ANNALS OF M ATHEMATICS The Brauer-Manin obstruction for subvarieties of abelian varieties over function fields By Bjorn Poonen and Jose´ Felipe Voloch SECOND SERIES, VOL. 171, NO. 1 January, 2010 anmaah AnnalsofMathematics,171(2010),511–532 The Brauer-Manin obstruction for subvarieties of abelian varieties over function fields By BJORN POONEN and JOSÉ FELIPE VOLOCH Abstract Weprovethatforalargeclassofsubvarietiesofabelianvarietiesoverglobal function fields, the Brauer-Manin condition on adelic points cuts out exactly the rational points. This result is obtained from more general results concerning the intersectionoftheadelicpointsofasubvarietywiththeadelicclosureofthegroup ofrationalpointsoftheabelianvariety. 1. Introduction Thenotationinthissectionremainsinforcethroughoutthepaper,exceptin Section3.3,andinSection4whereweallowalsothepossibilitythatK isanumber field. Letk beafield. LetK beafinitelygeneratedextensionofk oftranscendence degree1. Weassumethatk isrelativelyalgebraicallyclosedinK,sincethecontent x of our theorems will be unaffected by this assumption. Let K be an algebraic closureofK. Wewillusethisnotationconsistentlyforanalgebraicclosure,and we will choose algebraic closures compatibly whenever possible. Thus k is the algebraic closure of k in Kx. Let Ks be the separable closure of K in Kx. Let (cid:127) be the set of all nontrivial valuations of K that are trivial on k. Let (cid:127) be a all cofinitesubsetof(cid:127) . Ifk isfinite,we mayweakenthecofinitenesshypothesisto all assumeonlythat(cid:127)(cid:18)(cid:127) hasDirichletdensity1. Foreachv2(cid:127),letK bethe all v completion of K at v, and let F be the residue field. Equip K with the v-adic v v topology. Definetheringofade`lesAastherestricteddirectproductQ .K ;O / v2(cid:127) v v oftheK withrespecttotheirvaluationsubringsO . ThenAisatopologicalring, v v inwhichQ O isopenandhastheproducttopology. v2(cid:127) v IfAisanabelianvarietyoverK,thenA.K/embedsdiagonallyintoA.A/' Q A.K /. Define the adelic topology on A.K/ as the topology induced from v v 511 512 BJORNPOONENandJOSÉFELIPEVOLOCH A.A/. Foranyfixedv definethev-adictopologyonA.K/asthetopologyinduced fromA.K /. LetA.K/betheclosureofA.K/inA.A/. v ForanyextensionoffieldsF0(cid:27)F andanyF-varietyX,letXF0 bethebase extensionofX toF0. CallaK-varietyX constantifXŠY forsomek-varietyY, K andcallX isotrivialifXx ŠYx forsomevarietyY definedoverk. K K Fromnowon,X isaclosedK-subschemeofA. CallX coset-freeifXx does K notcontainatranslateofapositive-dimensionalabeliansubvarietyofAx. K When k is finite and (cid:127) D (cid:127) , the intersection X.A/\A.K/ (cid:26) A.A/ is all closely related to the Brauer-Manin obstruction to the Hasse principle for X=K; seeSection4. Forcurvesovernumberfields,V.ScharaschkinandA.Skoroboga- tovindependentlyraisedthequestionofwhethertheBrauer-Maninobstructionis the only obstruction to the Hasse principle, and proved that this is so when the Jacobian has finite Mordell-Weil group and finite Shafarevich-Tate group. The connection with theadelic intersection is statedexplicitly in [Sch99], and isbased on global duality statements originating in the work of Cassels: see Remark 4.4. Seealso[Sko01],[Fly04],[Poo06],and[Sto07],whichcontainsmanyconjectures andtheoremsrelatingdescentinformation,themethodofChabautyandColeman, theBrauer-Maninobstruction,andGrothendieck’ssectionconjecture. Inthispaperweanswer(mostcasesof)ageneralizationofthefunctionfield analogue of a question raised for curves over number fields in [Sch99], concern- ing whether the Brauer-Manin condition cuts out exactly the rational points; see Theorem D. This question is still wide open in the number field case. Along the way, we prove results about adelic intersections similar to the “adelic Mordell- Lang conjecture” suggested in [Sto07, Question 3.12]. Again, these are open in thenumberfieldcase. Inparticular,weprovethefollowingtheorems. THEOREMA. IfcharkD0,thenX.K/DX.A/\A.K/. THEOREMB. SupposethatcharkDp>0,thatAx hasnononzeroisotrivial K quotient,andthatA.Ks/Œp1(cid:141)isfinite. SupposethatX iscoset-free. ThenX.K/D X.A/\A.K/. Remark 1.1. The proposition in [Vol95] states that in the “general case” in whichAisordinaryandtheKodaira-SpencerclassofA=K hasmaximalrank,we haveA.Ks/Œp1(cid:141)D0. CONJECTUREC. ForanyclosedK-subschemeX ofanyA,wehaveX.K/D X.A/\A.K/,whereX.K/istheclosureofX.K/inX.A/. Remark1.2. IfAx hasnononzeroisotrivialquotientandX iscoset-free,then K X.K/isfinite[Hru96,Th.1.1];thusX.K/DX.K/. HenceConjectureCpredicts inparticularthatthehypothesisonA.Ks/Œp1(cid:141)inTheoremBisunnecessary. BRAUER-MANINOBSTRUCTIONFORSUBVARIETIESOFABELIANVARIETIES 513 Remark1.3. Hereis anexample toshowthat thestatementX.K/DX.A/\ A.K/ can fail for a constant curve in its Jacobian. Let X be a curve of genus (cid:21) 2 over a finite field k. Choose a divisor of degree 1 on X to embed X in its Jacobian A. Let FWA!A be the k-Frobenius map. Let K be the function field ofX. LetP 2X.K/bethepointcorrespondingtotheidentitymapX !X. Let P 2X.F /bethereductionofP atv. v v For each v, the Teichmu¨ller map F !K identifies F with a subfield of v v v K . AnyQ2A.K /canbewrittenasQDQ CQ withQ 2A.F /andQ in v v 0 1 0 v 1 thekernelofthereductionmapA.Kv/!A.Fv/;thenlimm!1Fm.Q1/D0,so limn!1FnŠ.Q/Dlimn!1FnŠ.Q0/DQ0. Inparticular,takingQDP,wefind that(cid:0)FnŠ.P/(cid:1) convergesinA.A/tothepoint.P /2X.A/DQ X.K /,where n(cid:21)1 v v v wehaveidentifiedP withitsimageundertheTeichmu¨llermapX.F /,!X.K /. v v v If.P /wereinX.K/,theninX.K /wewouldhaveP 2X.F /\X.K/DX.k/, v v v v whichcontradictsthedefinitionofP ifv isaplaceofdegreegreaterthan1overk. v Thus.P /isinX.A/\A.K/butnotinX.K/. v In the final section of this paper, we restrict to the case of a global function field,andextendTheoremBtoprove(undermildhypotheses)thatforasubvari- etyofanabelianvariety,theBrauer-Maninconditioncutsoutexactlytherational points;seeSection4forthedefinitionsofX.A/Br andScel. Ourresultisasfollows. THEOREM D. Suppose that K is a global function fieldof characteristic p, thatAx hasnononzeroisotrivialquotient,andthatA.Ks/Œp1(cid:141)isfinite. Suppose K thatX iscoset-free. ThenX.K/DX.A/BrDX.A/\Scel. Toourknowledge,TheoremDisthefirstresultgivingawideclassofvarieties ofgeneraltypesuchthattheBrauer-Maninconditioncutsoutexactlytherational points. 2. Characteristic0 Throughout this section, we assume chark D0. In this case, results follow rathereasily. PROPOSITION 2.1. For any v, the v-adic topology on A.K/ equals the dis- cretetopology. Proof. Thequestionisisogeny-invariant,sowereducetothecasewhereAis simple. LetA.F /denotethegroupofF -pointsontheNe´ronmodelofAoverO . v v v LetA1.K /bethekernelofthereductionmapA.K /!A.F /. TheLang-Ne´ron v v v theorem[LN59,Th.1]impliesthateitherAisconstantandA.K/=A.k/isfinitely generated,orAisnonconstantandA.K/itselfisfinitelygenerated. Ineithercase, the subgroup A1.K/WDA.K/\A1.K / is finitely generated. By the theory of v formalgroups(cf.[Ser92,p.118,Th.2]),A1.K /hasadescendingfiltrationby v 514 BJORNPOONENandJOSÉFELIPEVOLOCH opensubgroupsinwhichthequotientsofconsecutivetermsaretorsion-free(thisis whereweusecharkD0),sotheinducedfiltrationonthefinitelygeneratedgroup A1.K/ has only finitely many nonzero quotients. Thus A1.K/ is discrete. Since A1.K /isopeninA.K /,thegroupA.K/isdiscreteinA.K /. (cid:3) v v v Remark2.2. TheliteraturecontainsresultsclosetoProposition2.1. Itismen- tioned in the third subsection of the introduction to [Man63a] for elliptic curves withnonconstantj-invariant,anditappearsforabelianvarietieswithK=k-trace zeroin[BV93]. COROLLARY2.3. TheadelictopologyonA.K/equalsthediscretetopology. Proof. The adelic topology is at least as strong as (i.e., has at least as many opensetsas)thev-adictopologyforanyv. (cid:3) Wecanimprovetheresultbyimposingconditionsinonlytheresiduefields F insteadofthecompletionsK ,thatis,“flat”insteadof“deep”informationin v v thesenseof[Fly04]. Infact,wehave: PROPOSITION 2.4. There exist v;v0 2(cid:127) of good reduction for A such that A.K/!A.Fv/(cid:2)A.Fv0/isinjective. Proof. LetB betheK=k-traceofA. Pickanyv2(cid:127)ofgoodreduction. The kernel H of A.K/!A.F / meets B.k/ trivially. By Silverman’s specialization v theorem [Lan83, Ch. 12, Th. 2.3], there exists v0 2(cid:127) such that H injects under reductionmodulov0. (cid:3) ProofofTheoremA.ByCorollary2.3,X.A/\A.K/DX.A/\A.K/DX.K/. (cid:3) 3. Characteristicp Throughoutthissection,charkDp. 3.1. Field-theoreticlemmas. LEMMA 3.1. For any v, if ˛ 2Kv is algebraic over K, then ˛ is separable overK. Proof. Replacing K by its relative separable closure in LWDK.˛/, we may assume that Lis purelyinseparable overK. Thenthe valuation v onK admits a uniqueextensionw toL,andtheinclusionofcompletionsK !L isanisomor- v w phism. By[Ser79,I.(cid:144)4,Prop.10](loc.cit. Hypothesis(F)holdsforlocalizations offinitelygeneratedalgebrasoverafield),wehavean“nDPe f ”result,which i i inourcasesaysŒLWK(cid:141)DŒL WK (cid:141)D1. So˛2K. (cid:3) w v BRAUER-MANINOBSTRUCTIONFORSUBVARIETIESOFABELIANVARIETIES 515 If L is a finite extension of K, let A be the corresponding ring of ade`les, L definedasarestricteddirectproductoverplacesofL. Thereisanaturalinclusion A,!A . L LEMMA3.2. LetLbeafiniteextensionofK. TheninALwehaveA\LDK. Proof. Fix v 2 (cid:127). By [Bou98, VI.(cid:144)8.5, Cor. 3] and the fact that [Ser79, Hypothesis(F)]holds,thenaturalmapK ˝ L!Q L isanisomorphism. v K wjv w HenceinQ L wehaveK \LDK. Theresultfollows. (cid:3) wjv w v 3.2. Abelianvarieties. LEMMA3.3. Foranyn2Z(cid:21)1,thequotientA.Kv/=nA.Kv/isHausdorff. Proof. Equivalently, wemust show thatnA.K /is closed inA.K /. Suppose v v .P /isasequenceinnA.K /thatconvergestoP 2A.K /. WriteP DnQ with i v v i i Qi 2A.Kv/. Thenn.Qi (cid:0)QiC1/!0asi !1. LetO bethevaluationringofK ,andletAbetheNe´ronmodelofAover v v O . Applying[Gre66,Cor. 1]toAŒn(cid:141)showsthat foranysequence.R /inA.K / v i v withnR !0,thedistanceofR tothenearestpointofA.K /Œn(cid:141)tendsto0. i i v Thusbyinductiononi wemayadjusteachQ byapointinA.K /Œn(cid:141)sothat i v Qi (cid:0)QiC1 !0 as i !1. Since A.Kv/ is complete, .Qi/ converges to some Q2A.K /,andnQDP. ThusnA.K /isclosed. (cid:3) v v Remark 3.4. In the case where k is finite, Lemma 3.3 is immediate since A.K /iscompactanditsimageundermultiplication-by-nisclosed. v The following is a slight generalization of [Vol95, Lemma 2], with a more elementaryproof. PROPOSITION3.5. IfA.Ks/Œp1(cid:141)isfinite,thenforanyv,thev-adictopology onA.K/isatleastasstrongasthetopologyinducedbyallsubgroupsoffinitep- powerindex. x x Proof. Forconveniencechoosealgebraicclosures K;K ofK;K suchthat v v Ks (cid:18)Kx(cid:18)Kx . As in the proof of Proposition 2.1, there is an open subgroup U v ofA.K /suchthatB WDA.K/\U isfinitelygenerated. Itsufficestoshowthat v foreverye2Z(cid:21)0,thereexistsanopensubgroupV ofA.Kv/suchthatB\V (cid:18) peA.K/. ChoosemsuchthatpmA.Ks/Œp1(cid:141)D0. LetM DeCm. ThenB=pMB is finite. ByLemma3.3,A.K /=pMA.K /isHausdorff,sotheimageofB=pMB v v in A.K /=pMA.K / is discrete. Hence there is an open subgroup V of A.K / v v v suchthatB\V Dker.B !A.K /=pMA.K //. v v Suppose b 2 B \V. Then b D pMc for some c 2 A.K /\A.Kx/. By v Lemma3.1,weobtainc 2A.Ks/. If(cid:27) 2Gal.Ks=K/,then(cid:27)c(cid:0)c 2A.Ks/ŒpM(cid:141) 516 BJORNPOONENandJOSÉFELIPEVOLOCH is killed by pm. Thus pmc 2A.K/. So bDpepmc 2peA.K/. Hence B\V (cid:18) peA.K/. (cid:3) PROPOSITION 3.6. TheadelictopologyonA.K/isatleastasstrongasthe topologyinducedbyallsubgroupsoffiniteindex. Proof. As in the proof of Proposition 2.1, the Lang-Ne´ron theorem implies thatA.A/hasanopensubgroupwhoseintersectionwithA.K/isfinitelygenerated. Itsuffices tostudy thetopology inducedon thatfinitely generatedsubgroup, sowe mayreducetothecaseinwhichk isfinitelygeneratedoverafinitefieldF . This q case is proved in [Mil72], which adapts and extends [Ser64] and [Ser71]. (The paper[Mil72]usesnottheadelictopologyaswehavedefinedit,butthetopology coming from the closed points of a finite-type Z-scheme with function field K. Sincetheadelictopologyisstronger,[Mil72]containswhatwewant.) (cid:3) (cid:16) (cid:17) LEMMA 3.7. Suppose that A.K/ is finitely generated. Then A.K/ D tors A.K/ . tors Proof. Let ! T WDker A.K/! Y A.Fv/ ; A.F / v2(cid:127) v tors where A.F / is the group of F -points on the Ne´ron model of A. Since A.K/ is v v finitelygeneratedandthegroupsA.F /=A.F / aretorsion-free,thereisafinite v v tors subsetS (cid:26)(cid:127)suchthatT DA.K/\U fortheopensubgroup ! U WDker A.A/! Y A.Fv/ A.F / v2S v tors of A.A/. The finitely generated group A.K/=T is contained in the torsion-free groupQ A.Fv/ ,soA.K/=T isfree,andwehaveA.K/ŠT ˚F astopolog- v2S A.Fv/tors icalgroups,whereF isadiscretefreeabeliangroupoffiniterank. We claim that the topology of T is that induced by the subgroups nT for n(cid:21)1. Forn(cid:21)1,the subgroupnT isopeninT byProposition3.6. Ift 2T,then somepositivemultipleoft isinthekernelofA.K /!A.F /,andthenp-power v v multiplesofthismultipletendto0. ApplyingthistoafinitesetofgeneratorsofT, weseethatanyopenneighborhoodof0inT containsnT forsomen2Z . >0 ItfollowsthatTx ŠT ˝Zy. Now (cid:16) (cid:17) A.K/ D.Tx˚F/ DTx Š.T ˝Zy/ ŠT : (cid:3) tors tors tors tors tors Remark3.8. Whenk isfinite,aneasierproofofLemma3.7ispossible: Com- bined with the fact that A.A/ is profinite, Proposition 3.6 implies that A.K/ Š A.K/˝Zy;thetorsionsubgroupofthelatterequalsA.K/ . tors BRAUER-MANINOBSTRUCTIONFORSUBVARIETIESOFABELIANVARIETIES 517 Thefollowingpropositionisafunctionfieldanalogueof[Sto07,Prop.3.6]. Our proof must be somewhat different, however, since [Sto07] made use of strong “image of Galois” theorems whose function field analogues have recently been disproved[Zar07]. PROPOSITION3.9. SupposethatA.Ks/Œp1(cid:141)isfinite. LetZ beafiniteK-sub- schemeofA. ThenZ.A/\A.K/DZ.K/. Proof. InthisfirstparagraphweshowthatreplacingK byafiniteextension Ldoesnotdestroy thehypothesisthatA.Ks/Œp1(cid:141)isfinite. Thisis obviousifL is separable over K, so assume that L is purely inseparable. Choose n 2 Z(cid:21)0 with Lpn (cid:18) K. Then .Ls/pn (cid:18) Ks, so pnA.Ls/Œp1(cid:141) (cid:18) A.Ks/Œp1(cid:141). Thus pnA.Ls/Œp1(cid:141)isfinite. Butmultiplication-by-pn hasfinitefibers,soA.Ls/Œp1(cid:141) itselfisfinite. Nextweclaimthatifweprovetheconclusionafterbaseextensiontoafinite extensionL,thenthedesiredconclusionoverK holds. Namely,supposethatwe proveZ.A /\A.L/DZ.L/. Then L Z.A/\A.K/(cid:18)Z.A /\A.L/DZ.L/; L so Z.A/\A.K/(cid:18)Z.A/\Z.L/DZ.K/; wherethelastequalityusesLemma3.2. ThuswemayreplaceK byafiniteextensiontoassumethatZ consistsofa finite set of K-points of A. (The same idea was used in [Sto07].) A point P 2 A.K/ is represented by a sequence .Pn/n(cid:21)1 in A.K/ such that for every v, the limit limn!1Pn exists in A.Kv/. If in addition P 2Z.A/, then there is a point Qv2Z.K/whoseimageinZ.Kv/equalslimn!1Pn2A.Kv/. ThePn(cid:0)Qv are eventually containedinthe kernelofA.K/!A.F /, whichisfinitely generated, v so there are finitely generated subfields k (cid:18)k, K (cid:18)K with K =k a function 0 0 0 0 fieldsuchthatalltheP andthepointsofZ.K/areinA.K /. ByProposition3.5, n 0 thesequence.Pn(cid:0)Qv/n(cid:21)1 iseventuallydivisibleinA.K0/byanarbitrarilyhigh power of p. For any other v0 2 (cid:127), the same is true of .Pn (cid:0)Qv0/n(cid:21)1. Then Qv0 (cid:0)Qv 2 A.K0/ is divisible by every power of p. Since A.K0/ is finitely generated, Qv0 (cid:0)Qv is a torsion point in A.K0/. This holds for every v0 2 (cid:127), and A.K / is finite. Thus RWDP (cid:0)Q 2A.K / is a torsion point in A.K /. 0 tors v 0 0 Lemma3.7appliedtoK yieldsR2A.K / . HenceP DRCQ 2A.K/,and 0 0 tors v soP 2Z.A/\A.K/DZ.K/. (cid:3) LEMMA3.10. Fixv2(cid:127). Let(cid:128)v betheclosureofA.K/inA.Kv/. Thenfor everye2Z(cid:21)0,themapA.K/=peA.K/!(cid:128)v=pe(cid:128)v issurjective. Proof. Let O be the valuation ring of K , and let m be its maximal ideal. v v v LetAoverOv betheNe´ronmodel. Forr 2Z(cid:21)1,letGr bethekernelofA.Kv/D 518 BJORNPOONENandJOSÉFELIPEVOLOCH A.Ov/ ! A.Ov=mrv/. It follows from [Ser92, p. 118, Th. 2] that Gr=GrC1 is isomorphic to .O =m /dimA, which is killed by p, so that each G is an abelian v v r pro-p-group, and hence a topological Z -module. There are only finitely many p pointsoforderp inA.K /,andT G Df0g,sosomeG containsnonontriv- v r(cid:21)1 r r ial p-torsion points, and hence is torsion-free. In particular, A.K / has an open v ı subgroupA .K /thatisatorsion-freetopologicalZ -module,andwemaychoose v p Aı.K /sothatAı.K/WDA.K/\Aı.K /isfinitelygenerated. v v Thegroup(cid:128)ıWD(cid:128) \Aı.K /istheclosureofAı.K/,sothereisanisomor- v v v phismoftopologicalgroups(cid:128)vıŠZp˚m forsomem2Z(cid:21)0. Inparticular,forany e2Z(cid:21)0,thegrouppe(cid:128)vı isopenin(cid:128)vı,whichisopenin(cid:128)v. Sothelargergroup pe(cid:128) also is open in (cid:128) . But the image of A.K/ in the discrete group (cid:128) =pe(cid:128) v v v v isdense,sothemapA.K/=peA.K/!(cid:128) =pe(cid:128) issurjective. (cid:3) v v 3.3. AuniformMordell-Langconjecture. We thank Zoe´ Chatzidakis, Fran- c¸oiseDelon,andThomasScanlonformanyoftheideasusedinthissection. See [Del98] for the definitions of separable, p-basis, p-free, p-components, etc. By iteratedp-componentswemeanp-componentsofp-componentsof...ofp-com- ponents(allwithrespecttoagivenp-basis). The goal of this section is to deduce a uniform version (Proposition 3.16) of the function field Mordell-Lang conjecture from a version in [Hru96]. Under somehypotheses,theuniformversionassertsthefinitenessoftheintersectionof a subvariety X of an abelian variety A with any coset of a subgroup peA.F/ of A.F/,whereF isallowedtorangeoverp-basis-preservingextensionsofaninitial groundfieldK. Remark 3.11. The p-basis condition on F, or something like it, is neces- saryforthetruthofProposition3.16;withnocondition,F mightbealgebraically closed, and then peA.F/DA.F/, so the desired finiteness would fail assuming dimX >0. Thep-basisconditionisusedintheproofofProposition3.16toimply separabilityof F overK, whichguarantees thata nonisotrivialityhypothesis onA overK ispreservedbybaseextensiontoF;seeLemma3.13anditsproof. LEMMA3.12. LetBbeap-basisforafieldK ofcharacteristicp. LetLbe anextensionofK suchthatBisalsoap-basisforL. Supposethatc isanelement ofLthatisnotalgebraicoverK. Thenthereexistsaseparablyclosedextension F ofLsuchthatBisap-basisofF andtheAut.F=K/-orbitofc isinfinite. Proof. FixatranscendencebasisT forL=K. Let(cid:127)beanalgebraicallyclosed extensionofK suchthatthetranscendencebasisof(cid:127)=K isidentifiedwiththeset Z(cid:2)T. Identify L with a subfield of (cid:127) in such a way that each t 2 T maps to the transcendence basis element for (cid:127)=K labelled by .0;t/ 2 Z(cid:2)T. The map of sets Z(cid:2)T !Z(cid:2)T mapping .i;t/ to .i C1;t/ extends to an automorphism
Description: