Lecture Notes in Artificial Intelligence 5225 EditedbyR.Goebel,J.Siekmann,andW.Wahlster Subseries of Lecture Notes in Computer Science Giovanni Pezzulo Martin V. Butz Cristiano Castelfranchi Rino Falcone (Eds.) The Challenge of Anticipation A Unifying Framework for theAnalysis and Design ofArtificial Cognitive Systems 1 3 SeriesEditors RandyGoebel,UniversityofAlberta,Edmonton,Canada JörgSiekmann,UniversityofSaarland,Saarbrücken,Germany WolfgangWahlster,DFKIandUniversityofSaarland,Saarbrücken,Germany VolumeEditors GiovanniPezzulo CristianoCastelfranchi RinoFalcone IstitutodiScienzeeTecnologiedellaCognizione-CNR ViaSanMartinodellaBattaglia44 00185Rome,Italy E-mail:{giovanni.pezzulo,cristiano.castelfranchi,rino.falcone}@istc.cnr.it MartinV.Butz UniversitätWürzburg InstitutfürPsychologie,KognitivePsychologieIII Röntgenring11,97070Würzburg,Germany E-mail:[email protected] LibraryofCongressControlNumber:2008934765 CRSubjectClassification(1998):I.2,I.6,F.1.2,G.3,K.8 LNCSSublibrary:SL7–ArtificialIntelligence ISSN 0302-9743 ISBN-10 3-540-87701-0SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-87701-1SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,re-useofillustrations,recitation,broadcasting, reproductiononmicrofilmsorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965, initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliable toprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com ©Springer-VerlagBerlinHeidelberg2008 PrintedinGermany Typesetting:Camera-readybyauthor,dataconversionbyMarkusRichter,Heidelberg Printedonacid-freepaper SPIN:12531196 06/3180 543210 Foreword The general idea that brains anticipate the future, that they engage in prediction, andthatonemeansofdoingthisisthroughsomesortofinnermodelthatcanberun offline,hasalonghistory.SomeversionoftheideawascommontoAristotle,aswell as to many medievalscholastics, to Leibniz and Hume, and in more recenttimes, toKennethCraikandPhilipJohnson-Laird.Onereasonthatthisgeneralidearecurs continuallyisthatthisisthekindofpicturethatintrospectionpaints.Whenweare engagedintasksitseemsthatweformimagesthatarepredictions,oranticipations, andthattheseimagesareisomorphictowhattheyrepresent. But as much as the general idea recurs, opposition to it also recurs. The idea hasneverbeenwidelyaccepted,oruncontroversialamongpsychologists,cognitive scientistsandneuroscientists.Themainreasonhasbeenthatsciencecannotbesat- isfiedwithmetaphorsandintrospection.Inordertogainacceptance,anideaneeds tobeformulatedclearlyenoughsothatitcanbeusedtoconstructtestablehypothe- seswhoseresultswillclearlysupportorcastdoubtuponthehypothesis.Next,those ideasthatareformulableinoneoranothersortofsymbolismornotationarecapable ofbeingmodeled,andmodelingisahugepartofcognitiveneuroscience.Ifanidea cannotbeclearlymodeled,thentherearelimitstohowwidelyitcanbetestedand acceptedbyacognitiveneurosciencecommunity.Andfinally,ideally,theideawill be articulatedand modeledin such a way thatit is nota completemysteryhow it couldbeimplementedbythebrain.Thoughtheideathatthebrainmodelsandpre- dictsandanticipatesissupportedbyintrospectionandalonghistoryofhypotheses, ithaslargelyfailedontheselatterthreecounts–especiallycomparedwithvarious theoreticalcompetitors.And this is whythe extentto which ithas beenembraced bycognitivescienceandneurosciencehasbeenlimited. But there is good news. Mathematical tools from a number of areas, including moderncontroltheoryandsignalprocessing,arecapableofallowingforverypre- cisemathematicalformulationsofthebasicidea,aswellasmanyspecificversions. This allows for the ideas notonly to be precisely formulated,but also to be mod- eledandcomparedtohumanbehavioraldata.Andgivena numberofschemesfor implementingthesekindsofmathematicalmodelsinneuralsystems,itispossible VI Foreword toseethesemodelsasbeingimplementedinthebrain.Thequalitativeideathatthe brainmodelstheworldisfinallybeingclarifiedandquantified. But we are still in the early stages of this process. While there are many pro- posalsandtheoriesthatarebeginningtotakeshape,therehavebeenfewsustained treatmentsofthetopicthatattempttodevelopthemindetailedandconsistentways. Rather,theapplicationshavelargelybeenpiecemeal.Inthisregardthepresentvol- umerepresentsa significantadvanceinthe field.Itoffersa sustainedtreatmentof variousaspects of the generalhypothesis,notonlyin termsof being conceptually clearandconsistent,butalso intermsofpresentinga wide rangeof particularap- plicationsthatillustratetheconceptualmachineryinaction. Itwouldbeanoverstatementtosaythattheideathatthebrainisamodelerand predictorisrevolutionary,orthatthecurrentswellintheoreticalinterestintheidea representstheinitialstagesofarevolutionincognitiveneuroscience.Butwhiletalk ofrevolutionmaybeoverstatement,itcannotbedeniedthatthisapproachtounder- standingbrainfunctionisbeginningtotakeonanimportancecomparabletothatof traditionalartificialintelligenceapproachesandconnectionistmodelingapproaches. The clarity, detail and quality of the ideas presented in this volume, coupled with thegrowingimportanceofthisgeneralapproach,makethisvolumeacriticalcontri- butiontoourunderstandingofbrainfunction,andshouldbereadbyanyonewitha seriousinterestinunderstandinghowthebrainmanagestosupportcognitivefunc- tions. July2008 RickGrush UniversityofCalifornia,SanDiego Preface Predictionisdifficult–especiallyforthefuture.NielsBohr Over the last few decades, it has become increasingly clear that animals most of the time do not simply react in their world based on unconditioned or condi- tionedstimuli,butratheractivelyoperateintheirenvironmentinahighlygoal-and future-orientedway,andnotjustonthebasisofcurrentperception,butinpartau- tonomouslyfromenvironmentalstimuli.Psychologynowsuggeststhatitisthegoal itselfthattriggersbehaviorandattention.Learningishighlyinfluencedbycurrent predictive knowledgeand the consequentdetection of novelty.Behavioral control ismosteffectivelycontrolledbythehelpofforwardmodelsthatsubstitutedelayed orthatenhancenoisyperceptualfeedback.Thus,anticipationscomeinmanyforms andinfluencemanycognitivemechanisms. Thisbookproposesaunifyingapproachfortheanalysisanddesignofartificial cognitivesystems:Theanticipatoryapproach.Weproposeafoundationalviewof theimportanceofdealingwiththefuture,ofgainingsomeautonomyfromcurrent environmentaldata,ofendogenouslygeneratingsensorimotorandabstractrepresen- tations.Weproposeameaningfultaxonomyofanticipatorycognitivemechanisms, distinguishingbetweenthetypesofpredictionsandthedifferentinfluencesofthese predictionsonactualbehaviorandlearning.Doingso,wesketchoutanew,unify- ing perspective on cognitivesystems. Mechanisms, that have often been analyzed inisolationorhavebeenconsideredunrelatedtoeachother,nowfitintoacoherent wholeandcanbeanalyzedincorrelationtoeachother.Learningandbehaviorare considered increasingly intertwined and correlated with each other. Attention and action control suddenly appear as very similar processes. Goal-oriented behavior, motivationandemotionappearasrelatedandintertwined. While the revelation of these correlations is helpful for the analysis and com- parisonofdifferentlearningandbehavioralmechanisms,thesecondbenefitofthe anticipatoryapproachisthepossibilitytomodularlydesignnovelcognitivesystem architectures.Thedevelopedtaxonomyclearlycharacterizeswhichaspectsareim- portant for different anticipatory cognitive modules and how these modules may interact with each other. Thus, the second benefit of the anticipatory approach is VIII Preface thefacilitationofcognitivesystemdesign.Buildingblocksofcognitivesystemsare proposedandexemplarilyanalyzedindiversesystemarchitectures.Theinteraction ofthesebuildingblocksthenischaracterizedbytheiranticipatorynature,facilitat- ing the design of larger, more competentautonomousartificial cognitive systems. We hope that the proposed anticipatory approach may thus not only serve for the analysisofcognitivesystemsbutratheralsoasaninspirationandguidelineforthe progressivelymoreadvancedandcompetentdesignoflarge,butmodular,artificial cognitivesystems. Acknowledgments This work is supportedby the EU project MindRACES, from Reactive to Antic- ipatory Cognitive Embodied Systems, funded under grant FP6-511931 under the “CognitiveSystems” initiativefrom the EC. Specialthanksto ourProjectOfficer, Ce´cileHuet,andtoourProjectReviewers,LolaCan˜ameroandDeepakKumar,for theirvaluableencouragementandadvice. July2008 GiovanniPezzulo MartinV.Butz CristianoCastelfranchi RinoFalcone Contents PartI Theory 1 Introduction:AnticipationinNaturalandArtificialCognition...... 3 GiovanniPezzulo, Martin V. Butz, Cristiano Castelfranchi, and RinoFalcone 1.1 Introduction.............................................. 3 1.2 ThePathtoAnticipatoryCognitiveSystems................... 4 1.2.1 SymbolicBehavior,Representation-LessBehavior,and TheirMergetoAnticipatoryBehavior ................ 5 1.2.2 ThePowerofAnticipation:FromReactivitytoProactivity 6 1.2.3 TheAnticipatoryApproachtoCognitiveSystems....... 6 1.2.4 TheUnitaryNatureofAnticipation................... 12 1.3 AnticipationinLivingOrganisms............................ 12 1.3.1 AnticipatoryNaturalCognition...................... 12 1.3.2 AnticipatoryCodesintheBrain ..................... 15 1.3.3 SimulativeTheoriesofCognition,andTheirUnifying Nature........................................... 18 1.4 Conclusions.............................................. 22 2 TheAnticipatoryApproach:DefinitionsandTaxonomies .......... 23 GiovanniPezzulo,MartinV.Butz,andCristianoCastelfranchi 2.1 AnticipatorySystems,Anticipation,andAnticipatoryBehavior... 23 2.2 Predictionvs.Anticipation ................................. 25 2.2.1 PredictiveCapabilities ............................. 25 2.2.2 AnticipatoryCapabilities ........................... 31 2.3 AnticipationandGoal-OrientedBehavior ..................... 34 2.3.1 TheAnticipatoryStructureofGoal-OrientedBehavior .. 35 2.3.2 NotAllAnticipatoryBehaviorIsGoal-Oriented........ 36 2.3.3 WhichAnticipationsPermitGoal-OrientedAction?..... 36 2.3.4 The Hierarchical Organization of Anticipatory Goal-OrientedAction .............................. 37 X Contents 2.3.5 AdditionalElementsofTrueGoal-OrientedBehavior ... 38 2.4 AnticipationandLearning.................................. 39 2.4.1 LearningtoPredict ................................ 39 2.4.2 BootstrappingAutonomousCognitiveDevelopment: SurpriseandCuriosity ............................. 40 2.4.3 FromWilledtoAutomaticControlofActionandVice VersaontheBasisofSurprise ....................... 41 2.5 Conclusions.............................................. 43 3 BenefitsofAnticipationsinCognitiveAgents .................... 45 MartinV.ButzandGiovanniPezzulo 3.1 PotentialsforAnticipatorySystems .......................... 45 3.2 PotentialBenefitsofAnticipatoryMechanismsonCognitive Functions................................................ 48 3.2.1 Effective,Context-BasedActionInitiation............. 48 3.2.2 FasterandSmootherBehaviorExecution.............. 49 3.2.3 ImprovingTop-DownAttention ..................... 50 3.2.4 ImprovingInformationSeeking...................... 51 3.2.5 ImprovingDecisionMaking ........................ 52 3.2.6 ObjectGrounding,Categorization,andOntologies...... 54 3.2.7 SocialAbilities ................................... 55 3.2.8 Learning......................................... 57 3.3 ArisingChallengesDuetoAnticipationsandAvoidingThem .... 60 3.4 Conclusion............................................... 61 PartII Models,Architectures,andApplications 4 AnticipationinAttention ..................................... 65 Christian Balkenius, Alexander Fo¨rster, Birger Johansson, and VinThorsteinsdottir 4.1 Introduction.............................................. 65 4.2 LearningWhattoLookat .................................. 66 4.2.1 ALearningSaliencyMap........................... 67 4.3 Cue-TargetLearning....................................... 70 4.3.1 CueingbyaSingleStimulus ........................ 70 4.3.2 ContextualCueing................................. 72 4.3.3 FoveaBasedSolution .............................. 72 4.4 AttendingtoMovingTargets................................ 73 4.4.1 ModelsofSmoothPursuit .......................... 75 4.4.2 EngineeringApproaches............................ 76 4.4.3 TheStateBasedApproach.......................... 78 4.4.4 ThePredictionApproach ........................... 79 4.4.5 TheFoveaBasedApproach ......................... 80 4.5 CombiningBottom-UpandTop-DownProcesses............... 81 Contents XI 5 Anticipatory,Goal-DirectedBehavior .......................... 85 MartinV.Butz,OliverHerbort,andGiovanniPezzulo 5.1 ABriefHistoryofSchemas................................. 87 5.2 SchemaApproaches....................................... 88 5.2.1 SymbolicSchemasforPolicyLearning ............... 89 5.2.2 SymbolicSchemasandPredictionforSelection ........ 90 5.2.3 Neural-BasedPlanning............................. 91 5.2.4 NeuralNetwork-BasedDynamicProgramming ........ 92 5.3 InverseModelApproaches ................................. 92 5.3.1 InverseModelsinMotorLearningandControl......... 93 5.3.2 InverseModelsandSchemaApproaches .............. 94 5.4 AdvancedStructures....................................... 94 5.4.1 PredictionandAction .............................. 95 5.4.2 CoupledForward-InverseModels .................... 97 5.4.3 HierarchicalAnticipatorySystems ................... 98 5.5 EvaluationofPredictiveandAnticipatoryCapabilities .......... 99 5.5.1 Schema-BasedSystems ............................101 5.5.2 InverseModelApproaches..........................106 5.6 Discussion ...............................................108 5.6.1 ContrastingPredictiveSystemCapabilities ............108 5.6.2 ContrastingAnticipatorySystemCapabilities ..........110 5.6.3 Integration .......................................112 5.7 Conclusions..............................................113 6 AnticipationandBelievability ................................. 115 CarlosMartinhoandAnaPaiva 6.1 Introduction..............................................115 6.1.1 AnimationandBelievability ........................115 6.1.2 EmotionandExaggeration..........................116 6.1.3 Anticipation......................................117 6.1.4 Anticipation,Emotion,andBelievability ..............117 6.2 RelatedWork.............................................119 6.2.1 OzProject........................................119 6.2.2 EMA............................................119 6.2.3 DuncantheHighlandTerrier ........................120 6.3 Emotivector..............................................121 6.3.1 Architecture......................................121 6.3.2 AnticipationModel................................122 6.3.3 SalienceModel ...................................123 6.3.4 SensationModel ..................................123 6.3.5 SelectionModel...................................123 6.3.6 Uncertainty.......................................124 6.4 Aini,theSyntheticFlower..................................125 6.4.1 EmotivectorsinAction.............................125 6.4.2 Evaluation .......................................128
Description: