrounding water molecules. Hence, the drug binding to the tyryl-N-ethylpyridinium iodide] were preloaded into bacterial transporterdoesnotrequirethebindingsitetobesmall,tight,and cellsdeenergizedbyuncouplers,andeffluxwasmonitoredbyflu- stringent.Itcanbeverylargeandcanthusaccommodatealarge orescenceafterreenergizationbyaddinganenergysource,suchas D rangeofsubstrateswithsmalldecreasesinthebindingfreeenergy. glucose(60,61).Itisdifficulttoperformassaysofthistypeina o Forbiochemicalstudiesofanytransporters,transportstudies reproduciblemannerbecausesomeuncouplersremainafterre- w ofmembranevesiclesareusuallythepreferredapproach.Never- energization.Anoptimized,semiquantitativemethodforE.coli n lo theless, with AcrB, this approach was not fruitful, presumably usingthefluorescentdyeNileredwasreportedin2010(62).A a becausemostoftheligandstransportedarelipophilicandcannot majorstepintheintact-cellassayofAcrBwasthereal-timeassay d e beaccumulatedintheintravesicularspaceduetotheirreadiness ofcephalosporineffluxinE.coliachievedbyNaganoandNikaido d incrossingthephospholipidbilayerdomainofthemembrane.It in 2009 (63). Those authors measured spectrophotometrically fr isalsopossiblethattheabsoluterateoftransportdoesnotneedto cephalosporinhydrolysisinintactcellsbyaperiplasmic(cid:2)-lacta- om behighbecauseofthepresenceoftheOMbarrier,andthisim- mase.BycomparingthehydrolysisratewiththeV andK of max m h pedesthedetectionoftransportinvesicles.Thus,thefirstmajor theenzyme,thoseauthorscalculatedtheperiplasmicconcentra- t t p advance had to rely on the reconstitution of purified AcrB into tionsofthecephalosporins,overcomingthemostseriousprob- : / proteoliposomes, accomplished by Zgurskaya and Nikaido in lems in intact-cell assays of efflux. They then obtained the ex- /c m 1999(57).Inordertocircumventtheproblemofthespontaneous pected influx rate (V ) of the drug across the OM from the in r diffusionofmostligandsacrossthelipidbilayer,thisstudyusedan permeabilitycoefficientobtainedfromuncoupler-poisonedcells .a innovativeapproachrelyingontheeffluxoffluorescentlylabeled andfromthedifferenceintheexternalandperiplasmicconcen- s m phospholipids into empty “acceptor” vesicles and detected the trationsofthedrug.ThedifferencebetweenV andtheobserved in .o efflux of conventional ligands through competition with phos- hydrolysisratethencorrespondstotherateofefflux.Whenthe r g pholipidefflux.Inthisway,drugssuchascloxacillin,erythromy- effluxrateofnitrocefinwasplottedagainsttheperiplasmiccon- / cin,novobiocin,andfusidicacid(butcuriouslynotchloramphen- centrations, a Michaelis-Menten-type saturation curve was ob- o n icol)aswellasvariousbileacidswereshowntocompeteagainst tained,showingtheV (0.024nmol/mg/s)andK (5(cid:4)M)ofthe max m J phospholipid efflux. Furthermore, the half-maximal concentra- AcrB-catalyzedeffluxprocessforthefirsttime.Sincetheexpres- a n tion for inhibition was lowest for bile acid taurocholate ((cid:3)15 sionofAcrBwasincreasedseveralfoldinthestrainused,weesti- u (cid:4)M),suggestingthatthepropertiesofAcrBwereoptimizedfor matethattheV is(cid:3)6pmol/mg/sinwild-typeE.coliK-12.This a max ry theexclusionofbilesalts,majortoxiccomponentsinthemam- assaywasusedwithconventionalcephalosporinsandpenicillins 4 malianintestine,thenormalhabitatforE.coli.Interestingly,the (63–65);onesurprisingfindingwasthatasigmoidalkineticswas , additionofAcrAtotheaqueousphase(inthepresenceofMg2(cid:5)) often observed in the plots of velocity versus periplasmic drug 2 0 stronglystimulatedphospholipidtransport:becauselipidshadto concentration,suggestingpositivecooperativity.Recently,asig- 1 9 betransportedfromonevesicletoanother,wehypothesizedthat moidal kinetics was observed for the AcrB-catalyzed efflux of a b AcrAmayactbybringingthetwovesiclestogether.Thisapproach compoundofaverydifferentnature,L-arginine-(cid:2)-naphthylam- y also established that AcrB was a proton/drug antiporter, as the ide(A.Kinana,A.V.Vargiu,andH.Nikaido,unpublisheddata), g u transmembrane pH gradient was dissipated accompanying the indicating that this is a common feature of the AcrB-catalyzed e s fluxofligands. transportprocess. t AsimilarreconstitutionassaywassuccessfullyusedforE.coli A major advance in the study of AcrB was made when Mu- AcrD(23),anAcrBhomologthatalsoworkswithAcrAandTolC rakamietal.(66)solvedthecrystalstructureoftrimericAcrBin asatripartitetransporter.Thisstudyisimportant,asAcrDtrans- 2002. This symmetric structure showed that each protomer of ports aminoglycosides, which are very hydrophilic and not ex- AcrBcontainedalargeperiplasmicdomain,aspredictedfromthe pectedtodiffusespontaneouslyacrossthelipidbilayer.Thus,a primarysequence.Furthermore,theperiplasmicdomainwasseen conventionalaccumulationassayusingradiolabeledaminoglyco- tohavealargecleftfacingthesurroundingperiplasm.Although sides indeed proved their accumulation in proteoliposomes. binding of ligands to the area close to the cleft was shown by Whenstreptomycinwasaddedasthesubstratetoeitherthemore cocrystallization (67–69), this observation did not immediately acidic,intravesicularspacecorrespondingtotheperiplasmorthe suggestthemechanismsofdrugextrusion(seebelow).Thenext morealkalineexternalspacecorrespondingtothecytosol,pump- bigadvanceinourunderstandingofAcrBstructureandfunction ingactivity(asdetectedbythefluxofprotons)wasobservedonly came with crystallographic analysis of the asymmetric trimer in the former case, showing clearly that the pump captures its structure, where each protomer takes a unique conformation substrateonlyintheperiplasm.Althoughotheraminoglycosides slightly different from that of its neighbor, elucidated in three appearedtostimulatethepumpactivityevenwhenaddedtothe laboratories (Fig. 2 ) 7(0–72). The work by Murakami and co- April2015 Volume28 Number2 ClinicalMicrobiologyReviews cmr.asm.org 341 Lietal. R, E Othersubstrate(s)orinformation(reference) Pentoses(1010) CCCP,NAL,TSA(139);CTLM(15)Uncouplers(15);pentoses(1010)HO,MIT,NAL,UV22irradiation(1011) Pentoses(1010) Ironcitrate(inSalmonella)(1012) BindsCHL(1013) Pentoses(1010) dAgent(s)thatinhibitedgrowth ACR,AMP,AZM,AZT,BAC,BLE,BS,CER,CHIR,CHL,CHO,CIP,CLR,CPZ,DEO,DOX,EB,ERY,FUA,MEC,MIN,NAL,NIT,NOR,NOV,OXA,PUR,SDS,SPT,SPR,STG,TCH,TCS,TET,TMP,TRX,VERPARPHL,VERFUA CIP,SDS BAT,CSD,NAL,PHL CHO,ERY,SMZACR,BAC,CHL,EB EB,SXT AZM,GEN,NIT,OXA,SMT,SPR CEC,SMZ,TET NIT,OXA,SPR,TMPEB,AMX,BAC,MEC,NAL,PARBAC,CAZ,MEC,MTX,PUR,SDS,TLMATM,EBACTFUA,SPTAMK,CHL,CHO,CSD,DEO,ERY,FOX,NOV,PER,PMB,TET,VERNonewithagentstested AMXACR,BAC,CAR,CHIR,CSD,DOX,EB,FOX,GFF,MIT,SDS,STRAZT,BLE,CAL,CHIR,CHL,CIP,CPZ,INH,OXA,SMZ,SPR,TETAMP,DEO htDownloaded from t p : aE.coli cOverexpressionphenotype(agent[s],foldincreaseinMIC) (cid:6)ACR,16;BAC,32;CHL,8;CV,8;DEO,(cid:6)(cid:6)32;DOR,64;ERY,32;NAL,4;NOR,(cid:6)8;NOV,64;R6G,64;SDS,8;TMP,(cid:6)32;TPP,16 (cid:6)(cid:6)DEO,32;KAN,2;NOV,4;SDS,8ACR,8;DEO,4;DOX,2;SDS,4CV,2;DEO,4;DOR,8;EB,4;ERY,8;R6G,16;SDS,4;TPP,4(cid:6)DEO,32;FOF,2;NAL,2;NOR,2;NOV,16;SDS,4(cid:6)DEO,32;FOF,2;NAL,2;NOR,2;NOV,16;SDS,4 ACR,2;FOF,4;KAN,2;TET4ACR,8;CHL,16;DOX,4;EB,4;NOR,8;TET,2;TMP,4;TPP,4DEO,32;PAR,2;R6G,2;SDS,2 BAC,2;SDS,2 FOF,4 on January 4//cmr.asm.org/ antsof in CLO,32;UR,6 , 201 umpmut ddecrease 8;CIP,4;256;ERY,OV,64;P8;TPP,25 9 by g sofprovenandputativeeffluxp bDeletionphenotype(agent[s],folMIC) ACR,128;AMP,4;BAC,32;CHL,(cid:6)(cid:6)(cid:6)2;DAU,128;DEO,2;EB,(cid:6)FUA,128;MTX,8;NAL,2;N(cid:6)64;R6G,512;SDS,128;TET, NochangeNochangeNochange Nochange Nochange BC,4;EB,4 Nochange Nochange Nochange uest e p y ot x ABLE1Phen milyandefflune NDacrB acrDacrFyhiV(mdtF) mdtB mdtC FSbcrcmr(cmlA,mdfA)emrB emrD emrY yajRyceByceE(mdtG)yceL(mdtH)ydeB(marC)ydhCyebQ yegB(mdtD) yidY(mdtL)yieO(hsrA) yjiO(mdtM) ynfM T Fage R M 342 cmr.asm.org ClinicalMicrobiologyReviews April2015 Volume28 Number2 DrugEffluxinGram-NegativeBacteria MATE(MOP)mdtK(ydhE,BAC,2;CHL,2;DEO,32;DOR,8;EB,2;CPZ,FUA,NOR,PUR,STRnorM)FOF,2;NOR,8;PAR,4;TMP,4;TPP,32yeeOACR,BAC,BIC,CAR,DOR,PUR,VAN,VER SMR(DMT)emrEEB,4;PAR,8ACR,16;BAC,2;EB,8;PAR,2ACR,EB,FOF,PAREB(1014);PAR(1015);ERY(155);cationicosmoprotectants(159)ydgE(mdtI)DEO,4;SDS,2ACR,BAC,CHL,DEO,EB,FUA,MTX,Spermidine(1016)PMB,PUR,TRXydgF(mdtJ)DEO,4;SDS,2CHO,CSD,ERY,NAL,VERSpermidine(1016) ABCmacBNochangeERY,8BAT,BIC,BS,CEC,EB,FOX,NIT,SDS,TCH LysEargOAMP,BS,GFF,INH,NAL,PHL,TMPArginine(1017) UnknownycdZNOR,SDS(notTET)TET,1.7-to2.5-folddecreaseinMICcomparedtothewildtype(28) aAbbreviations:ACR,acriflavine;ACT,actinomycinD;AMK,amikacin;AMP,ampicillin;AMX,amoxicillin;ATM,aztreonam;AZM,azithromycin;AZT,azidothymidine;BAC,benzalkoniumchloride;BAT,bacitracin;BIC,bicyclomycin;BLE,bleomycin;BS,bilesalts;CAL,calcofluor;CAR,carbenicillin;CAZ,ceftazidime;CCCP,carbonylcyanidem-chlorophenylhydrazone;CEC,cefaclor;CER,cerulenin;CHIR,CHIR-900(anLpxCinhibitor);CHL,chloramphenicol;CHO,cholate;CIP,ciprofloxacin;CLO,cloxacillin;CLR,clarithromycin;CPZ,chlorpromazine;CSD,cefsulodin;CV,crystalviolet;DAU,daunomycin;DEO,deoxycholate;DOR,doxorubicin;DOX,doxycycline;EB,ethidiumbromide;ERY,erythromycin;FOF,fosfomycin;FOX,cefoxitin;FUA,fusidicacid;GEN,gentamicin;GFF,glufosfomycin(fosfomycinplusglucose-6-P);INH,isoniazid;KAN,kanamycin;MEC,amdinocillin;MIN,minocycline;MIT,mitomycin;MTX,methotrexate;NAL,nalidixicacid;NIT,nitrofurantoin;NOR,norfloxacin;NOV,novobiocin;OXA,oxacillin;PAR,paraquat(methylviologen);PER,peroxide;PHL,phleomycin;PMB,polymyxinB;PUR,puromycin;R6G,rhodamine6G;SDS,sodiumdodecylsulfate;SMT,sulfamonomethoxine;SMZ,sulfamethizole;SPR,spiramycin;SPT,spectinomycin;STG,streptonigrin;STR,streptomycin;SXT,trimethoprim-sulfamethoxazole;TCH,taurocholate;TCS,triclosan;TDC,taurodeoxycholate;TET,tetracycline;TLM,thiolactomycin;TMP,trimethoprim;TPP,tetraphenylphosphonium;TRX,TritonX-100;TSA,tetrachlorosalicylanilide;VAN,vancomycin;VER,verapamil.bSeereference27.NumbersaftertheabbreviationfortheagentnameindicatethefolddecreaseinMICincomparisonwiththewild-typestrain.(cid:7)cSeereference31.NumbersaftertheabbreviationfortheagentnameindicatesthefoldincreaseinMICincomparisonwiththeacrABparentstrain.(cid:8)(cid:9)dOnlytheantimicrobialagents,dyes,anddetergentsthatsignificantlyinhibitedthegrowthofmutantsmorethanthatofthewildtype,usuallyleadingtogrowthscoresof2(30),arelisted.Furthermore,weconfirmedthattheinhibitionwasreproduciblebyexaminingthedataobtainedwithdifferentconcentrationsofthesameagent. on January 4, 2019 by guesthttp://cmr.asm.org/Downloaded from April2015 Volume28 Number2 ClinicalMicrobiologyReviews cmr.asm.org 343 Lietal. D o w n lo a d e d f r o m h t t p : / / c m r . a s FIG2DrugtransportmechanismofAcrB.ShownistheasymmetriccrystalstructureofAcrB(ProteinDataBankaccessionnumber2DRD),viewedfromoutside m thecell,withthetopportioncutoffforclarity.Conformationalcyclingof3AcrBprotomers,inaccess(blue),binding(red),andextrusion(green),isseenby .o cocrystallizationofAcrBwithitssubstrateminocycline,showninayellowstickmodel. rg / o n workers(70)wasespeciallyimportant,becausetheysucceededin stratessuchasmacrolides,rifampin,andadimerofdoxorubicin J cocrystallizingAcrBwiththesubstrateminocyclineordoxorubi- bindtoamoreproximalbindingsiteintheaccessprotomer,pre- a n cin. In both cases, the substrates were seen in a predominantly sumablybeforetheireventualmovementtothedistalpocketcon- u a hydrophobicpocketwithintheperiplasmicdomain,nowcalled comitantwiththeconformationalchangeoftheproteinintothe r y the distal binding pocket, close to the center of the trimer and bindingprotomer.Interestingly,thisproximalbindingsitesur- 4 locatedinoneparticularprotomer,calledthebindingprotomer. rounded by residues Asp566, Phe664, Phe666, Glu673, Arg717, , 2 Thepresenceofthreeconformationallydifferentprotomers,the andAsn719overlapsmostlytheperiplasmicbindingsiteidenti- 0 access,binding,andextrusionprotomers(Fig.2)(44),suggesteda fiedbyYuandcollaboratorsseveralyearsearlier(67)inasymmet- 1 9 functionally rotating mechanism, in which each protomer goes ricAcrBcrystalstructure.Yuandassociatesfurthershowedthe b through a succession of conformational alterations. The distal importanceofthisbindingsitebysite-directedmutagenesis,find- y binding pocket becomes collapsed in the extrusion protomer, ingthataPhe666Alamutation,forexample,resultsinadrastic g u consistentwiththemovementofthedrugtotheexitgatecloseto decreaseofresistancetoawiderangeofsubstrates(67).Thein- e s theendoftheTolCchannel.Thisconceptofconformationalcy- volvementofresiduessurroundingthissitewasalsoshownbythe t clingorfunctionalrotationwasthensubstantiatedbythefinding factthattheirCys-substitutedmutantswerestronglylabeledbyan that disulfide cross-linking of nearby residues, although appar- AcrB substrate, boron-dipyrromethene (BODIPY)-maleimide entlyoccurringinonlyoneortwoprotomers,nearlycompletely (79).Anothersymmetricalcrystalstructurecontainingasubstrate inactivatedthetrimericcomplex(73).(TheAcrBhomologMexB atthispositionhasadeoxycholatemolecule(80).Theimportance ofP.aeruginosahasbeencrystallizedwithout[74]andwith[75] ofthisproximalbindingpocketwasfurtheremphasizedbyrecent anaddedinhibitor,apyridopyrimidinederivative.)Inasimilar studies(81,82).ThepreferenceofAcrDfor(cid:2)-lactamscontaining vein,whentheAcrBtrimerwasproducedasacovalentlylinked multipleanionicgroups,suchascarbenicillin,sulbenicillin,and singleprotein,andonlyoneprotomericunitwasinactivatedinthe aztreonam,isessentiallyduetotheresidueswithintheproximal proton translocation pathway, the entire trimeric complex be- pocket (81), while a region in the MexY aminoglycoside pump cameinactive(76).Furthermore,whentheCysresidueswerein- thatcorrespondstoaproximalbindingpocketofAcrBplaysarole troducedintoonlyoneoftheprotomericunits,theircross-linking inaminoglycosiderecognitionandexport(82). immediately inactivated the function of AcrB trimers, showing Yet another binding site for drugs was identified within the thatinactivationwasnotduetoafailureofthetrimericassembly. centralcavityofthetrimerbycocrystallization(67,83).Possibly, Morerecently,twolaboratories(77,78)showedthatlargesub- theinitialbindinghereisfollowedbytheeventualtranslocationof 344 cmr.asm.org ClinicalMicrobiologyReviews April2015 Volume28 Number2 DrugEffluxinGram-NegativeBacteria thesubstratestothedistalbindingpocket,perhapsthroughthe “bind”withasignificantlylowerbindingenergytothelowerpart “vestibules”betweentheprotomers(84).Althoughthefunctional ofthepocket,whichwecalleda“cave”(Fig.3)(91). significanceofthisbindingsitecouldnotbeascertainedbysite- Togetfurtherinsightsintothebinding-and-effluxprocess,we directedmutagenesis,symmetriccocrystalsofAcrBwithdrugsin examinedpotentialcompetitionbetweensubstrates.Ithadbeen thecentralcavityhavebeenreportedforampicillin(68)andlin- nearlyimpossibletoshowcompetitionamongsubstratesofAcrB ezolid(85). byusinganMICassay(92).Still,withareal-timeeffluxassaywith Dastidaretal.carriedoutthefirstefforttousesubstratecom- thedyeNilered,weshowedthatdoxorubicin,minocycline,and petitionforcovalentlabelingofselectedresiduesfortheelucida- other tetracyclines as well as tetraphenylphosphonium, but not tionofthepathofthedrugmoleculeswithinthelargeperiplasmic chloramphenicol, macrolides, deoxycholate, nafcillin, or novo- domain of AcrB (86). Some residues of Haemophilus influenzae biocin, inhibited dye efflux (62). Also, when a real-time efflux AcrB were converted to Cys and were labeled with fluorescein assayofnitrocefin(63)wasused,weshowedstronginhibitionby maleimide.ThelabelingofAla288Cys(correspondingtoGly290 minocycline,predictedtobindtotheupperpartofthepocket,like ofE.coliAcrBandclosetothedistalbindingsite)wasdecreasedby nitrocefin (91). In contrast, a substrate that is not predicted to thepresenceofallsubstratestested,exceptethidium.Wefollowed bindtothispartofthepocket,i.e.,chloramphenicol,didnotin- D uponthisworkbyselecting48residuesthatlieonthepresumed hibitnitrocefinefflux,andactually,therewassomehintofstim- o path(s)ofthedrugs,convertingeachresiduetoCys,andlabeling ulationinstead(91).Thelatterphenomenonisdiscussedinmore w theCysresidueinintactcellswithahydrophobic,covalent-label- detailbelow. n lo ing probe, BODIPY-maleimide (79). Residues outside the pre- Dockingprograms,however,havebeenoptimizedbyusingthe a dictedpathwerenotlabeledatall,evenwhentheywerelocatedin bindingofsmall,hydrophilicsubstratesmostlytothebindingsites d e themiddleofhydrophobicpatches.Incontrast,mostofthetested withinenzymes.Bindingofhydrophobicoramphiphilicligands d residuesinthedistalbindingpocketwerestronglylabeled,aswere tothelargebindingpocketsoftransportersispredictedtooccurin fr o theresiduesliningtheproximalpocketaswellastheentranceand significantlydifferentways(59).Thus,weexaminedindetailthe m the bottom of the large external cleft between two subdomains bindingof9substrates,2inhibitors,and2nonsubstratestothe h (PC1andPC2[66]).Finally,byusingbulkycovalent-labelingre- distalbindingpocketofAcrBbyextensiveMDsimulations(93). t t p agents,withsomeresidues,wehavebeenableto“clog”thesub- Thisintroducedtwomajorimprovementsoverthedockingap- : / strate path so that the efflux of a substrate, Nile red, could be proach.First,watermoleculesnowbecameapartofthesystemso /c m blocked. thattheinteractionofamphiphilicandmorehydrophilicligands r Thisstudyreinforcedtheimportanceofthedrugbindingto couldbepredictedinamuchmorerealisticmanner.Second,the .a thedistalbindingpocketasamajorstepinefflux.Site-directed distalbindingpocketiscomposedofresiduesthatareonseveral s m mutagenesis of Phe residues in this pocket (87) indicated that loopsegmentsinarelativelylooselyconstructedareaofthepro- . o theseresiduesareimportantforefflux,withthePhe610Alamuta- tein,somovementandrotationsofthechainswereexpected.In- r g tionshowingthemostwidespreadeffectonmanysubstrates.A deed,withmanyligands,therewasanextensivealterationinthe / moleculardynamics(MD)simulationstudyofthismutantpro- shape of the binding site to better accommodate diverse sub- o n tein(88)revealedthatasubstrate,doxorubicin,stillboundtothe strates.Interestingly,someofthose“cavebinders”inthedocking J pocketwithastrongaffinity;theinterpretationoftheseresultsis approachleftthelowerareaandwerefoundtofavortheupper a n describedbelow.Site-directedmutagenesisbasedonthesequence areaofthepocket,althoughthebindingappearedtobeweak. u a differencebetweenAcrBandMexB,whichshowdifferentprofi- Chloramphenicolwasfoundtoslightlyacceleratetheeffluxof r y cienciesinmacrolideefflux,ledtothediscoveryoftheimportance nitrocefin(91).Thiswasconfirmedbyasubsequentcarefulstudy, 4 ofGly616inAcrBforthisfunction(89);interestingly,thisresidue and it was found that solvents such as benzene or cyclohexane , 2 isapartoftheGly-richloop(alsocalledtheswitchloop),which produced much more pronounced stimulation of nitrocefin ef- 0 separatesthedistalpocketfromtheproximalpocket(77)andis flux(94).MDsimulationssuggestedthatbenzeneinteractspri- 1 9 thoughttobecriticalfortranslocationofthesubstrates,especially marilywiththePhe-richhydrophobicdomainthatcomprisesthe b large molecules such as macrolides. More recently, Eicher et al. lowerportionofthebindingpocketandnotwiththeuppersub- y showed the coupling of remote alternating-access transport pocket that binds minocycline or nitrocefin (94). Interestingly, g u mechanismsforprotonsandAcrBsubstratesthroughamecha- thelowerportionofthebindingpocketiswherethehydropho- e s nisminvolvingtworemotealternating-accessconformationalcy- bicpartoftheinhibitorD13-9001bindstightlyandwasnamed t cleswithineachpromoter(90). a “hydrophobic trap” by Nakashima et al. (75) (see Efflux Althoughthesemutagenesisstudiesarevaluable,theydonot PumpInhibitors,below).Furthermore,recentMDsimulations tell us how various substrates bind to the AcrB transporter. As showedthatothereffluxpumpinhibitors(EPIs),suchasphenylal- statedabove,onlyafewcrystalstructuresofdrug-AcrBcomplexes anine-arginine-(cid:2)-naphthylamide (PA(cid:2)N), 1-(1-naphthylmethyl)-pi- are currently available. Thus, computational analysis of drug- perazine(NMP),andthenew,potentinhibitorMBX2319(95),allbind AcrB interactions was first initiated with the docking software tightlytothehydrophobictrapandtherebydistorttheshapeof AutodockVina(91).VariousknownsubstratesofAcrB,including therestofthepocket,closingthecrevicewhereminocyclineor minocycline,dockedtotheupperpart(closertotheexitgate)of nitrocefin becomes bound (96). These observations suggest the thedistalbindingsite,whichcontainsacharacteristiccrevice(Fig. following.(i)Thedistalbindingpocketisverylarge,anddifferent 3).Thisiswhereminocyclineanddoxorubicinboundinthecrys- ligands prefer different areas of the pocket for binding. Thus, a talstructures(70).Cefazolin,anonsubstrate(63),gratifyinglydid “typical” substrate, like minocycline or nitrocefin, which has a notbindtothebindingpocket.However,othersubstratesfailedto numberofhydrophilicgroups,tendstobindtotheupper“crev- bindtothisupperportionofthepocket;asanexample,chloram- ice”area,whichisrichinhydrophilicandchargedresiduesand phenicol and solvents such as cyclohexane were predicted to was indeed shown to be involved in substrate binding (93). In April2015 Volume28 Number2 ClinicalMicrobiologyReviews cmr.asm.org 345 Lietal. D o w n lo a d e d f r o m h t t p : / / c m r . a s m FIG3InteractionofdrugsubstratesandtheAcrB-bindingprotomeranalyzedwithAutodockVinadockingsoftware.Substratesareshowntobindtoeitherthe . upperpart(groovebinder)(doxorubicin[A]andtetracycline[B])orthelowerpart(cavebinder)(chloramphenicol[C]andcyclohexane[D])ofthedistal o r bindingsite.(Modifiedfromreference91.) g / o n contrast,forhydrophobicligandssuchascyclohexaneorchlor- Afterthebindingofthesubstratetothedistalbindingpocketin J amphenicol,bindingtothisareaisdifficult.(ii)Atightinteraction the binding protomer, the proton(s) must come in from the a n with the hydrophobic trap distorts the structure of the crevice, periplasm to bind to the Asp residue(s) in the transmembrane u a inhibitingtheeffluxoftypicalsubstrates.(iii)Alooseinteraction domain,causingtheconformationoftheproteintochangeinto r y withthehydrophobictrap,ontheotherhand,mayenhancethe theextrusionprotomer,therebysqueezingoutthesubstratetothe 4 effluxoftypicalsubstrates,byeitherfacilitatingtheinteractionof exitgatebythecollapseofthepocket.Asp407andAsp408appear , 2 suchsubstrateswiththepocket,speedingupthesequenceofcon- tobeessentialfortheenergytransductionofAcrB,togetherwith 0 formationalchangesneededfortheexportofsubstrates,orboth. Lys940andArg971(105)aswellasThr978(106).Inthebinding 1 9 Inanycase,theinteractionbetweentheAcrBtransporterandits protomer,bothAsp407andAsp408appeartobedeprotonated,as b substrates/inhibitors/enhancersappearsquitecomplex.Inassess- thepresumablyprotonatedLys940sidechainissituatedbetween y ingthebindingofdrugstothepocketoftransporterssuchasAcrB, the two Asp side chains. In the extrusion protomer, Lys940 is g u wenowrealizethatbindingfollowsthesameprincipleselucidated movedawayfromtheAspresiduesandnowfacestheThr978side e s bythepioneeringearlycrystallographicstudiesbyBrennanand chain(107).ThecarboxylgroupofAsp408wasindeedshownto t coworkers(forexample,seereferences97and98),carriedoutby haveanunusuallyhighpK of7.4,whichwouldhelpinthefacile a using soluble regulators of MDR pumps, such as QacR, rather bindingandreleaseoftheprotonunderphysiologicalconditions thanthepumpsthemselves. (107).ArecentMDsimulationstudy(108)suggeststhatinthe Computersimulationhasnowbecomeanimportantapproach extrusionprotomer,Asp408becomesprotonated,butAsp407re- forstudyingthemechanismofAcrBfunction.Themovementofa mainsdeprotonated.Inthisscheme,thetranslocationofonepro- substrate,doxorubicin,fromthedistalbindingpockettoaposi- tonacrosstheIMwouldbesufficienttocausetheconformational tionclosetotheexitgate,accompanyingtheclosureofthepocket, changes in AcrB, resulting in the extrusion of the drug mole- was shown by a targeted MD simulation (99). Large substrates, cule(s).ThefoldingandassemblyoftheAcrBtrimerwerestudied found in the proximal binding pocket in AcrB cocrystals (77), mainlybyWeiandassociates,whoshowedthatthefoldingofthe movedsubstantiallyinthedirectionofthedistalbindingpocket monomeric unit precedes trimerization (109) and analyzed the duringMDsimulation(100).Movementofwatermoleculeswas functionofaprotrudingloopthatinsertsdeeplyintotheneigh- analyzed by simulation (101, 102), and coarse-grained models boringsubunit(110). wereusedtoanalyzetheconformationaltransitions(103)aswell In 2007, when AcrB was crystallized without amplification asthedrugpathways(104)withinAcrB. fromE.coli,thesymmetriccrystalswerefoundtocontainasmall 346 cmr.asm.org ClinicalMicrobiologyReviews April2015 Volume28 Number2
Description: