ebook img

The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria PDF

82 Pages·2015·4.52 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria

crossmark The Challenge of Efflux-Mediated Antibiotic Resistance in Gram- Negative Bacteria Xian-ZhiLi,aPatrickPlésiat,bHiroshiNikaidoc HumanSafetyDivision,VeterinaryDrugsDirectorate,HealthProductsandFoodBranch,HealthCanada,Ottawa,Ontario,Canadaa;LaboratoiredeBactériologie,Faculté deMédecine-Pharmacie,CentreHospitalierRégionalUniversitaire,UniversitédeFranche-Comté,Besançon,Franceb;DepartmentofMolecularandCellBiology,University ofCalifornia,Berkeley,California,USAc SUMMARY..................................................................................................................................................338 INTRODUCTION............................................................................................................................................339 D BIOCHEMISTRYANDGENETICSOFMULTIDRUGEFFLUXPUMPS........................................................................................339 o ClassesofEffluxPumps...................................................................................................................................339 w RNDTransporters ........................................................................................................................................340 n AcrBofEscherichiacoli.................................................................................................................................340 lo OtherRNDtransportersinE.coli.......................................................................................................................347 a MFSTransporters.........................................................................................................................................347 d e ABCTransporters.........................................................................................................................................348 d SMRTransporters.........................................................................................................................................348 f MATETransporters.......................................................................................................................................349 ro SYNERGYWITHTHEOUTERMEMBRANEBARRIER........................................................................................................349 m PathwaysofDrugInfluxacrosstheOM..................................................................................................................349 h DrugsTraversingtheOMMainlythroughPorinChannels...............................................................................................350 t t DrugsTraversingtheOMthroughtheLipidBilayerRegion..............................................................................................351 p : GAMMAPROTEOBACTERIA:ENTEROBACTERIACEAE.......................................................................................................351 // E.coli......................................................................................................................................................351 c m Fluoroquinolones......................................................................................................................................352 r (cid:2)-Lactams.............................................................................................................................................352 .a Otherdrugs............................................................................................................................................353 s Salmonellaspp. ..........................................................................................................................................353 m Citrobacterspp............................................................................................................................................353 .o EnterobacteraerogenesandEnterobactercloacae.........................................................................................................354 r g Klebsiellapneumoniae....................................................................................................................................354 / Proteus,Providencia,andMorganellaspp.................................................................................................................356 o n Serratiamarcescens.......................................................................................................................................356 Shigellaflexneri............................................................................................................................................356 J a YersiniaenterocoliticaandYersiniapestis..................................................................................................................356 n OTHERGAMMAPROTEOBACTERIA:VIBRIO,AEROMONAS,LEGIONELLA,ANDPASTEURELLACEAE.......................................................357 u a Vibriospp.................................................................................................................................................357 r Aeromonasspp. ..........................................................................................................................................357 y Legionellaspp. ...........................................................................................................................................357 4 , Pasteurellaceae...........................................................................................................................................358 2 Pasteurellamultocida...................................................................................................................................358 0 Haemophilusinfluenzae................................................................................................................................358 1 9 GAMMAPROTEOBACTERIA:PSEUDOMONAS,ACINETOBACTER,ANDSTENOTROPHOMONAS............................................................358 b Pseudomonasaeruginosa.................................................................................................................................358 y OMpermeability.......................................................................................................................................358 g RNDeffluxpumps. ....................................................................................................................................358 u (continued) e s t Published18March2015 