ebook img

The case of cassava in Africa, A PDF

18 Pages·2017·1.08 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The case of cassava in Africa, A

RESEARCHARTICLE Identifying crop research priorities based on potential economic and poverty reduction impacts: The case of cassava in Africa, Asia, and Latin America AregaD.Alene1*,TahirouAbdoulaye2,JosephRusike3,RicardoLabarta4, BernardoCreamer5,MarthadelR´ıo4,HernanCeballos4,LuisAugustoBecerra4 1 InternationalInstituteofTropicalAgriculture(IITA),Lilongwe,Malawi,2 InternationalInstituteofTropical Agriculture(IITA),Ibadan,Nigeria,3 AllianceforaGreenRevolutioninAfrica(AGRA),Nairobi,Kenya, a1111111111 4 InternationalCentreforTropicalAgriculture(CIAT),Cali,Colombia,5 UniversidaddeLasAmericas a1111111111 (UDLA),Quito,Ecuador a1111111111 a1111111111 *[email protected] a1111111111 Abstract Itiswidelyrecognizedthatincreasingagriculturalproductiontothelevelsneededtofeedan OPENACCESS expandingworldpopulationrequiressharplyincreasedpublicinvestmentinresearchand Citation:AleneAD,AbdoulayeT,RusikeJ,Labarta developmentandwidespreadadoptionofnewtechnologies,butfundingfornationaland R,CreamerB,delR´ıoM,etal.(2018)Identifying internationalagriculturalresearchhasratherdeclinedinrecentyears.Inthissituation,prior- cropresearchprioritiesbasedonpotential itysettinghasbecomeincreasinglyimportantforallocatingscarceresearchresources economicandpovertyreductionimpacts:Thecase amongcompetingneedstoachievegreaterimpacts.Usingpartialequilibriumeconomicsur- ofcassavainAfrica,Asia,andLatinAmerica.PLoS ONE13(8):e0201803.https://doi.org/10.1371/ plusmodelsandpovertyimpactsimulations,thispaperassessescassavaresearchpriori- journal.pone.0201803 tiesinAfrica,LatinAmericaandCaribbean,andAsiabasedonthepotentialeconomicand Editor:PaulC.Struik,WageningenUniversity, povertyreductionimpactsofalternativeresearchandtechnologyoptions.Theresults NETHERLANDS showedthatefficientplantingmaterialproductionanddistributionsystemsandsustainable Received:November29,2017 cropandsoilfertilitymanagementpracticeshavethegreatestexpectedeconomicandpov- ertyreductionimpactsinthethreeregions.Lackofcleanplantingmaterialsisamajorcon- Accepted:July23,2018 strainttoadoptionanditisenvisagedthatefficientproductionanddistributionsystemsfor Published:August8,2018 plantingmaterialcanacceleratetechnologyadoptionbyfarmers.Similarly,sustainablecrop Copyright:©2018Aleneetal.Thisisanopen andsoilfertilitymanagementpracticesplayakeyroleinclosingtheobservedyieldgaps, accessarticledistributedunderthetermsofthe especiallyinAfrica.Thepaperdiscussestheresultsofthepriorityassessmentforkeycas- CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and savaresearchoptionsandconcludeswiththeimplicationsforcassavaresearchpriorities. reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Mostoftherelevant dataarewithinthepaperandtherestwillbe Introduction includedintheSupportingInformationfiles. Cassavaisthethirdmostimportantfoodcropinthetropicsafterriceandmaizeandisthesec- Funding:ThisworkwassupportedbyCGIAR ResearchProgramonRoots,Tubers,andBananas ondmostimportantfoodstapleinAfricaaftermaizeaccountingformorethanhalfofthedie- (RTB)http://www.rtb.cgiar.org/. tarycalorierequirementsofover200millionpeople[1].HalfabillionpeopleinAfricaeat cassavaeveryday,andthishigh-starchrootisalsoanimportantstapleinLatinAmerica Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. andtheCaribbean.InAsia,cassavaservesasasourceoffoodandlivestockfeedwhilealso PLOSONE|https://doi.org/10.1371/journal.pone.0201803 August8,2018 1/18 CassavaresearchprioritiesinAfrica,Asia,andLatinAmerica providingrawmaterialforthemanufacturingofpharmaceuticals,industrialstarch,biofuels, andotherproducts[2].Assuch,cassavaisimportantnotonlyforruralhouseholdsbutfor nationaleconomies.Despitemajorbioticandabioticthreatstocassavaproductionandpro- ductivity,cassavaproductionhasexpandedespeciallyinAfricaandthisislargelyattributedto nationalandinternationalcassavaimprovementresearchefforts[1]. Internationalcassavaimprovementresearchwasinitiatedintheearly1970sattheInterna- tionalInstituteofTropicalAgriculture(IITA)andtheInternationalCenterforTropicalAgri- culture(CIAT)withafocusondevelopinghigh-yieldingvarietieswithresistancetomajor