ebook img

The Brauer-Manin obstruction for subvarieties of abelian varieties over function fields PDF

24 Pages·2010·0.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Brauer-Manin obstruction for subvarieties of abelian varieties over function fields

ANNALS OF M ATHEMATICS The Brauer-Manin obstruction for subvarieties of abelian varieties over function fields By Bjorn Poonen and Jose´ Felipe Voloch SECOND SERIES, VOL. 171, NO. 1 January, 2010 anmaah AnnalsofMathematics,171(2010),511–532 The Brauer-Manin obstruction for subvarieties of abelian varieties over function fields By BJORN POONEN and JOSÉ FELIPE VOLOCH Abstract Weprovethatforalargeclassofsubvarietiesofabelianvarietiesoverglobal function fields, the Brauer-Manin condition on adelic points cuts out exactly the rational points. This result is obtained from more general results concerning the intersectionoftheadelicpointsofasubvarietywiththeadelicclosureofthegroup ofrationalpointsoftheabelianvariety. 1. Introduction Thenotationinthissectionremainsinforcethroughoutthepaper,exceptin Section3.3,andinSection4whereweallowalsothepossibilitythatK isanumber field. Letk beafield. LetK beafinitelygeneratedextensionofk oftranscendence degree1. Weassumethatk isrelativelyalgebraicallyclosedinK,sincethecontent x of our theorems will be unaffected by this assumption. Let K be an algebraic closureofK. Wewillusethisnotationconsistentlyforanalgebraicclosure,and we will choose algebraic closures compatibly whenever possible. Thus k is the algebraic closure of k in Kx. Let Ks be the separable closure of K in Kx. Let (cid:127) be the set of all nontrivial valuations of K that are trivial on k. Let (cid:127) be a all cofinitesubsetof(cid:127) . Ifk isfinite,we mayweakenthecofinitenesshypothesisto all assumeonlythat(cid:127)(cid:18)(cid:127) hasDirichletdensity1. Foreachv2(cid:127),letK bethe all v completion of K at v, and let F be the residue field. Equip K with the v-adic v v topology. Definetheringofade`lesAastherestricteddirectproductQ .K ;O / v2(cid:127) v v oftheK withrespecttotheirvaluationsubringsO . ThenAisatopologicalring, v v inwhichQ O isopenandhastheproducttopology. v2(cid:127) v IfAisanabelianvarietyoverK,thenA.K/embedsdiagonallyintoA.A/' Q A.K /. Define the adelic topology on A.K/ as the topology induced from v v 511 512 BJORNPOONENandJOSÉFELIPEVOLOCH A.A/. Foranyfixedv definethev-adictopologyonA.K/asthetopologyinduced fromA.K /. LetA.K/betheclosureofA.K/inA.A/. v ForanyextensionoffieldsF0(cid:27)F andanyF-varietyX,letXF0 bethebase extensionofX toF0. CallaK-varietyX constantifXŠY forsomek-varietyY, K andcallX isotrivialifXx ŠYx forsomevarietyY definedoverk. K K Fromnowon,X isaclosedK-subschemeofA. CallX coset-freeifXx does K notcontainatranslateofapositive-dimensionalabeliansubvarietyofAx. K When k is finite and (cid:127) D (cid:127) , the intersection X.A/\A.K/ (cid:26) A.A/ is all closely related to the Brauer-Manin obstruction to the Hasse principle for X=K; seeSection4. Forcurvesovernumberfields,V.ScharaschkinandA.Skoroboga- tovindependentlyraisedthequestionofwhethertheBrauer-Maninobstructionis the only obstruction to the Hasse principle, and proved that this is so when the Jacobian has finite Mordell-Weil group and finite Shafarevich-Tate group. The connection with theadelic intersection is statedexplicitly in [Sch99], and isbased on global duality statements originating in the work of Cassels: see Remark 4.4. Seealso[Sko01],[Fly04],[Poo06],and[Sto07],whichcontainsmanyconjectures andtheoremsrelatingdescentinformation,themethodofChabautyandColeman, theBrauer-Maninobstruction,andGrothendieck’ssectionconjecture. Inthispaperweanswer(mostcasesof)ageneralizationofthefunctionfield analogue of a question raised for curves over number fields in [Sch99], concern- ing whether the Brauer-Manin condition cuts out exactly the rational points; see Theorem D. This question is still wide open in the number field case. Along the way, we prove results about adelic intersections similar to the “adelic Mordell- Lang conjecture” suggested in [Sto07, Question 3.12]. Again, these are open in thenumberfieldcase. Inparticular,weprovethefollowingtheorems. THEOREMA. IfcharkD0,thenX.K/DX.A/\A.K/. THEOREMB. SupposethatcharkDp>0,thatAx hasnononzeroisotrivial K quotient,andthatA.Ks/Œp1(cid:141)isfinite. SupposethatX iscoset-free. ThenX.K/D X.A/\A.K/. Remark 1.1. The proposition in [Vol95] states that in the “general case” in whichAisordinaryandtheKodaira-SpencerclassofA=K hasmaximalrank,we haveA.Ks/Œp1(cid:141)D0. CONJECTUREC. ForanyclosedK-subschemeX ofanyA,wehaveX.K/D X.A/\A.K/,whereX.K/istheclosureofX.K/inX.A/. Remark1.2. IfAx hasnononzeroisotrivialquotientandX iscoset-free,then K X.K/isfinite[Hru96,Th.1.1];thusX.K/DX.K/. HenceConjectureCpredicts inparticularthatthehypothesisonA.Ks/Œp1(cid:141)inTheoremBisunnecessary. BRAUER-MANINOBSTRUCTIONFORSUBVARIETIESOFABELIANVARIETIES 513 Remark1.3. Hereis anexample toshowthat thestatementX.K/DX.A/\ A.K/ can fail for a constant curve in its Jacobian. Let X be a curve of genus (cid:21) 2 over a finite field k. Choose a divisor of degree 1 on X to embed X in its Jacobian A. Let FWA!A be the k-Frobenius map. Let K be the function field ofX. LetP 2X.K/bethepointcorrespondingtotheidentitymapX !X. Let P 2X.F /bethereductionofP atv. v v For each v, the Teichmu¨ller map F !K identifies F with a subfield of v v v K . AnyQ2A.K /canbewrittenasQDQ CQ withQ 2A.F /andQ in v v 0 1 0 v 1 thekernelofthereductionmapA.Kv/!A.Fv/;thenlimm!1Fm.Q1/D0,so limn!1FnŠ.Q/Dlimn!1FnŠ.Q0/DQ0. Inparticular,takingQDP,wefind that(cid:0)FnŠ.P/(cid:1) convergesinA.A/tothepoint.P /2X.A/DQ X.K /,where n(cid:21)1 v v v wehaveidentifiedP withitsimageundertheTeichmu¨llermapX.F /,!X.K /. v v v If.P /wereinX.K/,theninX.K /wewouldhaveP 2X.F /\X.K/DX.k/, v v v v whichcontradictsthedefinitionofP ifv isaplaceofdegreegreaterthan1overk. v Thus.P /isinX.A/\A.K/butnotinX.K/. v In the final section of this paper, we restrict to the case of a global function field,andextendTheoremBtoprove(undermildhypotheses)thatforasubvari- etyofanabelianvariety,theBrauer-Maninconditioncutsoutexactlytherational points;seeSection4forthedefinitionsofX.A/Br andScel. Ourresultisasfollows. THEOREM D. Suppose that K is a global function fieldof characteristic p, thatAx hasnononzeroisotrivialquotient,andthatA.Ks/Œp1(cid:141)isfinite. Suppose K thatX iscoset-free. ThenX.K/DX.A/BrDX.A/\Scel. Toourknowledge,TheoremDisthefirstresultgivingawideclassofvarieties ofgeneraltypesuchthattheBrauer-Maninconditioncutsoutexactlytherational points. 2. Characteristic0 Throughout this section, we assume chark D0. In this case, results follow rathereasily. PROPOSITION 2.1. For any v, the v-adic topology on A.K/ equals the dis- cretetopology. Proof. Thequestionisisogeny-invariant,sowereducetothecasewhereAis simple. LetA.F /denotethegroupofF -pointsontheNe´ronmodelofAoverO . v v v LetA1.K /bethekernelofthereductionmapA.K /!A.F /. TheLang-Ne´ron v v v theorem[LN59,Th.1]impliesthateitherAisconstantandA.K/=A.k/isfinitely generated,orAisnonconstantandA.K/itselfisfinitelygenerated. Ineithercase, the subgroup A1.K/WDA.K/\A1.K / is finitely generated. By the theory of v formalgroups(cf.[Ser92,p.118,Th.2]),A1.K /hasadescendingfiltrationby v 514 BJORNPOONENandJOSÉFELIPEVOLOCH opensubgroupsinwhichthequotientsofconsecutivetermsaretorsion-free(thisis whereweusecharkD0),sotheinducedfiltrationonthefinitelygeneratedgroup A1.K/ has only finitely many nonzero quotients. Thus A1.K/ is discrete. Since A1.K /isopeninA.K /,thegroupA.K/isdiscreteinA.K /. (cid:3) v v v Remark2.2. TheliteraturecontainsresultsclosetoProposition2.1. Itismen- tioned in the third subsection of the introduction to [Man63a] for elliptic curves withnonconstantj-invariant,anditappearsforabelianvarietieswithK=k-trace zeroin[BV93]. COROLLARY2.3. TheadelictopologyonA.K/equalsthediscretetopology. Proof. The adelic topology is at least as strong as (i.e., has at least as many opensetsas)thev-adictopologyforanyv. (cid:3) Wecanimprovetheresultbyimposingconditionsinonlytheresiduefields F insteadofthecompletionsK ,thatis,“flat”insteadof“deep”informationin v v thesenseof[Fly04]. Infact,wehave: PROPOSITION 2.4. There exist v;v0 2(cid:127) of good reduction for A such that A.K/!A.Fv/(cid:2)A.Fv0/isinjective. Proof. LetB betheK=k-traceofA. Pickanyv2(cid:127)ofgoodreduction. The kernel H of A.K/!A.F / meets B.k/ trivially. By Silverman’s specialization v theorem [Lan83, Ch. 12, Th. 2.3], there exists v0 2(cid:127) such that H injects under reductionmodulov0. (cid:3) ProofofTheoremA.ByCorollary2.3,X.A/\A.K/DX.A/\A.K/DX.K/. (cid:3) 3. Characteristicp Throughoutthissection,charkDp. 3.1. Field-theoreticlemmas. LEMMA 3.1. For any v, if ˛ 2Kv is algebraic over K, then ˛ is separable overK. Proof. Replacing K by its relative separable closure in LWDK.˛/, we may assume that Lis purelyinseparable overK. Thenthe valuation v onK admits a uniqueextensionw toL,andtheinclusionofcompletionsK !L isanisomor- v w phism. By[Ser79,I.(cid:144)4,Prop.10](loc.cit. Hypothesis(F)holdsforlocalizations offinitelygeneratedalgebrasoverafield),wehavean“nDPe f ”result,which i i inourcasesaysŒLWK(cid:141)DŒL WK (cid:141)D1. So˛2K. (cid:3) w v BRAUER-MANINOBSTRUCTIONFORSUBVARIETIESOFABELIANVARIETIES 515 If L is a finite extension of K, let A be the corresponding ring of ade`les, L definedasarestricteddirectproductoverplacesofL. Thereisanaturalinclusion A,!A . L LEMMA3.2. LetLbeafiniteextensionofK. TheninALwehaveA\LDK. Proof. Fix v 2 (cid:127). By [Bou98, VI.(cid:144)8.5, Cor. 3] and the fact that [Ser79, Hypothesis(F)]holds,thenaturalmapK ˝ L!Q L isanisomorphism. v K wjv w HenceinQ L wehaveK \LDK. Theresultfollows. (cid:3) wjv w v 3.2. Abelianvarieties. LEMMA3.3. Foranyn2Z(cid:21)1,thequotientA.Kv/=nA.Kv/isHausdorff. Proof. Equivalently, wemust show thatnA.K /is closed inA.K /. Suppose v v .P /isasequenceinnA.K /thatconvergestoP 2A.K /. WriteP DnQ with i v v i i Qi 2A.Kv/. Thenn.Qi (cid:0)QiC1/!0asi !1. LetO bethevaluationringofK ,andletAbetheNe´ronmodelofAover v v O . Applying[Gre66,Cor. 1]toAŒn(cid:141)showsthat foranysequence.R /inA.K / v i v withnR !0,thedistanceofR tothenearestpointofA.K /Œn(cid:141)tendsto0. i i v Thusbyinductiononi wemayadjusteachQ byapointinA.K /Œn(cid:141)sothat i v Qi (cid:0)QiC1 !0 as i !1. Since A.Kv/ is complete, .Qi/ converges to some Q2A.K /,andnQDP. ThusnA.K /isclosed. (cid:3) v v Remark 3.4. In the case where k is finite, Lemma 3.3 is immediate since A.K /iscompactanditsimageundermultiplication-by-nisclosed. v The following is a slight generalization of [Vol95, Lemma 2], with a more elementaryproof. PROPOSITION3.5. IfA.Ks/Œp1(cid:141)isfinite,thenforanyv,thev-adictopology onA.K/isatleastasstrongasthetopologyinducedbyallsubgroupsoffinitep- powerindex. x x Proof. Forconveniencechoosealgebraicclosures K;K ofK;K suchthat v v Ks (cid:18)Kx(cid:18)Kx . As in the proof of Proposition 2.1, there is an open subgroup U v ofA.K /suchthatB WDA.K/\U isfinitelygenerated. Itsufficestoshowthat v foreverye2Z(cid:21)0,thereexistsanopensubgroupV ofA.Kv/suchthatB\V (cid:18) peA.K/. ChoosemsuchthatpmA.Ks/Œp1(cid:141)D0. LetM DeCm. ThenB=pMB is finite. ByLemma3.3,A.K /=pMA.K /isHausdorff,sotheimageofB=pMB v v in A.K /=pMA.K / is discrete. Hence there is an open subgroup V of A.K / v v v suchthatB\V Dker.B !A.K /=pMA.K //. v v Suppose b 2 B \V. Then b D pMc for some c 2 A.K /\A.Kx/. By v Lemma3.1,weobtainc 2A.Ks/. If(cid:27) 2Gal.Ks=K/,then(cid:27)c(cid:0)c 2A.Ks/ŒpM(cid:141) 516 BJORNPOONENandJOSÉFELIPEVOLOCH is killed by pm. Thus pmc 2A.K/. So bDpepmc 2peA.K/. Hence B\V (cid:18) peA.K/. (cid:3) PROPOSITION 3.6. TheadelictopologyonA.K/isatleastasstrongasthe topologyinducedbyallsubgroupsoffiniteindex. Proof. As in the proof of Proposition 2.1, the Lang-Ne´ron theorem implies thatA.A/hasanopensubgroupwhoseintersectionwithA.K/isfinitelygenerated. Itsuffices tostudy thetopology inducedon thatfinitely generatedsubgroup, sowe mayreducetothecaseinwhichk isfinitelygeneratedoverafinitefieldF . This q case is proved in [Mil72], which adapts and extends [Ser64] and [Ser71]. (The paper[Mil72]usesnottheadelictopologyaswehavedefinedit,butthetopology coming from the closed points of a finite-type Z-scheme with function field K. Sincetheadelictopologyisstronger,[Mil72]containswhatwewant.) (cid:3) (cid:16) (cid:17) LEMMA 3.7. Suppose that A.K/ is finitely generated. Then A.K/ D tors A.K/ . tors Proof. Let ! T WDker A.K/! Y A.Fv/ ; A.F / v2(cid:127) v tors where A.F / is the group of F -points on the Ne´ron model of A. Since A.K/ is v v finitelygeneratedandthegroupsA.F /=A.F / aretorsion-free,thereisafinite v v tors subsetS (cid:26)(cid:127)suchthatT DA.K/\U fortheopensubgroup ! U WDker A.A/! Y A.Fv/ A.F / v2S v tors of A.A/. The finitely generated group A.K/=T is contained in the torsion-free groupQ A.Fv/ ,soA.K/=T isfree,andwehaveA.K/ŠT ˚F astopolog- v2S A.Fv/tors icalgroups,whereF isadiscretefreeabeliangroupoffiniterank. We claim that the topology of T is that induced by the subgroups nT for n(cid:21)1. Forn(cid:21)1,the subgroupnT isopeninT byProposition3.6. Ift 2T,then somepositivemultipleoft isinthekernelofA.K /!A.F /,andthenp-power v v multiplesofthismultipletendto0. ApplyingthistoafinitesetofgeneratorsofT, weseethatanyopenneighborhoodof0inT containsnT forsomen2Z . >0 ItfollowsthatTx ŠT ˝Zy. Now (cid:16) (cid:17) A.K/ D.Tx˚F/ DTx Š.T ˝Zy/ ŠT : (cid:3) tors tors tors tors tors Remark3.8. Whenk isfinite,aneasierproofofLemma3.7ispossible: Com- bined with the fact that A.A/ is profinite, Proposition 3.6 implies that A.K/ Š A.K/˝Zy;thetorsionsubgroupofthelatterequalsA.K/ . tors BRAUER-MANINOBSTRUCTIONFORSUBVARIETIESOFABELIANVARIETIES 517 Thefollowingpropositionisafunctionfieldanalogueof[Sto07,Prop.3.6]. Our proof must be somewhat different, however, since [Sto07] made use of strong “image of Galois” theorems whose function field analogues have recently been disproved[Zar07]. PROPOSITION3.9. SupposethatA.Ks/Œp1(cid:141)isfinite. LetZ beafiniteK-sub- schemeofA. ThenZ.A/\A.K/DZ.K/. Proof. InthisfirstparagraphweshowthatreplacingK byafiniteextension Ldoesnotdestroy thehypothesisthatA.Ks/Œp1(cid:141)isfinite. Thisis obviousifL is separable over K, so assume that L is purely inseparable. Choose n 2 Z(cid:21)0 with Lpn (cid:18) K. Then .Ls/pn (cid:18) Ks, so pnA.Ls/Œp1(cid:141) (cid:18) A.Ks/Œp1(cid:141). Thus pnA.Ls/Œp1(cid:141)isfinite. Butmultiplication-by-pn hasfinitefibers,soA.Ls/Œp1(cid:141) itselfisfinite. Nextweclaimthatifweprovetheconclusionafterbaseextensiontoafinite extensionL,thenthedesiredconclusionoverK holds. Namely,supposethatwe proveZ.A /\A.L/DZ.L/. Then L Z.A/\A.K/(cid:18)Z.A /\A.L/DZ.L/; L so Z.A/\A.K/(cid:18)Z.A/\Z.L/DZ.K/; wherethelastequalityusesLemma3.2. ThuswemayreplaceK byafiniteextensiontoassumethatZ consistsofa finite set of K-points of A. (The same idea was used in [Sto07].) A point P 2 A.K/ is represented by a sequence .Pn/n(cid:21)1 in A.K/ such that for every v, the limit limn!1Pn exists in A.Kv/. If in addition P 2Z.A/, then there is a point Qv2Z.K/whoseimageinZ.Kv/equalslimn!1Pn2A.Kv/. ThePn(cid:0)Qv are eventually containedinthe kernelofA.K/!A.F /, whichisfinitely generated, v so there are finitely generated subfields k (cid:18)k, K (cid:18)K with K =k a function 0 0 0 0 fieldsuchthatalltheP andthepointsofZ.K/areinA.K /. ByProposition3.5, n 0 thesequence.Pn(cid:0)Qv/n(cid:21)1 iseventuallydivisibleinA.K0/byanarbitrarilyhigh power of p. For any other v0 2 (cid:127), the same is true of .Pn (cid:0)Qv0/n(cid:21)1. Then Qv0 (cid:0)Qv 2 A.K0/ is divisible by every power of p. Since A.K0/ is finitely generated, Qv0 (cid:0)Qv is a torsion point in A.K0/. This holds for every v0 2 (cid:127), and A.K / is finite. Thus RWDP (cid:0)Q 2A.K / is a torsion point in A.K /. 0 tors v 0 0 Lemma3.7appliedtoK yieldsR2A.K / . HenceP DRCQ 2A.K/,and 0 0 tors v soP 2Z.A/\A.K/DZ.K/. (cid:3) LEMMA3.10. Fixv2(cid:127). Let(cid:128)v betheclosureofA.K/inA.Kv/. Thenfor everye2Z(cid:21)0,themapA.K/=peA.K/!(cid:128)v=pe(cid:128)v issurjective. Proof. Let O be the valuation ring of K , and let m be its maximal ideal. v v v LetAoverOv betheNe´ronmodel. Forr 2Z(cid:21)1,letGr bethekernelofA.Kv/D 518 BJORNPOONENandJOSÉFELIPEVOLOCH A.Ov/ ! A.Ov=mrv/. It follows from [Ser92, p. 118, Th. 2] that Gr=GrC1 is isomorphic to .O =m /dimA, which is killed by p, so that each G is an abelian v v r pro-p-group, and hence a topological Z -module. There are only finitely many p pointsoforderp inA.K /,andT G Df0g,sosomeG containsnonontriv- v r(cid:21)1 r r ial p-torsion points, and hence is torsion-free. In particular, A.K / has an open v ı subgroupA .K /thatisatorsion-freetopologicalZ -module,andwemaychoose v p Aı.K /sothatAı.K/WDA.K/\Aı.K /isfinitelygenerated. v v Thegroup(cid:128)ıWD(cid:128) \Aı.K /istheclosureofAı.K/,sothereisanisomor- v v v phismoftopologicalgroups(cid:128)vıŠZp˚m forsomem2Z(cid:21)0. Inparticular,forany e2Z(cid:21)0,thegrouppe(cid:128)vı isopenin(cid:128)vı,whichisopenin(cid:128)v. Sothelargergroup pe(cid:128) also is open in (cid:128) . But the image of A.K/ in the discrete group (cid:128) =pe(cid:128) v v v v isdense,sothemapA.K/=peA.K/!(cid:128) =pe(cid:128) issurjective. (cid:3) v v 3.3. AuniformMordell-Langconjecture. We thank Zoe´ Chatzidakis, Fran- c¸oiseDelon,andThomasScanlonformanyoftheideasusedinthissection. See [Del98] for the definitions of separable, p-basis, p-free, p-components, etc. By iteratedp-componentswemeanp-componentsofp-componentsof...ofp-com- ponents(allwithrespecttoagivenp-basis). The goal of this section is to deduce a uniform version (Proposition 3.16) of the function field Mordell-Lang conjecture from a version in [Hru96]. Under somehypotheses,theuniformversionassertsthefinitenessoftheintersectionof a subvariety X of an abelian variety A with any coset of a subgroup peA.F/ of A.F/,whereF isallowedtorangeoverp-basis-preservingextensionsofaninitial groundfieldK. Remark 3.11. The p-basis condition on F, or something like it, is neces- saryforthetruthofProposition3.16;withnocondition,F mightbealgebraically closed, and then peA.F/DA.F/, so the desired finiteness would fail assuming dimX >0. Thep-basisconditionisusedintheproofofProposition3.16toimply separabilityof F overK, whichguarantees thata nonisotrivialityhypothesis onA overK ispreservedbybaseextensiontoF;seeLemma3.13anditsproof. LEMMA3.12. LetBbeap-basisforafieldK ofcharacteristicp. LetLbe anextensionofK suchthatBisalsoap-basisforL. Supposethatc isanelement ofLthatisnotalgebraicoverK. Thenthereexistsaseparablyclosedextension F ofLsuchthatBisap-basisofF andtheAut.F=K/-orbitofc isinfinite. Proof. FixatranscendencebasisT forL=K. Let(cid:127)beanalgebraicallyclosed extensionofK suchthatthetranscendencebasisof(cid:127)=K isidentifiedwiththeset Z(cid:2)T. Identify L with a subfield of (cid:127) in such a way that each t 2 T maps to the transcendence basis element for (cid:127)=K labelled by .0;t/ 2 Z(cid:2)T. The map of sets Z(cid:2)T !Z(cid:2)T mapping .i;t/ to .i C1;t/ extends to an automorphism

Description:
for every e 2 Z 0, there exists an open subgroup V of A.Kv/ such that B \V Â . so there are finitely generated subfields k0 Â k, K0 Â K with K0=k0 a tian Gonzalez-Aviles, David Harari, Thomas Scanlon, and Michael Stoll for dis-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.