CitationLiX-Z,PlésiatP,NikaidoH.18March2015.Thechallengeofefflux- mediatedantibioticresistanceinGram-negativebacteria.ClinMicrobiolRev doi:10.1128/CMR.00117-14. AddresscorrespondencetoHiroshiNikaido,[email protected]. Copyright©2015,AmericanSocietyforMicrobiology.AllRightsReserved. doi:10.1128/CMR.00117-14 April2015 Volume28 Number2 ClinicalMicrobiologyReviews cmr.asm.org 337 Lietal. (i)MexAB-OprM.....................................................................................................................................358 (ii)MexXY-OprM(OprA)..............................................................................................................................359 (iii)MexCD-OprJ.....................................................................................................................................360 (iv)MexEF-OprN.....................................................................................................................................361 (v)OtherRNDpumps...............................................................................................................................361 Acinetobacterspp.........................................................................................................................................361 OMpermeability.......................................................................................................................................361 RNDeffluxpumps.....................................................................................................................................362 Non-RNDeffluxpumps................................................................................................................................362 Stenotrophomonasmaltophilia...........................................................................................................................363 ALPHAPROTEOBACTERIA:BRUCELLA,BARTONELLA,ANDRICKETTSIA....................................................................................363 Brucellaspp...............................................................................................................................................364 Bartonellaspp. ...........................................................................................................................................364 Rickettsiaspp. ............................................................................................................................................364 BETAPROTEOBACTERIA:ACHROMOBACTER,BURKHOLDERIA,ANDNEISSERIA...........................................................................364 Achromobacterspp.......................................................................................................................................364 D Burkholderiaspp..........................................................................................................................................364 o Neisseriaspp..............................................................................................................................................365 w EPSILONPROTEOBACTERIA:CAMPYLOBACTERANDHELICOBACTER......................................................................................365 n Campylobacterspp. ......................................................................................................................................366 lo a Helicobacterspp. .........................................................................................................................................366 d BACTEROIDACEAEANDPREVOTELLACEAE.................................................................................................................367 e DRUGEFFLUXGENESONPLASMIDS......................................................................................................................367 d REGULATIONOFMUTLIDRUGEFFLUXPUMPS............................................................................................................369 fr E.coliEffluxPumps.......................................................................................................................................369 o m AcrAB-TolC.............................................................................................................................................369 Regulationofotherpumps............................................................................................................................371 h t SalmonellaEffluxPumps.................................................................................................................................371 t p K.pneumoniaeEffluxPumps..............................................................................................................................371 : / P.aeruginosaEffluxPumps...............................................................................................................................372 /c MexAB-OprM..........................................................................................................................................372 m MexXY.................................................................................................................................................373 r . OtherMexpumps.....................................................................................................................................375 a s A.baumanniiEffluxPumps...............................................................................................................................375 m S.maltophiliaEffluxPumps...............................................................................................................................376 . NeisseriaEffluxPumps....................................................................................................................................376 o r C.jejuniEffluxPumps.....................................................................................................................................376 g / ROLEOFEFFLUXPUMPSINBIOFILMFORMATIONANDRESISTANCE....................................................................................376 o INVOLVEMENTOFMUTLIDRUGEFFLUXPUMPSINOTHERFUNCTIONS.................................................................................377 n BacterialStressResponses................................................................................................................................378 J Fitness,Colonization,andVirulence......................................................................................................................378 a n Entericbacteria........................................................................................................................................378 u P.aeruginosa...........................................................................................................................................379 a Otherbacteria.........................................................................................................................................380 ry MULTIDRUGEFFLUXPUMPSASACHALLENGEINDRUGDEVELOPMENT...............................................................................380 4 EFFLUXPUMPINHIBITORS.................................................................................................................................381 , PA(cid:2)N.....................................................................................................................................................381 2 0 NMP......................................................................................................................................................383 1 D13-9001.................................................................................................................................................384 9 MBX2391.................................................................................................................................................384 b OtherCompoundsThatInhibitRNDPumps.............................................................................................................385 y METHODOLOGICALCONSIDERATIONS...................................................................................................................386 g CONCLUSIONS.............................................................................................................................................387 u e ACKNOWLEDGMENTS......................................................................................................................................387 s ADDENDUMINPROOF.....................................................................................................................................387 t REFERENCES................................................................................................................................................387 AUTHORBIOS..............................................................................................................................................418 SUMMARY and acquired multidrug resistance (MDR) but also are in- The global emergence of multidrug-resistant Gram-negative volved in other functions, including the bacterial stress re- bacteriaisagrowingthreattoantibiotictherapy.Thechromo- sponseandpathogenicity.Additionally,effluxpumpsinteract somally encoded drug efflux mechanisms that are ubiquitous synergisticallywithotherresistancemechanisms(e.g.,withthe inthesebacteriagreatlycontributetoantibioticresistanceand outer membrane permeability barrier) to increase resistance present a major challenge for antibiotic development. Multi- levels. Since the discovery of RND pumps in the early 1990s, drug pumps, particularly those represented by the clinically remarkablescientificandtechnologicaladvanceshaveallowed relevantAcrAB-TolCandMexpumpsoftheresistance-nodu- foranin-depthunderstandingofthestructuralandbiochem- lation-division(RND)superfamily,notonlymediateintrinsic icalbasis,substrateprofiles,molecularregulation,andinhibi- 338 cmr.asm.org ClinicalMicrobiologyReviews April2015 Volume28 Number2 DrugEffluxinGram-NegativeBacteria tion of MDR pumps. However, the development of clinically (17–19)andisavailableintheTransporterClassificationDatabase usefuleffluxpumpinhibitorsand/ornewantibioticsthatcan (http://www.tcdb.org/). Transporter genes in hundreds of se- bypass pump effects continues to be a challenge. Plasmid- quencedbacterialgenomesareclassifiedinIanPaulsen’sdatabase borne efflux pump genes (including those for RND pumps) (20)foreachofthesegenomes(http://www.membranetransport have increasingly been identified. This article highlights the .org/). Among many families of transporters, several contain recentprogressobtainedfororganismsofclinicalsignificance, prominentmembersofeffluxtransporters:especiallyimportant togetherwithmethodologicalconsiderationsforthecharacter- in bacteria are the RND, MFS (major facilitator superfamily), izationofMDRpumps. MATE(multidrugandtoxiccompoundextrusion),SMR(small multidrug resistance), and ABC (ATP-binding cassette) super- INTRODUCTION familiesorfamilies.ABCtransportersutilizeATPhydrolysisasthe Antibioticresistancehasemergedasamajorthreattopublic energy source, but all others are dependent on proton motive force and are thus secondary transporters or proton/drug anti- healthinthiscentury,asevidentfromglobalsurveillancedata porters. (1).Indeed,withtheancientoriginandwidespreadpresenceof The transporters also differ in their subcellular organization. diverseresistancegenes(2,3),themodernevolutionofresistance D TheRNDpumps,whichareallexportersofdrugsandtoxiccat- hasledtotheglobalemergenceandspreadofalargenumberof o ions,arelocatedintheinnermembrane(IM)(cytoplasmicmem- w resistantbacteriathatpossesssophisticatedgenotypesandpheno- brane) but must interact with the periplasmic adaptor protein n typesagainstantibiotics.Thisphenomenonisaconsequenceof lo (alsocalledmembranefusionprotein)andtheoutermembrane a thenaturalselectionprocessinmicroorganismsandpromotion (OM)channel,thusproducingatripartitecomplexspanningthe d byhumanactivitiesoverthepast70yearsoftheantibioticera(4, e IM, the periplasm, and the OM (represented by E. coli AcrAB- d 5).In2013,theU.S.CentersforDiseaseControlandPrevention (6)listedcurrentresistancethreats,ofwhichmultidrug-resistant TolCandP.aeruginosaMexAB-OprM)(seethemulticomponent fro pumpdepictedinFig.1).SomemembersoftheABCsuperfamily m Gram-negativebacteriaconstitutealargeproportion(e.g.,Enter- (e.g.,MacB),theMATEfamily(e.g.,MdtK),andeventheMFS obacteriaceae, Acinetobacter, and Pseudomonas). Of the various h (e.g.,EmrB)(allfromE.coli)alsoareorganizedinthismanner. t molecularandbiochemicalmechanismsofresistancetoantibiot- tp ics,activeeffluxofantibioticsinbacteriaplaysanimportantrole Thetripartitetransportersexcretedrugsdirectlyintotheexternal :/ mediumsothatthereentryofdrugsrequirestheslowtraversalof /c in both intrinsic and acquired multidrug resistance (MDR) of m theOM,aneffectivepermeabilitybarrier(21,22).Forthisreason, clinicalrelevance.Italsointerplayswithotherresistancemecha- r nisms,suchasthemembranepermeabilitybarrier,enzymaticin- thesepumpsarefarmoreefficientincreatingdetectableresistance .a toantibiotics(especiallyAcrB,aconstitutiveRNDtransporterof s activation/modificationofdrugs,and/orantibiotictargetchang- m E. coli [9]) (see Gammaproteobacteria: Enterobacteriaceae, be- es/protection,insignificantlyincreasingthelevelsandprofilesof .o resistance. low).Incontrast,thepumpsthatarenotorganizedinthismanner rg andexistassingle-componentor“singlet”pumpsintheIM(Fig. / Energy-dependentdrugeffluxwasdiscoveredinthe1970s,ini- 1),includingthevastmajorityofMFSandSMRpumps,areless o tiallywithP-glycoproteininmammaliancells(7)andlaterwith n effectiveinproducingadetectabledecreaseinsusceptibility,be- Tet proteins in Escherichia coli isolates resistant to the specific J causethedrugmoleculesareexcretedonlyintotheperiplasmand a antibioticclasstetracyclines(8).Thesubsequentdiscoveryinthe n canspontaneouslydiffusebackintothecytosol,sincemostanti- u early1990sofMDRpumpsinE.coliandPseudomonasaeruginosa, a bioticsarerelativelylipophilicmoleculesthatcancrossthephos- representedbytheresistance-nodulation-division(RND)super- ry pholipidbilayerregionoftheIM.However,RNDpumps,which familyexporters(9–13),hasmadeanimportantcontributionto 4 arethoughttocaptureantibioticsmostlyfromtheperiplasm(23, , our understanding of resistance mechanisms (14). Since then, 2 24),cancollaboratewiththesingletpumpsandthusincreasetheir withrapidtechnologicaladvancesinbiochemistryandmolecular 0 efficacy(25,26). 1 biology,therehavebeenever-growingidentificationandcharac- 9 Themostdetailedinformationonthecontributionofvarious terizationofMDRpumpsinnumerousbacterialspeciesofpublic b pumpstodrugsusceptibilityisavailableforE.coliK-12,andTable y healthconcern(e.g.,intheESKAPE[Enterococcusfaecium,Staph- 1listsdataonknownandpredictedmultidrugpumpsidentifiedin g ylococcusaureus,Klebsiellapneumoniae,Acinetobacterbaumannii, u theTransporterClassificationDatabasementionedabove.Anob- e P.aeruginosa,andEnterobacterspecies]pathogens),whichcom- s pellinglydemonstratetheirpredominantroleinclinicalsettings vious way to detect the contribution of individual pumps is to t measuretheMICsofdrugsindefectivemutants.Thiswasdonein (15,16).Meanwhile,effortsofscientistsledtotheunderstanding 2001 by Sulavik and coworkers (27) and showed that the RND ofnotonlythestructuralandfunctionalbasisofthesedrugtrans- transporter AcrB (in cooperation with its periplasmic and OM portersbutalsotheirregulationandinhibition.Inthisreview,we partnersAcrAandTolC)playsatrulypredominantroleinraising aim to provide a comprehensive and up-to-date description of theMIClevelsinawild-typestrain.Thisalsocreatesaproblem efflux-mediatedantibioticresistanceinGram-negativebacteria. because deletion of other pumps rarely produces detectable changes in MICs in the presence of the active AcrB-AcrA-TolC BIOCHEMISTRYANDGENETICSOFMULTIDRUGEFFLUX system.Asimilarproblemwasreportedinastudy(28)examining PUMPS theMICvaluesofnearly4,000deletionmutantsofallnonessential ClassesofEffluxPumps E. coli genes (the “Keio collection” [29]). Thus, although that Becausetherearesomanydifferenteffluxtransporters,theonly studyshowedthatthefunctionsofmanymetabolicgeneshavean feasiblewayfortheirclassificationistousephylogeneticgrouping, unsuspectedinfluenceondrugsensitivity,intermsoftransporter based on protein sequences. Such a classification for all trans- genes, it essentially identified the effect of only the acrAB-tolC porter proteins has been established by Milton Saier’s group complexandnothingelse.Onepossibleexceptionisthedeletion April2015 Volume28 Number2 ClinicalMicrobiologyReviews cmr.asm.org 339 Lietal. D o w n lo a d e d f r o FIG1LocationofdrugeffluxpumpsandpathwaysofdruginfluxandeffluxacrosstheOMandIMinGram-negativebacteria.Theinfluxofdrugs(shownas m pills)throughtheOMoccursinoneormoreofthefollowingthreepathways:porinchannels(e.g.,OmpFofE.coliandOprFofP.aeruginosa),specificprotein h channels(e.g.,CarOofA.baumanniiandOprDofP.aeruginosaforcarbapenems),andtheLPS-containingasymmetriclipidbilayerregion.Aftertheirentryinto tt theperiplasmicspace,thedrugmoleculescanfurtherpenetratetheIMviadiffusion.However,thesedrugscanbeextrudedoutofthecellbyeffluxtransporters, p : whichexistaseithersingle-componentpumps(“singlet”;e.g.,Tetpumps)ormulticomponentpumps(e.g.,AcrAB-TolCandMexAB-OprMtripartiteefflux // c systemsthateachtypicallycontainapump,anOMchannelprotein[OMP],andanaccessorymembranefusionprotein[MFP]).Whilethesingletpumpsmay m takeupthedrugfromthecytosolandtheperiplasmandfunctionwithporinsorothertypesofproteinchannelstomaketheeffluxprocesseffective,the r multicomponentexporterscapturetheirsubstratesfromtheperiplasmandtheIManddirectlypumpthemintothemedium.Thecompetitionbetweentheinflux .a andeffluxprocessesultimatelydeterminesthesteadystateofdrugmoleculesinbacterialcells.WiththelipophilicdrugmoleculesthatcrosstheOMslowlyorthe s m hydrophilicdrugsthatpenetratetheA.baumannii/P.aeruginosalow-permeabilityporins(i.e.,“slowporins”),theeffluxmechanismbecomeveryeffective,thus . beingabletoyieldMDR.Incontrast,withthelesshydrophobicandsmallerdrugmoleculesthatcanrapidlypenetrate,forexample,E.coliporins,effluxisnot o effectivetocounteractdruginflux,thushardlydecreasingtheconcentrationsofthedruginthecell. rg / o n J oftheycdZgene,whichproducedhypersusceptibilitytotetracy- RNDTransporters a n clineandmaycodeforanexporter.However,thisconclusionis AcrBofEscherichiacoli.TheconstitutivelyexpressedpumpAcrB u a notsupportedbyastudyfromtheCarolGrossgroup,whoquan- ofEscherichiacoliplaysamajorroleinraisingtheMICsofmost r y titated the growth phenotype of the same set of mutants in the antibiotics,duemostlytothefactthatitexistsastheAcrB-AcrA- 4 presence of sub-MICs of various drugs (30). This approach is TolCtripartitecomplexsothattheexporteddrugmoleculesend , 2 moresensitivethanthedeterminationofMICvaluesand,indeed, upintheexternalmedium,notintheperiplasm,andthuscannot 0 aspresentedinTable1,showedthatthedeletionofpracticallyall 1 easilyreenterthecellsexceptbycrossingtheeffectiveOMperme- 9 knownandsuspectedpumpsproduceshypersusceptibilitytoat abilitybarrier(24).Therefore,theeffectivenessofRNDpumpsis b leastoneagenttested.Theseresults,however,mustbeinterpreted y intimatelytiedtothestrengthoftheOMbarrier;permeabilizing withcare,sincethisapproachisverysensitiveandcouldproduce g theOMdestroystheeffectofRNDpump-mediatedeffluxalmost u false-positiveresultsinspiteofeffortstoavoidthem(Table1). e aseffectivelyastheinactivationofthepumpitself(42,43).Avail- s Acompletelydifferentapproachistheplasmid-basedover- t ablereviewsonRNDpumpsincludethoseemphasizingthestruc- expression of putative efflux genes. This analysis by Nishino tureandmechanism(24,44–49),computationalapproaches(50), and Yamaguchi (31) indeed detected efflux activity in those rolesinsolventtolerance(51),andfunctionsotherthandrugre- genes whose activity was difficult to detect by deletion-based sistance(34,52–54). approaches. However, these data do not tell us whether the AcrB has been studied most intensively as the prototype of pumps are functioning in the wild-type or even mutant cells, although the level of expression of most pumps can be in- RNDpumps.Ithasanextremelywidespecificity,includingprac- creasedbyregulatorysignals(seeRegulationofMultidrugEf- ticallyalltypesofantibacterialagents(exceptaminoglycosides), fluxPumps,below). detergents,microbicides,dyes(Table1),freefattyacids(55),and Reviews describing various types of efflux pumps include evensimplesolvents(56).Inareconstitutionassay(57),AcrBwas thosewrittenbyPoole(32,33),Piddock(34–36),Paulsenetal. showntoalsoextrudemodifiedphospholipids.Acommonprop- (37),Saierandothers(38),VanBambekeandothers(39),and erty of these AcrB substrates is the presence of a hydrophobic Higgins(40).AreviewbyAlekshunandLevy(41)isuseful,as domain (24, 58). Such a wide specificity appeared surprising at italsoemphasizesthecontributionofnoneffluxmechanismsof first.However,aspointedoutbyNeyfakh(59),thismaybeex- resistance. pected.Thus,whenatypicalsolubleenzymecapturesitshydro- 340 cmr.asm.org ClinicalMicrobiologyReviews April2015 Volume28 Number2 DrugEffluxinGram-NegativeBacteria philicsubstratefromtheaqueousmedium,theprocessrequires externalspace,theactivitieswereratherweak,anditseemslikely the removal of the substrate molecule, already stabilized by its thatAcrD(andpossiblyalsootherRNDpumps)atleastprefersto numeroushydrogen-bondinginteractionswiththesurrounding captureitssubstratesfromtheperiplasm.Interestingly,theaddi- water.Stablebindinginthebindingsiteoftheenzymetherefore tionofAcrAwasnecessaryforthefunctionofAcrD.Becausethe mustinvolveprecise,stronginteractionswiththeresiduesinthe assaydoesnotrequirethejuxtapositionofvesicles,AcrAislikely site,inordertoovercomethisenergybarrier,anditrequiresthat tostimulatedirectlythefunctionofAcrD(andAcrB)bysimply thesiteissmallandcarefullydesignedtobindstringentlyonlyone bindingtothetransporter. substratespecies.However,withthemultidrugpumpsthatcap- Sincereconstitutionassaysarequitecumbersome,methodsfor turedrugswithsizeablehydrophobicdomains,thedrugsarenot quantitative,real-timedeterminationofpumpingactivityinin- stronglystabilizedintheaqueousenvironment,astheirpresence tact cells were needed. Fluorescent probes [e.g., N-phenyl-1- involvesalargeentropiccostaccompanyingtheorderingofthe naphthylamine, ethidium bromide, and 2-(4-dimethylamino)s- surrounding water molecules. Hence, the drug binding to the tyryl-N-ethylpyridinium iodide] were preloaded into bacterial transporterdoesnotrequirethebindingsitetobesmall,tight,and cellsdeenergizedbyuncouplers,andeffluxwasmonitoredbyflu- stringent.Itcanbeverylargeandcanthusaccommodatealarge orescenceafterreenergizationbyaddinganenergysource,suchas D rangeofsubstrateswithsmalldecreasesinthebindingfreeenergy. glucose(60,61).Itisdifficulttoperformassaysofthistypeina o Forbiochemicalstudiesofanytransporters,transportstudies reproduciblemannerbecausesomeuncouplersremainafterre- w ofmembranevesiclesareusuallythepreferredapproach.Never- energization.Anoptimized,semiquantitativemethodforE.coli n lo theless, with AcrB, this approach was not fruitful, presumably usingthefluorescentdyeNileredwasreportedin2010(62).A a becausemostoftheligandstransportedarelipophilicandcannot majorstepintheintact-cellassayofAcrBwasthereal-timeassay d e beaccumulatedintheintravesicularspaceduetotheirreadiness ofcephalosporineffluxinE.coliachievedbyNaganoandNikaido d incrossingthephospholipidbilayerdomainofthemembrane.It in 2009 (63). Those authors measured spectrophotometrically fr isalsopossiblethattheabsoluterateoftransportdoesnotneedto cephalosporinhydrolysisinintactcellsbyaperiplasmic(cid:2)-lacta- om behighbecauseofthepresenceoftheOMbarrier,andthisim- mase.BycomparingthehydrolysisratewiththeV andK of max m h pedesthedetectionoftransportinvesicles.Thus,thefirstmajor theenzyme,thoseauthorscalculatedtheperiplasmicconcentra- t t p advance had to rely on the reconstitution of purified AcrB into tionsofthecephalosporins,overcomingthemostseriousprob- : / proteoliposomes, accomplished by Zgurskaya and Nikaido in lems in intact-cell assays of efflux. They then obtained the ex- /c m 1999(57).Inordertocircumventtheproblemofthespontaneous pected influx rate (V ) of the drug across the OM from the in r diffusionofmostligandsacrossthelipidbilayer,thisstudyusedan permeabilitycoefficientobtainedfromuncoupler-poisonedcells .a innovativeapproachrelyingontheeffluxoffluorescentlylabeled andfromthedifferenceintheexternalandperiplasmicconcen- s m phospholipids into empty “acceptor” vesicles and detected the trationsofthedrug.ThedifferencebetweenV andtheobserved in .o efflux of conventional ligands through competition with phos- hydrolysisratethencorrespondstotherateofefflux.Whenthe r g pholipidefflux.Inthisway,drugssuchascloxacillin,erythromy- effluxrateofnitrocefinwasplottedagainsttheperiplasmiccon- / cin,novobiocin,andfusidicacid(butcuriouslynotchloramphen- centrations, a Michaelis-Menten-type saturation curve was ob- o n icol)aswellasvariousbileacidswereshowntocompeteagainst tained,showingtheV (0.024nmol/mg/s)andK (5(cid:4)M)ofthe max m J phospholipid efflux. Furthermore, the half-maximal concentra- AcrB-catalyzedeffluxprocessforthefirsttime.Sincetheexpres- a n tion for inhibition was lowest for bile acid taurocholate ((cid:3)15 sionofAcrBwasincreasedseveralfoldinthestrainused,weesti- u (cid:4)M),suggestingthatthepropertiesofAcrBwereoptimizedfor matethattheV is(cid:3)6pmol/mg/sinwild-typeE.coliK-12.This a max ry theexclusionofbilesalts,majortoxiccomponentsinthemam- assaywasusedwithconventionalcephalosporinsandpenicillins 4 malianintestine,thenormalhabitatforE.coli.Interestingly,the (63–65);onesurprisingfindingwasthatasigmoidalkineticswas , additionofAcrAtotheaqueousphase(inthepresenceofMg2(cid:5)) often observed in the plots of velocity versus periplasmic drug 2 0 stronglystimulatedphospholipidtransport:becauselipidshadto concentration,suggestingpositivecooperativity.Recently,asig- 1 9 betransportedfromonevesicletoanother,wehypothesizedthat moidal kinetics was observed for the AcrB-catalyzed efflux of a b AcrAmayactbybringingthetwovesiclestogether.Thisapproach compoundofaverydifferentnature,L-arginine-(cid:2)-naphthylam- y also established that AcrB was a proton/drug antiporter, as the ide(A.Kinana,A.V.Vargiu,andH.Nikaido,unpublisheddata), g u transmembrane pH gradient was dissipated accompanying the indicating that this is a common feature of the AcrB-catalyzed e s fluxofligands. transportprocess. t AsimilarreconstitutionassaywassuccessfullyusedforE.coli A major advance in the study of AcrB was made when Mu- AcrD(23),anAcrBhomologthatalsoworkswithAcrAandTolC rakamietal.(66)solvedthecrystalstructureoftrimericAcrBin asatripartitetransporter.Thisstudyisimportant,asAcrDtrans- 2002. This symmetric structure showed that each protomer of ports aminoglycosides, which are very hydrophilic and not ex- AcrBcontainedalargeperiplasmicdomain,aspredictedfromthe pectedtodiffusespontaneouslyacrossthelipidbilayer.Thus,a primarysequence.Furthermore,theperiplasmicdomainwasseen conventionalaccumulationassayusingradiolabeledaminoglyco- tohavealargecleftfacingthesurroundingperiplasm.Although sides indeed proved their accumulation in proteoliposomes. binding of ligands to the area close to the cleft was shown by Whenstreptomycinwasaddedasthesubstratetoeitherthemore cocrystallization (67–69), this observation did not immediately acidic,intravesicularspacecorrespondingtotheperiplasmorthe suggestthemechanismsofdrugextrusion(seebelow).Thenext morealkalineexternalspacecorrespondingtothecytosol,pump- bigadvanceinourunderstandingofAcrBstructureandfunction ingactivity(asdetectedbythefluxofprotons)wasobservedonly came with crystallographic analysis of the asymmetric trimer in the former case, showing clearly that the pump captures its structure, where each protomer takes a unique conformation substrateonlyintheperiplasm.Althoughotheraminoglycosides slightly different from that of its neighbor, elucidated in three appearedtostimulatethepumpactivityevenwhenaddedtothe laboratories (Fig. 2 ) 7(0–72). The work by Murakami and co- April2015 Volume28 Number2 ClinicalMicrobiologyReviews cmr.asm.org 341 Lietal. R, E Othersubstrate(s)orinformation(reference) Pentoses(1010) CCCP,NAL,TSA(139);CTLM(15)Uncouplers(15);pentoses(1010)HO,MIT,NAL,UV22irradiation(1011) Pentoses(1010) Ironcitrate(inSalmonella)(1012) BindsCHL(1013) Pentoses(1010) dAgent(s)thatinhibitedgrowth ACR,AMP,AZM,AZT,BAC,BLE,BS,CER,CHIR,CHL,CHO,CIP,CLR,CPZ,DEO,DOX,EB,ERY,FUA,MEC,MIN,NAL,NIT,NOR,NOV,OXA,PUR,SDS,SPT,SPR,STG,TCH,TCS,TET,TMP,TRX,VERPARPHL,VERFUA CIP,SDS BAT,CSD,NAL,PHL CHO,ERY,SMZACR,BAC,CHL,EB EB,SXT AZM,GEN,NIT,OXA,SMT,SPR CEC,SMZ,TET NIT,OXA,SPR,TMPEB,AMX,BAC,MEC,NAL,PARBAC,CAZ,MEC,MTX,PUR,SDS,TLMATM,EBACTFUA,SPTAMK,CHL,CHO,CSD,DEO,ERY,FOX,NOV,PER,PMB,TET,VERNonewithagentstested AMXACR,BAC,CAR,CHIR,CSD,DOX,EB,FOX,GFF,MIT,SDS,STRAZT,BLE,CAL,CHIR,CHL,CIP,CPZ,INH,OXA,SMZ,SPR,TETAMP,DEO htDownloaded from t p : aE.coli cOverexpressionphenotype(agent[s],foldincreaseinMIC) (cid:6)ACR,16;BAC,32;CHL,8;CV,8;DEO,(cid:6)(cid:6)32;DOR,64;ERY,32;NAL,4;NOR,(cid:6)8;NOV,64;R6G,64;SDS,8;TMP,(cid:6)32;TPP,16 (cid:6)(cid:6)DEO,32;KAN,2;NOV,4;SDS,8ACR,8;DEO,4;DOX,2;SDS,4CV,2;DEO,4;DOR,8;EB,4;ERY,8;R6G,16;SDS,4;TPP,4(cid:6)DEO,32;FOF,2;NAL,2;NOR,2;NOV,16;SDS,4(cid:6)DEO,32;FOF,2;NAL,2;NOR,2;NOV,16;SDS,4 ACR,2;FOF,4;KAN,2;TET4ACR,8;CHL,16;DOX,4;EB,4;NOR,8;TET,2;TMP,4;TPP,4DEO,32;PAR,2;R6G,2;SDS,2 BAC,2;SDS,2 FOF,4 on January 4//cmr.asm.org/ antsof in CLO,32;UR,6 , 201 umpmut ddecrease 8;CIP,4;256;ERY,OV,64;P8;TPP,25 9 by g sofprovenandputativeeffluxp bDeletionphenotype(agent[s],folMIC) ACR,128;AMP,4;BAC,32;CHL,(cid:6)(cid:6)(cid:6)2;DAU,128;DEO,2;EB,(cid:6)FUA,128;MTX,8;NAL,2;N(cid:6)64;R6G,512;SDS,128;TET, NochangeNochangeNochange Nochange Nochange BC,4;EB,4 Nochange Nochange Nochange uest e p y ot x ABLE1Phen milyandefflune NDacrB acrDacrFyhiV(mdtF) mdtB mdtC FSbcrcmr(cmlA,mdfA)emrB emrD emrY yajRyceByceE(mdtG)yceL(mdtH)ydeB(marC)ydhCyebQ yegB(mdtD) yidY(mdtL)yieO(hsrA) yjiO(mdtM) ynfM T Fage R M 342 cmr.asm.org ClinicalMicrobiologyReviews April2015 Volume28 Number2 DrugEffluxinGram-NegativeBacteria MATE(MOP)mdtK(ydhE,BAC,2;CHL,2;DEO,32;DOR,8;EB,2;CPZ,FUA,NOR,PUR,STRnorM)FOF,2;NOR,8;PAR,4;TMP,4;TPP,32yeeOACR,BAC,BIC,CAR,DOR,PUR,VAN,VER SMR(DMT)emrEEB,4;PAR,8ACR,16;BAC,2;EB,8;PAR,2ACR,EB,FOF,PAREB(1014);PAR(1015);ERY(155);cationicosmoprotectants(159)ydgE(mdtI)DEO,4;SDS,2ACR,BAC,CHL,DEO,EB,FUA,MTX,Spermidine(1016)PMB,PUR,TRXydgF(mdtJ)DEO,4;SDS,2CHO,CSD,ERY,NAL,VERSpermidine(1016) ABCmacBNochangeERY,8BAT,BIC,BS,CEC,EB,FOX,NIT,SDS,TCH LysEargOAMP,BS,GFF,INH,NAL,PHL,TMPArginine(1017) UnknownycdZNOR,SDS(notTET)TET,1.7-to2.5-folddecreaseinMICcomparedtothewildtype(28) aAbbreviations:ACR,acriflavine;ACT,actinomycinD;AMK,amikacin;AMP,ampicillin;AMX,amoxicillin;ATM,aztreonam;AZM,azithromycin;AZT,azidothymidine;BAC,benzalkoniumchloride;BAT,bacitracin;BIC,bicyclomycin;BLE,bleomycin;BS,bilesalts;CAL,calcofluor;CAR,carbenicillin;CAZ,ceftazidime;CCCP,carbonylcyanidem-chlorophenylhydrazone;CEC,cefaclor;CER,cerulenin;CHIR,CHIR-900(anLpxCinhibitor);CHL,chloramphenicol;CHO,cholate;CIP,ciprofloxacin;CLO,cloxacillin;CLR,clarithromycin;CPZ,chlorpromazine;CSD,cefsulodin;CV,crystalviolet;DAU,daunomycin;DEO,deoxycholate;DOR,doxorubicin;DOX,doxycycline;EB,ethidiumbromide;ERY,erythromycin;FOF,fosfomycin;FOX,cefoxitin;FUA,fusidicacid;GEN,gentamicin;GFF,glufosfomycin(fosfomycinplusglucose-6-P);INH,isoniazid;KAN,kanamycin;MEC,amdinocillin;MIN,minocycline;MIT,mitomycin;MTX,methotrexate;NAL,nalidixicacid;NIT,nitrofurantoin;NOR,norfloxacin;NOV,novobiocin;OXA,oxacillin;PAR,paraquat(methylviologen);PER,peroxide;PHL,phleomycin;PMB,polymyxinB;PUR,puromycin;R6G,rhodamine6G;SDS,sodiumdodecylsulfate;SMT,sulfamonomethoxine;SMZ,sulfamethizole;SPR,spiramycin;SPT,spectinomycin;STG,streptonigrin;STR,streptomycin;SXT,trimethoprim-sulfamethoxazole;TCH,taurocholate;TCS,triclosan;TDC,taurodeoxycholate;TET,tetracycline;TLM,thiolactomycin;TMP,trimethoprim;TPP,tetraphenylphosphonium;TRX,TritonX-100;TSA,tetrachlorosalicylanilide;VAN,vancomycin;VER,verapamil.bSeereference27.NumbersaftertheabbreviationfortheagentnameindicatethefolddecreaseinMICincomparisonwiththewild-typestrain.(cid:7)cSeereference31.NumbersaftertheabbreviationfortheagentnameindicatesthefoldincreaseinMICincomparisonwiththeacrABparentstrain.(cid:8)(cid:9)dOnlytheantimicrobialagents,dyes,anddetergentsthatsignificantlyinhibitedthegrowthofmutantsmorethanthatofthewildtype,usuallyleadingtogrowthscoresof2(30),arelisted.Furthermore,weconfirmedthattheinhibitionwasreproduciblebyexaminingthedataobtainedwithdifferentconcentrationsofthesameagent. on January 4, 2019 by guesthttp://cmr.asm.org/Downloaded from April2015 Volume28 Number2 ClinicalMicrobiologyReviews cmr.asm.org 343 Lietal. D o w n lo a d e d f r o m h t t p : / / c m r . a s FIG2DrugtransportmechanismofAcrB.ShownistheasymmetriccrystalstructureofAcrB(ProteinDataBankaccessionnumber2DRD),viewedfromoutside m thecell,withthetopportioncutoffforclarity.Conformationalcyclingof3AcrBprotomers,inaccess(blue),binding(red),andextrusion(green),isseenby .o cocrystallizationofAcrBwithitssubstrateminocycline,showninayellowstickmodel. rg / o n workers(70)wasespeciallyimportant,becausetheysucceededin stratessuchasmacrolides,rifampin,andadimerofdoxorubicin J cocrystallizingAcrBwiththesubstrateminocyclineordoxorubi- bindtoamoreproximalbindingsiteintheaccessprotomer,pre- a n cin. In both cases, the substrates were seen in a predominantly sumablybeforetheireventualmovementtothedistalpocketcon- u a hydrophobicpocketwithintheperiplasmicdomain,nowcalled comitantwiththeconformationalchangeoftheproteinintothe r y the distal binding pocket, close to the center of the trimer and bindingprotomer.Interestingly,thisproximalbindingsitesur- 4 locatedinoneparticularprotomer,calledthebindingprotomer. rounded by residues Asp566, Phe664, Phe666, Glu673, Arg717, , 2 Thepresenceofthreeconformationallydifferentprotomers,the andAsn719overlapsmostlytheperiplasmicbindingsiteidenti- 0 access,binding,andextrusionprotomers(Fig.2)(44),suggesteda fiedbyYuandcollaboratorsseveralyearsearlier(67)inasymmet- 1 9 functionally rotating mechanism, in which each protomer goes ricAcrBcrystalstructure.Yuandassociatesfurthershowedthe b through a succession of conformational alterations. The distal importanceofthisbindingsitebysite-directedmutagenesis,find- y binding pocket becomes collapsed in the extrusion protomer, ingthataPhe666Alamutation,forexample,resultsinadrastic g u consistentwiththemovementofthedrugtotheexitgatecloseto decreaseofresistancetoawiderangeofsubstrates(67).Thein- e s theendoftheTolCchannel.Thisconceptofconformationalcy- volvementofresiduessurroundingthissitewasalsoshownbythe t clingorfunctionalrotationwasthensubstantiatedbythefinding factthattheirCys-substitutedmutantswerestronglylabeledbyan that disulfide cross-linking of nearby residues, although appar- AcrB substrate, boron-dipyrromethene (BODIPY)-maleimide entlyoccurringinonlyoneortwoprotomers,nearlycompletely (79).Anothersymmetricalcrystalstructurecontainingasubstrate inactivatedthetrimericcomplex(73).(TheAcrBhomologMexB atthispositionhasadeoxycholatemolecule(80).Theimportance ofP.aeruginosahasbeencrystallizedwithout[74]andwith[75] ofthisproximalbindingpocketwasfurtheremphasizedbyrecent anaddedinhibitor,apyridopyrimidinederivative.)Inasimilar studies(81,82).ThepreferenceofAcrDfor(cid:2)-lactamscontaining vein,whentheAcrBtrimerwasproducedasacovalentlylinked multipleanionicgroups,suchascarbenicillin,sulbenicillin,and singleprotein,andonlyoneprotomericunitwasinactivatedinthe aztreonam,isessentiallyduetotheresidueswithintheproximal proton translocation pathway, the entire trimeric complex be- pocket (81), while a region in the MexY aminoglycoside pump cameinactive(76).Furthermore,whentheCysresidueswerein- thatcorrespondstoaproximalbindingpocketofAcrBplaysarole troducedintoonlyoneoftheprotomericunits,theircross-linking inaminoglycosiderecognitionandexport(82). immediately inactivated the function of AcrB trimers, showing Yet another binding site for drugs was identified within the thatinactivationwasnotduetoafailureofthetrimericassembly. centralcavityofthetrimerbycocrystallization(67,83).Possibly, Morerecently,twolaboratories(77,78)showedthatlargesub- theinitialbindinghereisfollowedbytheeventualtranslocationof 344 cmr.asm.org ClinicalMicrobiologyReviews April2015 Volume28 Number2 DrugEffluxinGram-NegativeBacteria thesubstratestothedistalbindingpocket,perhapsthroughthe “bind”withasignificantlylowerbindingenergytothelowerpart “vestibules”betweentheprotomers(84).Althoughthefunctional ofthepocket,whichwecalleda“cave”(Fig.3)(91). significanceofthisbindingsitecouldnotbeascertainedbysite- Togetfurtherinsightsintothebinding-and-effluxprocess,we directedmutagenesis,symmetriccocrystalsofAcrBwithdrugsin examinedpotentialcompetitionbetweensubstrates.Ithadbeen thecentralcavityhavebeenreportedforampicillin(68)andlin- nearlyimpossibletoshowcompetitionamongsubstratesofAcrB ezolid(85). byusinganMICassay(92).Still,withareal-timeeffluxassaywith Dastidaretal.carriedoutthefirstefforttousesubstratecom- thedyeNilered,weshowedthatdoxorubicin,minocycline,and petitionforcovalentlabelingofselectedresiduesfortheelucida- other tetracyclines as well as tetraphenylphosphonium, but not tionofthepathofthedrugmoleculeswithinthelargeperiplasmic chloramphenicol, macrolides, deoxycholate, nafcillin, or novo- domain of AcrB (86). Some residues of Haemophilus influenzae biocin, inhibited dye efflux (62). Also, when a real-time efflux AcrB were converted to Cys and were labeled with fluorescein assayofnitrocefin(63)wasused,weshowedstronginhibitionby maleimide.ThelabelingofAla288Cys(correspondingtoGly290 minocycline,predictedtobindtotheupperpartofthepocket,like ofE.coliAcrBandclosetothedistalbindingsite)wasdecreasedby nitrocefin (91). In contrast, a substrate that is not predicted to thepresenceofallsubstratestested,exceptethidium.Wefollowed bindtothispartofthepocket,i.e.,chloramphenicol,didnotin- D uponthisworkbyselecting48residuesthatlieonthepresumed hibitnitrocefinefflux,andactually,therewassomehintofstim- o path(s)ofthedrugs,convertingeachresiduetoCys,andlabeling ulationinstead(91).Thelatterphenomenonisdiscussedinmore w theCysresidueinintactcellswithahydrophobic,covalent-label- detailbelow. n lo ing probe, BODIPY-maleimide (79). Residues outside the pre- Dockingprograms,however,havebeenoptimizedbyusingthe a dictedpathwerenotlabeledatall,evenwhentheywerelocatedin bindingofsmall,hydrophilicsubstratesmostlytothebindingsites d e themiddleofhydrophobicpatches.Incontrast,mostofthetested withinenzymes.Bindingofhydrophobicoramphiphilicligands d residuesinthedistalbindingpocketwerestronglylabeled,aswere tothelargebindingpocketsoftransportersispredictedtooccurin fr o theresiduesliningtheproximalpocketaswellastheentranceand significantlydifferentways(59).Thus,weexaminedindetailthe m the bottom of the large external cleft between two subdomains bindingof9substrates,2inhibitors,and2nonsubstratestothe h (PC1andPC2[66]).Finally,byusingbulkycovalent-labelingre- distalbindingpocketofAcrBbyextensiveMDsimulations(93). t t p agents,withsomeresidues,wehavebeenableto“clog”thesub- Thisintroducedtwomajorimprovementsoverthedockingap- : / strate path so that the efflux of a substrate, Nile red, could be proach.First,watermoleculesnowbecameapartofthesystemso /c m blocked. thattheinteractionofamphiphilicandmorehydrophilicligands r Thisstudyreinforcedtheimportanceofthedrugbindingto couldbepredictedinamuchmorerealisticmanner.Second,the .a thedistalbindingpocketasamajorstepinefflux.Site-directed distalbindingpocketiscomposedofresiduesthatareonseveral s m mutagenesis of Phe residues in this pocket (87) indicated that loopsegmentsinarelativelylooselyconstructedareaofthepro- . o theseresiduesareimportantforefflux,withthePhe610Alamuta- tein,somovementandrotationsofthechainswereexpected.In- r g tionshowingthemostwidespreadeffectonmanysubstrates.A deed,withmanyligands,therewasanextensivealterationinthe / moleculardynamics(MD)simulationstudyofthismutantpro- shape of the binding site to better accommodate diverse sub- o n tein(88)revealedthatasubstrate,doxorubicin,stillboundtothe strates.Interestingly,someofthose“cavebinders”inthedocking J pocketwithastrongaffinity;theinterpretationoftheseresultsis approachleftthelowerareaandwerefoundtofavortheupper a n describedbelow.Site-directedmutagenesisbasedonthesequence areaofthepocket,althoughthebindingappearedtobeweak. u a differencebetweenAcrBandMexB,whichshowdifferentprofi- Chloramphenicolwasfoundtoslightlyacceleratetheeffluxof r y cienciesinmacrolideefflux,ledtothediscoveryoftheimportance nitrocefin(91).Thiswasconfirmedbyasubsequentcarefulstudy, 4 ofGly616inAcrBforthisfunction(89);interestingly,thisresidue and it was found that solvents such as benzene or cyclohexane , 2 isapartoftheGly-richloop(alsocalledtheswitchloop),which produced much more pronounced stimulation of nitrocefin ef- 0 separatesthedistalpocketfromtheproximalpocket(77)andis flux(94).MDsimulationssuggestedthatbenzeneinteractspri- 1 9 thoughttobecriticalfortranslocationofthesubstrates,especially marilywiththePhe-richhydrophobicdomainthatcomprisesthe b large molecules such as macrolides. More recently, Eicher et al. lowerportionofthebindingpocketandnotwiththeuppersub- y showed the coupling of remote alternating-access transport pocket that binds minocycline or nitrocefin (94). Interestingly, g u mechanismsforprotonsandAcrBsubstratesthroughamecha- thelowerportionofthebindingpocketiswherethehydropho- e s nisminvolvingtworemotealternating-accessconformationalcy- bicpartoftheinhibitorD13-9001bindstightlyandwasnamed t cleswithineachpromoter(90). a “hydrophobic trap” by Nakashima et al. (75) (see Efflux Althoughthesemutagenesisstudiesarevaluable,theydonot PumpInhibitors,below).Furthermore,recentMDsimulations tell us how various substrates bind to the AcrB transporter. As showedthatothereffluxpumpinhibitors(EPIs),suchasphenylal- statedabove,onlyafewcrystalstructuresofdrug-AcrBcomplexes anine-arginine-(cid:2)-naphthylamide (PA(cid:2)N), 1-(1-naphthylmethyl)-pi- are currently available. Thus, computational analysis of drug- perazine(NMP),andthenew,potentinhibitorMBX2319(95),allbind AcrB interactions was first initiated with the docking software tightlytothehydrophobictrapandtherebydistorttheshapeof AutodockVina(91).VariousknownsubstratesofAcrB,including therestofthepocket,closingthecrevicewhereminocyclineor minocycline,dockedtotheupperpart(closertotheexitgate)of nitrocefin becomes bound (96). These observations suggest the thedistalbindingsite,whichcontainsacharacteristiccrevice(Fig. following.(i)Thedistalbindingpocketisverylarge,anddifferent 3).Thisiswhereminocyclineanddoxorubicinboundinthecrys- ligands prefer different areas of the pocket for binding. Thus, a talstructures(70).Cefazolin,anonsubstrate(63),gratifyinglydid “typical” substrate, like minocycline or nitrocefin, which has a notbindtothebindingpocket.However,othersubstratesfailedto numberofhydrophilicgroups,tendstobindtotheupper“crev- bindtothisupperportionofthepocket;asanexample,chloram- ice”area,whichisrichinhydrophilicandchargedresiduesand phenicol and solvents such as cyclohexane were predicted to was indeed shown to be involved in substrate binding (93). In April2015 Volume28 Number2 ClinicalMicrobiologyReviews cmr.asm.org 345 Lietal. D o w n lo a d e d f r o m h t t p : / / c m r . a s m FIG3InteractionofdrugsubstratesandtheAcrB-bindingprotomeranalyzedwithAutodockVinadockingsoftware.Substratesareshowntobindtoeitherthe . upperpart(groovebinder)(doxorubicin[A]andtetracycline[B])orthelowerpart(cavebinder)(chloramphenicol[C]andcyclohexane[D])ofthedistal o r bindingsite.(Modifiedfromreference91.) g / o n contrast,forhydrophobicligandssuchascyclohexaneorchlor- Afterthebindingofthesubstratetothedistalbindingpocketin J amphenicol,bindingtothisareaisdifficult.(ii)Atightinteraction the binding protomer, the proton(s) must come in from the a n with the hydrophobic trap distorts the structure of the crevice, periplasm to bind to the Asp residue(s) in the transmembrane u a inhibitingtheeffluxoftypicalsubstrates.(iii)Alooseinteraction domain,causingtheconformationoftheproteintochangeinto r y withthehydrophobictrap,ontheotherhand,mayenhancethe theextrusionprotomer,therebysqueezingoutthesubstratetothe 4 effluxoftypicalsubstrates,byeitherfacilitatingtheinteractionof exitgatebythecollapseofthepocket.Asp407andAsp408appear , 2 suchsubstrateswiththepocket,speedingupthesequenceofcon- tobeessentialfortheenergytransductionofAcrB,togetherwith 0 formationalchangesneededfortheexportofsubstrates,orboth. Lys940andArg971(105)aswellasThr978(106).Inthebinding 1 9 Inanycase,theinteractionbetweentheAcrBtransporterandits protomer,bothAsp407andAsp408appeartobedeprotonated,as b substrates/inhibitors/enhancersappearsquitecomplex.Inassess- thepresumablyprotonatedLys940sidechainissituatedbetween y ingthebindingofdrugstothepocketoftransporterssuchasAcrB, the two Asp side chains. In the extrusion protomer, Lys940 is g u wenowrealizethatbindingfollowsthesameprincipleselucidated movedawayfromtheAspresiduesandnowfacestheThr978side e s bythepioneeringearlycrystallographicstudiesbyBrennanand chain(107).ThecarboxylgroupofAsp408wasindeedshownto t coworkers(forexample,seereferences97and98),carriedoutby haveanunusuallyhighpK of7.4,whichwouldhelpinthefacile a using soluble regulators of MDR pumps, such as QacR, rather bindingandreleaseoftheprotonunderphysiologicalconditions thanthepumpsthemselves. (107).ArecentMDsimulationstudy(108)suggeststhatinthe Computersimulationhasnowbecomeanimportantapproach extrusionprotomer,Asp408becomesprotonated,butAsp407re- forstudyingthemechanismofAcrBfunction.Themovementofa mainsdeprotonated.Inthisscheme,thetranslocationofonepro- substrate,doxorubicin,fromthedistalbindingpockettoaposi- tonacrosstheIMwouldbesufficienttocausetheconformational tionclosetotheexitgate,accompanyingtheclosureofthepocket, changes in AcrB, resulting in the extrusion of the drug mole- was shown by a targeted MD simulation (99). Large substrates, cule(s).ThefoldingandassemblyoftheAcrBtrimerwerestudied found in the proximal binding pocket in AcrB cocrystals (77), mainlybyWeiandassociates,whoshowedthatthefoldingofthe movedsubstantiallyinthedirectionofthedistalbindingpocket monomeric unit precedes trimerization (109) and analyzed the duringMDsimulation(100).Movementofwatermoleculeswas functionofaprotrudingloopthatinsertsdeeplyintotheneigh- analyzed by simulation (101, 102), and coarse-grained models boringsubunit(110). wereusedtoanalyzetheconformationaltransitions(103)aswell In 2007, when AcrB was crystallized without amplification asthedrugpathways(104)withinAcrB. fromE.coli,thesymmetriccrystalswerefoundtocontainasmall 346 cmr.asm.org ClinicalMicrobiologyReviews April2015 Volume28 Number2

Description:
in these bacteria greatly contribute to antibiotic resistance and present a major periplasm to bind to the Asp residue(s) in the transmembrane domain, causing the McMurry L, Petrucci RE, Jr, Levy SB. 1980. Active efflux of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.