pestsanddiseases[3,4].Inadditiontobreedingforhighyieldandresistancetomajorpests anddiseases,cassavaresearchinvolveddevelopingbiologicalcontrolandintegratedpestman- agementoptionstoreducelossesduetoinsectpests.InSub-SaharanAfrica(SSA),thework resultedinanumberofseveralelitegenotypesthathadresistancetocassavamosaicdisease (CMD)andcassavabacterialblight(CBB)aswellashighandstableyieldsandgoodconsumer acceptability.Thedevelopmentofimprovedvarietiesandtheirdeliverytonationalprograms fortestingunderspecificlocalconditionsduringthelate1970sand1980shasledtothesuc- cessfulreleaseofhighyieldinganddiseaseresistantvarietiesforadoptionbyfarmers.Thenew varietiescombineenhancedCMDtolerancewithpreferredpostharvestcharacteristics,wider agroecologicaladaptation,and50–100%higheryieldsevenwithouttheuseoffertilizer[1,3]. Despitemajorresearchsuccessesinthepast,farmlevelcassavayieldsremainlowespecially inAfricaduetoanumberofemergingthreatssuchaspestsanddiseases.Realizationofhigher potentialyieldsinfarmers’fieldsrequirescontinuedinvestmentingeneticimprovementand betteragronomyaswellaspestanddiseasemanagement.Tohelpcounterthethreatofpests anddiseases,scientistsshouldidentifyandusebiotechnologytoolstodevelopmolecularmark- ersfortraitssuchaswhiteflyresistance,quantitativetraitloci(QTLs)inpopulationsderived fromheterozygousparentmaterials,andprotocolsforrapidmultiplicationofdisease-free plantingmaterialsthroughtissueculture. Itiswidelyrecognizedthatincreasingagriculturalproductiontothelevelsneededtofeed anincreasingworldpopulationrequiressharplyincreasedpublicinvestmentsinresearchand developmentandwidespreadadoptionofnewtechnologies,butfundingfornationaland internationalagriculturalresearchhasratherdeclinedinrecentyears.Inthissituation,priority settinghasbecomeincreasinglyimportantforallocatingscarceresearchresourcesamong competingneedstoachievegreaterimpacts[5].Systematicpriorityassessmenthasbeencon- ductedsincerecentlybycombiningscientists’viewsonthepotentialforaddressingparticular constraintsthroughresearchandtechnologyoptionswithaneconomicassessmentoftheben- efitsthatcouldarisefromadoptionofthosetechnologies[6–14].Followingitsofficiallaunch in2012,theCGIARResearchProgramonRoots,TubersandBananas(RTB)embarkedona strategicassessmentofresearchprioritiesforbanana,cassava,potato,sweetpotato,andyams. Usingpartialequilibriumeconomicsurplusmodelsandpovertyimpactsimulations,this paperassessestheexpectedeconomicandpovertyreductionimpactsofcassavaresearchand technologyoptionswithaviewtoinformingstrategicprioritysettingofcassavaresearchin Africa,LatinAmericaandCaribbean,andAsia.Whilealotofpastpriorityassessmentwork focusedonstrategiccommoditypriorities,thisstudyundertakescrop-specifictechnologypri- orityassessment.Thiskindofprioritysettingisbecomingincreasinglyimportantforanum- berofCGIARResearchPrograms(CRPs)supportingasetofprioritycommoditiesthatneed tofocusonhigh-impactlinesofresearch.Thepaperpresentsanddiscussestheprocedures andresultsofthepriorityassessmentforkeycassavaresearchoptionsanddiscussestheimpli- cationsforcassavaresearchpriorities. Therestofthepaperisorganizedasfollows.Thenextsectionprovidesanoverviewofthe methodologyused,whereassection3providesdetailsofthedatasources.Section4presents PLOSONE|https://doi.org/10.1371/journal.pone.0201803 August8,2018 2/18 CassavaresearchprioritiesinAfrica,Asia,andLatinAmerica anddiscussestheex-anteimpactassessmentresultsandthelastsectiondrawsconclusionsand implications. Methods Economicsurplusmodelandcost-benefitanalysis Severalimpactstudiesofagriculturaltechnologieshaveestimatedaggregateeconomicbenefits throughextrapolationoffarm-levelyieldorincomegainsusingpartialequilibriumsimulation modelssuchastheeconomicsurplusmodel[5].Theeconomicsurplusmethodisthemost widelyusedprocedureforeconomicevaluationofbenefitsandcostsofatechnologicalchange. Technologicalchangeduetoresearchinagricultureincreasestheyield,reducesyieldlosses,or reducesthecostofproduction[5].Ifthenewtechnologyisyieldincreasing,theproducersells moreofthegoodinthemarketandifdemandisdownward-slopingthepricedecreasesas well.Technologyadoptionreducestheper-unitcostofproductionandhenceshiftsthesupply functionofthecommoditydownandtotheright.Ifthemarketforthecommodityisperfectly competitive,thiswillleadtoanincreaseinthequantityexchanged(Q toQ )andafallin 0 1 pricefromP toP (Fig1).Asaresult,consumersbenefitfromthepricereductionandpro- 0 1 ducersmaybenefitfromsellingmoreoftheproduct[5]. Theeconomicsurplusmodelwasthereforeusedtoderivesummarymeasuresofthepoten- tialimpactsofcassavaresearchoptionsforaperiodof25yearsstartingfrom2014.Thebene- fitsweremeasuredbasedonaparalleldownwardshiftinthe(linear)supplycurve.Theannual flowsofgrosseconomicbenefitsfromcassavatechnologieswereestimatedforeachofthe countriesandaggregated,withtheaggregatebenefitsandcostsfinallydiscountedtoderivethe presentvalue(in2014)oftotalnetbenefitsfromtheinterventions.Thekeyparametersthat determinethemagnitudeoftheeconomicbenefitsare:(1)theexpectedtechnologyadoption intermsofareaunderimprovedtechnologies;(2)expectedyieldgains(oravoidedlosses)fol- lowingadoption;and(3)pre-researchlevelsofproductionandprices.Giventhelimitedinter- nationaltradeoptionsforcassavainmostoftheproducingcountries,theeconomicsurplus modelfortheclosedeconomyshowninFig1wasusedtocalculatetheeconomicbenefitsfor Fig1.Effectsoftechnologicalchangeonproducerandconsumersurplus[5]. https://doi.org/10.1371/journal.pone.0201803.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0201803 August8,2018 3/18 CassavaresearchprioritiesinAfrica,Asia,andLatinAmerica eachcountryfromadownwardshiftinthesupplycurve.Thedemandforthecommodityis denotedbyD,whereasthepre-researchsupplycurveisS andthepost-researchsupplycurve 0 followingtechnologicalchangeisS .Theinitialequilibriumisdenotedas(P ,Q ),whilethe 1 0 0 post-researchequilibriumis(P ,Q ).Thatis,theinitialequilibriumpriceandquantityareP 1 1 0 andQ ,whereasafterthesupplyshifttheyareP andQ .Thetotalbenefitfromtheresearch- 0 1 1 inducedsupplyshiftisequaltotheareabeneaththedemandcurveandbetweenthetwosupply curves(ΔTS=areaabce).Thetotalbenefitcomprisesthesumofbenefitstoconsumers (ΔCS=areaP bcP )andthebenefitstoproducersintheformofthechangesinproducersur- 0 1 plus(ΔPS=areaP ceminusareaP ba).Undertheassumptionofaparallelshift(sothatthe 1 0 verticaldifferencebetweenthetwocurvesisconstant)areaI deequalsareaP ba. 0 0 Inaclosedeconomy,economicsurplusmeasurescanbederivedusingformulaspresented inAlstonetal.(1995):(1)ChangeineconomicSurplus(ΔES)=P Q K(1+0.5Zη);(2)Con- 0 0 t t sumersurplus(ΔCS)=P Q Z(1+0.5Zη);andProducerSurplus(ΔPS)=(K−Z)P Q (1 0 0 t t t t 0 0 +0.5Zη),whereK isthesupplyshiftrepresentingtheproductofcostreductionpertonofout- t putasaproportionofproductprice(K)andtechnologyadoptionattimet(A);P represents t 0 pre-researchpricefor2010─2012(US$/ton);Q ispre-researchlevelofproductionfor 0 2010─2012;ηisthepriceelasticityofdemand;andZ istherelativereductioninpriceattime t t,whichiscalculatedasZ =Kε/(ε+η),whereεisthepriceelasticityofsupply.Theresearch- t t inducedsupplyshiftparameter,K,isthesinglemostimportantparameterinfluencingtotal economicsurplusresultsfromunitcostreductionsandwasderivedasK =[((ΔY/Y)/ε–(ΔC/ t C))/(1+(ΔY/Y))]×A whereΔY/Yistheaverageproportionalyieldincreaseperhectare;εis t theelasticityofsupplythatisusedtoconvertthegrossproductioneffectofresearch-induced yieldchangestoagrossunitproductioncosteffect,ΔC/Cistheaverageproportionalchange inthevariablecostsperhectarerequiredtoachievetheyieldincrease,andA istherateof t adoptionoftheimprovedtechnologyattimet—theproportionoftotalcroppedareaunder theimprovedvarietiesandpractices.Annualsupplyshiftswerethenprojectedbasedonpro- jectedadoptionprofileforimprovedtechnologies(A)fortheperiodfrom2014to2039.Adop- t tion(A)isassumedtofollowthelogisticdiffusioncurve. t Foreachcountryi(i=1...N),thechangesineconomicsurplus(ΔES)andtheresearchand extensioncosts(C)arediscountedatarealdiscountrate,r,of10%perannumtoderivethe t netpresentvalues(NPV)asfollows: (cid:18) (cid:19) (cid:18) (cid:19) X25 XN DES X25 C NPV¼ i;t (cid:0) t ð1þrÞt ð1þrÞt t¼1 i¼1 t¼1 Theaggregateinternalrateofreturn(IRR)wasalsocalculatedasthediscountratethatequates theaggregatenetpresentvalue(NPV)tozeroasfollows: (cid:18) (cid:19) (cid:18) (cid:19) X25 XN DES X25 C i;t (cid:0) t ¼0 ð1þIRRÞt ð1þIRRÞt t¼1 i¼1 t¼1 Estimationofpovertyimpacts Extendingtheresultsoftheconventionaleconomicsurplusandcost-benefitanalysis,the impactofeachofthecassavaresearchoptionsonruralpovertyreductionwasestimatedfol- lowingAleneetal.[15].Itweighstheeconomicsurplusresultsaccordingtothepovertylevels ineachofthecountries,theshareofagricultureintotalGDP,andtheagriculturalgrowthelas- ticityofpoverty.Theimpactofeachresearchoptiononruralpovertyreductionwasestimated byfirstestimatingthemarginalimpactonpovertyreductionofanincreaseinthevalueofagri- culturalproductionusingpovertyreductionelasticitiesofagriculturalproductivitygrowth. PLOSONE|https://doi.org/10.1371/journal.pone.0201803 August8,2018 4/18 CassavaresearchprioritiesinAfrica,Asia,andLatinAmerica Thereductioninthetotalnumberofpoorwasthencalculatedbyconsideringtheestimated economicbenefitsastheadditionalincreaseinagriculturalproductionvalue.Thirtleetal.[16] foundthata1%growthinagriculturalproductivityreducesthetotalnumberofruralpoorby 0.72%inAfrica,0.48%inAsia,and0.15%inLatinAmericaandtheCaribbean(LAC).Under theassumptionofconstantreturnstoscale,a1%growthintotalfactorproductivityleadstoa 1%growthinagriculturalproduction.Foreachcountry,thenumberofpoorliftedabovethe $1-a-daypovertylinewasthusderivedasfollows: (cid:16) (cid:17) (cid:18) DES (cid:19) @ln NNp DN ¼ (cid:2)100% (cid:2) (cid:2)N p Agriculturevalueadded @lnðYÞ p |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflfflfflffl{zfflfflfflffl} GainsfromR&Eas%of agriculturalproduction Povertyelasticity |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} Povertyreductionas%of thepoor |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} Numberof poorescapingpoverty whereΔN isthenumberofpoorliftedabovethepovertyline,N isthetotalnumberofpoor, p p Nisthetotalpopulation,Yisagriculturalproductivity,andΔESisthechangeineconomicsur- plus.Thepovertyelasticityisinterpretedasthemarginalimpactofa1%increaseinagricul- turalproductivityintermsofthenumberofpoorreducedasapercentageofthetotalpoor (N ),andnotofthetotalpopulation. p Estimationofthenumberofpotentialbeneficiaries Dataonaveragecropareaperhouseholdandaveragehouseholdsizewereusedtoestimatethe numbersofbeneficiaries,followingaprocedureanddatasetdevelopedtoestimatetotalnum- berofRTBpoorbeneficiaries[17].Dataforindividualcountrieswereobtainedmostlyfrom FAOstatisticaldatabase,publishedsourcesofinformation,orexpertopinionwhenneeded. Estimatedareaundertwoadoptionscenarios(highandlowadoption)wasdividedbytheaver- ageareaperhouseholdtoestimatethenumberofadoptinghouseholds,andthenmultiplied byhouseholdsizetoestimatetotalnumberofbeneficiaries. Datasources Constraintsanalysisandidentificationofresearchoptions Expertsurveysandconsultationswereconductedbetween2011and2013toguidethecon- straintsanalysisandtheidentificationandrankingofresearchoptions.Recognizingthe importanceoffarmers’voiceinprioritysettingofagriculturalresearch,aliteraturereviewwas firstundertakentotakestockofavailableevidenceandsecondarydataonproductionand marketconstraints,technologypreferences,yieldgaps,andfarmlevelimpactsfrombaseline andadoptionstudiesinvolvingfarmersaswellasfromon-farmfarmerparticipatoryresearch work.Theoutcomeofthereviewservedasaguidenotonlyfordesigningthequestionnaires usedfortheexpertsurveysbutalsoforfacilitatingtheconsultationsduringworkshopsthat wereorganizedtoelicitandvalidateindividualexpertopinionsandestimatesaboutthemajor constraints,yieldgaps,andtheprospectsofarangeofpromisingresearchandtechnology options.Thesurveysengagedstakeholdersfromabroadrangeofdisciplinesandbackgrounds. Thecassavaexpertcommunitywasinvolvedintheidentificationoftheproductionandmarket constraintsandintheselectionofresearchandtechnologyoptionsthatcanaddresstheidenti- fiedconstraints.Consultingabroadrangeofexpertswithdifferentfieldsofexpertiseenabled ustocapturekeyconstraintsirrespectiveofinstitutionalprioritiesandcapacity.Overall,the PLOSONE|https://doi.org/10.1371/journal.pone.0201803 August8,2018 5/18 CassavaresearchprioritiesinAfrica,Asia,andLatinAmerica expertsurveysenabledtheidentificationofthemajorconstraintsandassociatedresearch optionstobeincludedintheex-anteimpactassessmentinthesubsequentstepsofthepriority assessmentexercise. Theidentificationofcassavaresearchoptionsstartedwithanalysisofthedataobtained fromtheglobalexpertsurveyinwhichasampleof343cassavaexpertsidentifiedthepriority constraintstocassavaproduction,processing,andmarketing.Theopinionsofscientistswho arecloselyinvolvedinresearchoncassavaproduction,processing,andmarketconstraints servedasthemajorsourceofinformationforidentifyingresearchoptionstoaddressthose constraints.Forthisobjective,aglobalsurveyinstrumentwasdesignedinconsultationwith scientistsatCIATandIITAinSpanish,English,French,andPortuguese.Aglobalonlinesur- veyofcassavaexpertswasconductedin2012usingtheonlineSurveyMonkeytooland60 questionnaireswerecompleted.Inaddition,questionnaireswereadministeredtocassava expertswhoattendedinternationalevents.Atotalof282responseswereobtainedattheSec- ondScientificConferenceoftheGlobalCassavaPartnershipforthe21stCentury,heldon18– 22June2012,inKampala,Uganda.Atthe16thTriennialSymposiumoftheInternational SocietyforTropicalRootCropsheldon23–28September2012inAbeokuta,Nigeria,another 29questionnaireswerecompleted.Finally,cross-countrysurveysofthenationalcassavapro- gramsandexpertconsultationswereconductedin2013inAfricaaswellasinLatinAmerica andtheCaribbean(LAC)andAsia.Theresultsofthesurveybasedonthe343completedques- tionnairesarepresentedinAleneetal.[18] Potentialresearchoptionswereidentifiedbasedontheexpertsurveysandconsultationsfor furtherformalevaluationusingtheeconomicsurplusmodel[5].Theseresearchoptions includedthosethataddresstheconstraintsrelatingto:(1)rootyields;(2)productioncosts;(3) postharvestprocessingandutilization;and(4)sustainableproduction.Theinitiallistof researchoptionswaspresentedanddiscussedwiththescientistsfromIITAandCIAT,and laterattheRTBpriorityassessmenttaskforceworkshopheldon12–16August2013,inLima, Peru.TheseresearchoptionswerelaterlinkedwithCIATandIITAresearchoutputs.The researchoptionswereselectedtomatchselectedresearchoptionsassociatedwithRTBflagship projects,whichcontributetotherequiredattainmentofIntermediateDevelopmentOutcomes (IDOs).Thefinalsetofresearchoptionswasthendevelopedandagreeduponatthefinal workshopheldon12–14November2013inLima.Theseincluded:(1)High-yieldingvarieties withresistancetomajordiseases(CMD/CBSD);(2)High-yieldingvarietieswithhighdrymat- terandstarch;(3)High-yieldingvarietieswithlongershelflife;(4)High-yielding,drought-tol- erantvarietiesandincreasedwater-useefficiency;(5)Sustainablecropandsoilfertility managementpractices;(6)Integratedpestanddiseasemanagementpractices,includingresis- tantvarieties;(7)Efficientandmassivehigh-qualityplantingmaterialproductionanddistribu- tionsystems;(8)Processingtechnologiesforvalueaddition;(9)Strategiestoprevent introductionofexoticpestsanddiseases;and(10)High-yieldingvarietiestoleranttocold weatherandfrost.AdetaileddescriptionofthecassavaresearchoptionsisprovidedinAlene etal.[18]. Expertestimatesofthevaluesofkeyparameters Cassavaresearchandextensionexpertsservedasthemajorsourceofinformationfortheeco- nomicsurplusanalysisofcassavaresearchoptions.Astructuredquestionnairewasdeveloped toguideconsultationswithIITAandCIATscientistsaswellaswithNARSpartnersinAfrica, LAC,andAsiawhoareworkingonparticularcassavaproductionandmarketconstraintsto elicitkeyparameterestimatesfortheresearchoptionsaddressingthoseconstraints.Expert consultationsatIITAinvolved12scientists:cassavabreeders(6),agronomists(3),virologists PLOSONE|https://doi.org/10.1371/journal.pone.0201803 August8,2018 6/18 CassavaresearchprioritiesinAfrica,Asia,andLatinAmerica (2),andprocessingandutilizationspecialists(1).Thecross-countrysurveyinAfricainvolved30 expertsfromNARSpartnersinAfrica:Benin(1),Cameroon(1),DRC(1),Ghana(4),Kenya(1), Mozambique(3),Nigeria(2),Togo(3),Uganda(3),Tanzania(9),andZambia(2).InCIAT,a groupof14scientists(breeders,agronomists,postharvestprocessingexperts,molecularbiolo- gists,entomologists,plantphysiologists,andvirologists)workinginLACandAsiawascon- sulted.Anonlinesurveywasalsodesignedandimplementedand46responseswereobtained. Foreachresearchoptionidentified,scientistswereaskedtoestimatethevaluesofthefol- lowingkeyparameters:maximumadoptionrate,yearofbeginningofadoption,yearstomaxi- mumadoptionrate,expectedyieldincrease(%),areaaffectedbytheconstraint(%),cost changeduetoinputs(%),andprobabilityofresearchsuccess(%).Thevaluesofsomeparame- terssuchasresearchcostswereassembledfromseveralsources,suchasRTBprogrampro- posalandpastempiricalwork[15,16]aswellasfromFAO(http://faostat.fao.org/)andthe WorldBank(http://data.worldbank.org/indicator).Thelimitationofexpertopinionsurveys relatestothedegreeofsubjectivitywiththeestimationofthevaluesofkeyparametersthat determinethesizeoftheexpectedbenefits.Whileitistruethatmanyofthejudgementsmade intheprocessaresubjective,theuseofamoretransparent,participatoryanditerativeap- proachfacilitatesgreaterdialogueandconsensusbuildingtoensuresomelevelofobjectivity. Table1presentsthedescriptionofthekeyproject,technology,andmarket-relatedparameters usedandthecorrespondingdatasources. Dataonsocioeconomicparameters Table2presentsthedataonthekeysocioeconomicparametersusedintheeconomicsurplus analysisofcassavaresearchoptionsforindividualcountriesinAfrica,Asia,andLAC.Dataon annualharvestedarea,production,andproducerpriceswereobtainedfromtheFAOSTAT database(http://faostat.fao.org/).Weusedthree-yearnationalaveragesforeachcountryfor theperiod2010–2012.IncaseswhereFAOdatawerenotavailableforparticularcountriesand years(e.g.,producerprices),weuseddataobtainedfromtherespectiveministriesofagricul- tureandofficesofstatistics.Dataontheincidenceofpoverty,thenumberofpoor,andagricul- turalvalueaddedwereobtainedfromtheWorldBank’sWorldDevelopmentIndicators database(http://data.worldbank.org/indicator). Wealsousedpovertyelasticitiesof0.72,0.48,and0.15forAfrica,Asia,andLAC,respec- tively[16].Thedataoncassavaareaperhouseholdandhouseholdsizethatwereusedforthe estimationofthenumbersofbeneficiariesweretakenfromadatasetputtogetherfortheesti- mationofthepotentialnumberofbeneficiariesoftheRTBprogram[17]. Dataontechnologydevelopment,dissemination,andadoptionparameters Theeconomicsurplusmodelemployedfortheex-anteimpactanalysistypicallyusesmarket- relateddataonsocioeconomicparametersandtechnology-relateddataontechnologydevel- opment,dissemination,andadoptionparameters[5].Therefore,inadditiontothesocioeco- nomicparameterssuchasproductionandprices,theeconomicsurplusmodelusesanumber ofparametersthatrelatetotheresearchanddisseminationprocessandincludesthosethat relatetotheexpectedeffectsofnewtechnologyadoptiononyieldgains(orreducedyield losses)andproductioncosts.Inadditiontoparametersrelatedtoexpectedyieldgainsandpro- ductioncostchangesfollowingtechnologyadoptionbyfarmers,othertechnology-related parametersofimportanceinclude(1)theresearchlagdefinedasthenumberofyearsittakes untilanadoptableinnovationwillbeavailabletofarmers;(2)adoptionceilingdefinedasthe maximumadoptionrateasaproportionoftotalcroppedarea;(3)adoptionlagdefinedasthe numberofyearsuntilmaximumadoptionisreached;(4)thecostsrequiredtoconductR&D PLOSONE|https://doi.org/10.1371/journal.pone.0201803 August8,2018 7/18 CassavaresearchprioritiesinAfrica,Asia,andLatinAmerica Table1. Assumptionsanddatasourcesforkeyparametersusedintheeconomicsurplusanalysis. Parameter Assumption/Source Timeperiod 25years(2014–2039);10yearsforresearchinvestment— researchlag(maximumtimeperiodforRTB).Mostofthe R&Dinvestmentswillrunfor10years,thoughother researchoptionsmayeitherbelongerorshorter. Elasticitiesofsupplyanddemand Elasticitiesofsupplyanddemandwereassumedtobe1 and0.5respectivelyacrosstechnologiesandforall countriesduetolimitedavailabilityofinformation. Productivityeffects Expertestimatesforaparticulartechnologysupportedby fieldtrialdata. Inputcostchanges Expertestimatesforaparticulartechnologysupportedby farm-levelsurveys;changesincostsforparticularinputs estimatedintermsofrelativeshareinoverallproduction costs. Probabilityofresearchsuccess Maximumvalueof80%forquickwinswasassumedand (theprobabilityofsuccessfullycompletingtheresearch lowervaluesifuncertaintyofresearchsuccessishigher(or anddevelopingtheintendedtechnologywiththe implementationuncertain—e.g.,GMcrops).Success desiredcharacteristicssuchashigheryielding,early probabilitiesshouldbedifferentacrosstechnologies, maturing/bulking,greaterresistancetodiseases, allowingfordifferencesatleastacrossregionsforthesame greatertolerancetodrought,etc.) technology.Country-levelsuccessprobabilitieswerenot available,butthesecouldbeincludedinsubsequent assessments. Depreciationrate 1%acrossalltechnologiesandcountries Discountrate 10% Production Nationalaverageannualproductionfor2010–2012from FAOSTAT(http://faostat.fao.org/).Wheredatawere missing,weuseddatafrompreviousyears. Prices Nationalaverageannualproductionandpricesfor2009– 2011fromFAOSTAT(2013).Wheredataweremissing, weuseddatafrompreviousyears. Adoptionprofile Logisticadoptioncurve;adoptionceilingbasedonexpert estimates(asshareoftotalareainpotentialadoption domain);timetoreachadoptionceiling(inyears); adoptionrateinfirstyearofadoptionis1%ofadoption ceilingforalltechnologies;yearoffirstadoptionandyear ofdisadoptionbasedontimeframeandexpertassessment. Twoadoptionscenarios:(1)adoptionscenariobasedon expertassessmentand(2)conservativeadoptionscenario: 50%ofexpertassessment. R&Danddisseminationcosts Researchcostsestimatedasthesumof:(1)RTBbudgetsas presentedintheprogramproposalbythematicarea(some themesactuallymatchingtheresearchoptionsidentified); (2)bilateralprojectsatIITAandCIAT(assumedtobe equaltoRTBbudgets);and(3)NARScosts,whichare assumedtobeequaltoIITAandCIATbudgetscombined. Disseminationcostsfornewvarietyis(US$50/ha)and (US$80/ha)forotherknowledge-intensivetechnologies, suchascropmanagementinterventions. Poverty Povertyincidence(%livingonlessthanUS$1.25/day),the numberofpoorpeople,andagriculturalvalueaddedfrom WorldBank’sWorldDevelopmentIndicatorsdatabase (http://data.worldbank.org/indicator). Agriculturalvalueadded WorldBank’sWorldDevelopmentIndicatorsdatabase (http://data.worldbank.org/indicator). Numberofbeneficiaries Country-specificestimatespreparedforRTBproposal: cropareaperHHforspecificcropandnumberofpersons perHH. https://doi.org/10.1371/journal.pone.0201803.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0201803 August8,2018 8/18 CassavaresearchprioritiesinAfrica,Asia,andLatinAmerica Table2. Dataonthesocioeconomicparametersusedintheeconomicsurplusanalysis. Country Price(US Quantity(’000 Areaharvested Householdsize Areaper Poverty Numberofpoor AgriculturalValue $/ton) tons) (’000ha) (persons) farm incidence (million) Added (ha) (%) (US$billion) Angola 350 13,673 936 6 0.50 56 10.7 10.6 Benin 470 3,611 251 5 0.50 45 4.0 2.5 BurkinaFaso 268 4 3 5 0.50 45 7.4 3.5 Burundi 374 564 65 5 0.50 81 6.8 0.9 Cameroon 357 3,744 263 5 0.50 9 1.8 4.9 Chad 698 230 22 5 0.50 45 5.0 1.5 Congo 330 1,177 135 5 0.50 53 2.2 0.5 Coted’Ivoire 243 2,309 347 5 0.50 24 4.7 6.2 DRC 330 15,224 1,960 5 0.50 86 56.8 8.1 Ghana 163 13,325 883 4 0.50 25 6.0 9.2 Guinea 354 1,065 129 6 0.50 42 4.2 1.5 Kenya 130 608 64 4 0.50 41 16.4 11.0 Liberia 295 494 62 6 0.50 83 3.3 0.9 Madagascar 171 3,173 473 5 0.50 78 16.2 2.9 Malawi 333 4,028 194 4 0.50 67 10.0 1.3 Mozambique 201 8,501 1,267 5 0.50 60 13.9 4.4 Nigeria 259 43,920 3,449 4 0.50 68 107.2 85.9 Rwanda 299 2,325 196 4 0.50 67 7.1 2.3 Senegal 328 164 26 9 0.50 25 3.1 2.1 SierraLeone 295 446 84 6 0.50 45 2.6 2.2 Togo 174 934 148 5 0.50 39 2.3 1.2 Uganda 120 5,073 417 5 0.50 43 14.3 4.7 Tanzania 210 5,037 898 5 0.50 67 41.5 7.8 Zambia 240 1,193 200 5 0.50 66 8.6 4.0 Argentina 116 182 18 4 0.40 1 0.4 49.1 Bolivia 299 249 29 4 0.50 16 1.6 3.1 Brazil 125 24,907 1,761 5 0.75 6 12.1 123.8 Cambodia 263 4,038 189 4 0.50 19 2.7 4.7 China 127 4,528 277 4 0.25 12 158.6 732.2 Colombia 310 2,166 204 5 0.40 8 3.8 23.5 CostaRica 238 500 34 5 1.00 3 0.1 2.5 Cuba 62 402 71 5 1.00 2 0.2 3.0 Ecuador 245 57 19 5 1.00 5 0.7 7.8 Haiti 160 573 140 5 0.20 62 6.2 1.9 India 160 8,586 245 5 0.60 33 399.1 337.1 Indonesia 198 23,322 1,180 12 0.50 16 39.5 127.0 Jamaica 449 18 1 5 0.75 0.21 0.01 1.0 Laos 160 465 20 5 0.50 34 2.2 2.6 Malaysia 231 48 3 5 0.50 1 0.2 34.6 Paraguay 63 2,563 180 4 0.45 7 0.5 5.5 Peru 165 1,174 100 4 0.40 5 1.5 10.6 Philippines 132 2,118 218 4 0.50 18 17.5 29.2 Thailand 60 24,669 1,210 4 0.50 0.38 0.3 41.5 Venezuela 922 498 36 4 0.50 7 2.0 19.0 Vietnam 112 9,008 521 4 0.50 17 14.8 27.2 Source:FAOSTAT(http://faostat.fao.org/andWorldBank(http://data.worldbank.org/indicator). https://doi.org/10.1371/journal.pone.0201803.t002 PLOSONE|https://doi.org/10.1371/journal.pone.0201803 August8,2018 9/18 CassavaresearchprioritiesinAfrica,Asia,andLatinAmerica (i.e.,R&Dcosts);(5)thedisseminationcostsforeachtechnology(eitherUS$80orUS$50for everynewhectareofadoptiondependingonthetypeoftechnology);and(6)theprobabilityof researchsuccess. Sincetheoutcomesofresearchinvestmentscannotberealizedformanyyears,ex-antetech- nologygenerationandadoptionparameterscanonlybebasedontheopinionsofR&Dexperts whodrawonawealthofexperienceandknowledgeinmakinginformedpredictions.Mostof thedatarelatingtocassavatechnologydevelopment,dissemination,andadoptionwere obtainedprimarilythroughexpertsurveysandconsultations.Expertestimationofthevalues ofsomeoftheseparametersinvolvedanumberofstepsdesignedtofacilitatetheelicitation process.Forexample,estimationoftheadoptionceilinginvolvedestimationofthearea affectedbytheunderlyingconstraintasaproportionofthetotalcroppedareaandtheexpected adoptionrateasaproportionoftheaffectedarea.ForAfrica,theaffectedareawasthusused onlytofacilitatetheestimationoftheultimatevalueofadoptionasaproportionofthetotal croppedarea.Thatis,adoptionasaproportionoftotalcassavaareaisestimatedastheproduct ofadoptingaproportionoftheaffectedareaandtheaffectedareaasaproportionoftotalarea. Foralmostallresearchoptions,however,cassavaexpertsworkingespeciallyinAfricaargue thatmuchofthecassavaareahasbeen(orisexpectedtobe)affectedbytheunderlyingcon- straints,suchaslowyieldpotential,poorresistancetopestsanddiseases,shortershelflife,and lackofcleanplantingmaterialmultiplicationanddistributionsystem.Consequently,the expertsarguethatimprovedseedsystemsandimprovedvarietieswithhigh-yieldattributes wouldbeappropriateforalmostallrecommendationdomains.However,varietieswithresis- tancetopestsanddiseasesshouldbedevelopednotonlyforthoseareasthatarecurrently affectedbythediseasesbutalsoforallareasthatwillbeaffectedinthemanyyearstocome (includingpre-emptivemeasures).Indeed,usingcurrentlyaffectedareaasarecommendation domainforadoptionwouldunderstatepotentialadoptionofthosetechnologies.Lookingat thenatureofmostofourresearchoptionsthatmakeexplicitmentionof“highyield,”theyalso saythatmuchofthecassavaareashouldbearelevantadoptiondomain,especiallybecause widergeographicadaptationisalsooneofthekeycriteriaofvarietalrelease. Ontheotherhand,R&Dcostswereestimatedasthesumof(1)CRP-RTBinvestmentsin cassavaresearchdisaggregatedbyresearchtheme[17];(2)bilateralprojectfundingforIITA (mainlyforAfrica)andCIAT(mainlyforAsiaandLAC),whichwasestimatedtobeapproxi- matelyequaltotheCRP-RTBfunding;and(3)NARSpartnercosts,whichwereassumedtobe equaltothetotalofCRP-RTBandbilateralfundingthroughIITAandCIAT.Aggregatingthe costsacrosscountriesforeachresearchoptiongivestheglobalR&Dcostsneededforcalculat- ingtheglobalNPVsandIRRs.TheCRP-RTBcostswereestimatedbasedontheallocationsin theRTBprogramproposal.Theannualcassavabudgetwasallocatedacrosstheresearch options.Forsomeoptionssuchas“plantingmaterials,”theRTBproposalhaddetailsofthe allocationalreadymadeandonlyrequiredlittleadjustmenttoreallocatetheoverheadsand CRPmanagementcosts.DisseminationcostswereestimatedtobeUS$50perhectareof adoptedareafornewvarietiesandUS$80perhectareofadoptedareaforotherknowledge- intensivetechnologies,suchascropmanagementinterventions. Table3providesanoverviewoftheparametersrelatedtocassavaresearchandtechnology disseminationprocess.CassavaresearchinAfricadatesbackto1936,whenscientistsstarted doingresearchtoaddressmajorproductionconstraintssuchasCMD.However,effortsto addressCBSDbydevelopingvarietieswithdualresistancetobothCMD(includingthenew Ugandavariant)andCBSDstartedrecently.Ascanbejudgedfromtheyearwhenresearch startedtoaddressparticularconstraints,someresearchandtechnologyoptionshavebeenpur- suedforanumberofyearswhereasotherlinesofresearchstartedonlyrecentlybeforethey werebothintegratedintothenewRTBprogram(2012–14).Inthisassessment,wetreatall PLOSONE|https://doi.org/10.1371/journal.pone.0201803 August8,2018 10/18

Description:
development and widespread adoption of new technologies, but funding for national . Cassava research priorities in Africa, Asia, and Latin America.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.