ebook img

The Black Hole-Neutron Star Binary Merger in Full General Relativity: Dependence on Neutron Star Equations of State PDF

185 Pages·2013·4.417 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Black Hole-Neutron Star Binary Merger in Full General Relativity: Dependence on Neutron Star Equations of State

Springer Theses Recognizing Outstanding Ph.D. Research For furthervolumes: http://www.springer.com/series/8790 Aims and Scope The series ‘‘Springer Theses’’ brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent fieldofresearch.Forgreateraccessibilitytonon-specialists,thepublishedversions includeanextendedintroduction,aswellasaforewordbythestudent’ssupervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on specialquestions.Finally,itprovidesanaccrediteddocumentationofthevaluable contributions made by today’s younger generation of scientists. Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria • They must be written in good English. • ThetopicshouldfallwithintheconfinesofChemistry,Physics,EarthSciences, Engineering andrelatedinterdisciplinaryfieldssuchasMaterials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics. • The work reported in the thesis must represent a significant scientific advance. • Ifthethesisincludespreviouslypublishedmaterial,permissiontoreproducethis must be gained from the respective copyright holder. • They must have been examined and passed during the 12 months prior to nomination. • Each thesis should include a foreword by the supervisor outlining the signifi- cance of its content. • The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field. Koutarou Kyutoku The Black Hole–Neutron Star Binary Merger in Full General Relativity Dependence on Neutron Star Equations of State Doctoral Thesis accepted by Kyoto University, Japan 123 Author (Current address) Supervisor Dr. KoutarouKyutoku Prof.Masaru Shibata Cosmophysics Group KyotoUniversity KEK, IPNS,Theory Center Kyoto Ibaraki Japan Japan ISSN 2190-5053 ISSN 2190-5061 (electronic) ISBN 978-4-431-54200-1 ISBN 978-4-431-54201-8 (eBook) DOI 10.1007/978-4-431-54201-8 SpringerTokyoHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012953379 (cid:2)SpringerJapan2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience?BusinessMedia(www.springer.com) Parts of this thesis have been published in the journal articles: 1. K. Kyutoku, M. Shibata, K. Taniguchi, Phys. Rev. D 82, 044049 (2010). 2. K. Kyutoku, H. Okawa, M. Shibata, K. Taniguchi, Phys. Rev. D 84, 064018 (2011),andarereprintedwithpermission.Copyright2010-2011bytheAmerican PhysicalSociety. Supervisor’s Foreword One of the most exciting events in general relativity and astrophysics in this decade will be the first direct detection of gravitational waves. This will be achieved by 2020. After their first detection, gravitational-wave astronomy will begin andwillbeanew toolforobserving general relativisticobjectswhich have been poorly explored. The black hole–neutron star binaries, which have not been observed yet, are among the most promising sources of gravitational waves. The firstdetectionofthemwillbeachievedbygravitational-waveobservation,andwe expectthatitwillproviderichinformationforblackhole–neutronstarbinariesand properties of the neutron stars. The merger remnant of black hole–neutron star binaries is also the leading candidateforthecentralenginesofshort-durationgamma-raybursts,forwhichthe progenitor has not been determined yet. A coincident observation of gravitational waves and gamma-ray bursts could provide the definite answer for this unsolved issue. In addition, a class of black hole–neutron star binaries is likely to eject neutron-rich material through the tidal disruption event of the neutron star. The ejected material is a promising transient source of UV, optical, and radio signals, which also have not yet been detected. Observation of these electromagnetic signals is one of the exciting unsolved issues in astronomy, and will be an important method for exploring the black hole–neutron star binaries. Innear-futureobservationsbygravitational-wavedetectorsandelectromagnetic telescopes,blackhole–neutronstarbinarieswillbeexploredindetail.However,to extractphysicalandastrophysicalinformationfromtheobservationaldata,atheory for their merger process is necessary. Numerical relativity is probably a unique approach for determining the nature of the merger of black hole–neutron star binaries. Numerical relativity is the field in which Einstein’s equation and matter equationsarenumericallyandaccuratelysolvedincomputers.Becausethemerger processes are highly dynamical and general relativistic, numerical relativity is required.Numericalrelativityhasbeensignificantlydevelopedinparticularinthe past decade. Now, it is feasible to perform numerical-relativity simulations for a varietyofproblemssuchasmergersofbinaryneutronstarsandbinaryblackholes. vii viii Supervisor’sForeword Amongmanyothers,thesimulationforblackhole–neutronstarbinarieswasanew topic in this field. The first simulation had been performed in 2006. Since then, significant progress has been achieved in this community and Dr. Koutarou Kyutoku, the author of this volume, has been a central person in this progress. Dr. Kyutoku is one of the first persons who performed numerical-relativity simulationsforthemergerofblackhole–neutronstarbinariessystematically.Inthis problem,thereareseveralfreeparameters:massesoftheblackholeandneutronstar andblack-holespin.Inaddition,theequationofstateofneutronstarsisstillpoorly known.Thus,thesimulationhastobeperformedforavarietyofpossibleequations of state. Dr. Kyutoku performed a large number of simulations for a variety of parametersetsandequationsofstate,andclarifiedthenatureofthemergerprocess, mergerremnants,andemittedgravitationalwavesinacomprehensivemanner.This volume presents the results of such a systematic investigation. In particular, he pointedoutthepossibilitythattheequationofstateforneutronstars,whichispoorly known, could be strongly constrained by the observation of high-frequency gravitational waves for the first time. He also clarified that for a class of black hole–neutronstarbinaries,theremnantiscomposedofarapidlyspinningblackhole surroundedbyamassiveanddensetorus.Sucharemnantisapromisingcandidate for the central engine of short-duration gamma-ray bursts. These findings give readersnewinsightsingeneralrelativityandhigh-energyastrophysics. Kyoto, September 2012 Masaru Shibata Acknowledgments IamdeeplygratefultoProf.MasaruShibata,mysupervisor,forhiscontinuoushelp andsupportinalltheaspectsofmyresearch.Iamalsogratefultohimforproviding meplentifulcomputationalresources. IthankProf. KeisukeTaniguchiforhelpingmewithcomputingquasiequilibrium statesofbinarieswithLORENE.IalsothankDr. TetsuroYamamotofordeveloping the code SACRA, and Dr. Hirotada Okawa for the update and parallelization of SACRAaswellasfororganizingourcomputationalenvironments. IwouldliketoexpressmygratitudetoProf. TakashiNakamura,Prof. Takahiro Tanaka,Prof. MasakiAndo,andProf. NaokiSetofordiscussionsofgravitational- wave astronomy on a weekly basis. I am especially indebted to Prof. Naoki Seto for careful reading of the manuscript. I am grateful to Dr. Yuichiro Sekiguchi, Dr. Kenta Kiuchi, Dr. Yudai Suwa, and Mr. Kenta Hotokezaka for in-depth discussions of numerical relativity, high- energyastrophysics,andphysicsofneutronstars.IamalsogratefultoDr. Atsushi Naruko and Dr. Kentaro Tanabe for daily discussions of a wide range of physics. It is a pleasure for me to acknowledge Prof. John L. Friedman, Prof. Eric Gourgoulhon, Dr. Nicolas Vasset, and Dr. Benjamin D. Lackey for their helpful discussion. I had an extraordinary time when I visited their institutes. Kyoto, January 2012 Koutarou Kyutoku ix Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Gravitational Waves from Compact Binaries. . . . . . . . . . . . . . . 1 1.1.1 The Quadrupole Formula and the Inspiral Phase. . . . . . . 3 1.1.2 The Estimated Detection Rate . . . . . . . . . . . . . . . . . . . 5 1.2 Electromagnetic Emission from the Compact Binary Merger . . . 7 1.2.1 Short-Hard Gamma-Ray Bursts and the Merger Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 The r-Process and the Kilonova . . . . . . . . . . . . . . . . . . 10 1.3 The Mass-Shedding Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Black Hole–Neutron Star Binaries in Numerical Relativity. . . . . 14 1.5 The Purpose of This Thesis and Convention. . . . . . . . . . . . . . . 17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 Equations of State of Neutron Star Matter. . . . . . . . . . . . . . . . . . 25 2.1 Formation and Cooling of (Proto-)Neutron Stars. . . . . . . . . . . . 25 2.2 Neutron Stars in Spherical Equilibria. . . . . . . . . . . . . . . . . . . . 28 2.2.1 The Tolman-Oppenheimer-Volkoff Equation . . . . . . . . . 29 2.2.2 The Tidal Love Number and Deformability. . . . . . . . . . 30 2.3 Current Constraints on the Equation of State . . . . . . . . . . . . . . 33 2.3.1 The Maximum Mass. . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.2 The Minimum Rotational Period. . . . . . . . . . . . . . . . . . 36 2.3.3 The Radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4 Piecewise Polytropes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.4.1 The Cold-Part Equation of State: Piecewise Polytropes. . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.4.2 Thermal Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . 44 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 xi xii Contents 3 Computing Initial Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1 Assumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 The Initial Value Problem of General Relativity. . . . . . . . . . . . 50 3.2.1 The 3?1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.2 Solving the Initial Value Problem. . . . . . . . . . . . . . . . . 52 3.2.3 The Puncture Framework. . . . . . . . . . . . . . . . . . . . . . . 54 3.3 Hydrostatic Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.1 The Hydrostatics in a Spacetime. . . . . . . . . . . . . . . . . . 56 3.3.2 The Hydrostatics in the Initial Value Problem . . . . . . . . 57 3.4 Free Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.1 Parameters Associated with the BH. . . . . . . . . . . . . . . . 60 3.4.2 Parameters Associated with the NS. . . . . . . . . . . . . . . . 62 3.4.3 Parameters of the Binary . . . . . . . . . . . . . . . . . . . . . . . 63 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 Methods of Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.1 The BSSN-Puncture Formalism. . . . . . . . . . . . . . . . . . . . . . . . 67 4.1.1 BSSN Variables and Evolution Equations . . . . . . . . . . . 68 4.1.2 BSSN Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.3 The Moving Puncture Gauge Condition. . . . . . . . . . . . . 71 4.2 Hydrodynamic Evolution Equations. . . . . . . . . . . . . . . . . . . . . 71 4.2.1 Evolution Equations in a Conservative Form . . . . . . . . . 72 4.2.2 Recovery of Primitive Variables. . . . . . . . . . . . . . . . . . 76 4.2.3 An Artificial Atmosphere. . . . . . . . . . . . . . . . . . . . . . . 77 4.3 Adaptive Mesh Refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3.1 The Grid Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.2 Boundary Conditions and Data in the Buffer Zone . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 Diagnostics for Numerical Simulations . . . . . . . . . . . . . . . . . . . . . 83 5.1 Gravitational Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.1.1 Extracting Gravitational Waves . . . . . . . . . . . . . . . . . . 84 5.1.2 The Fixed-Frequency Integration Method. . . . . . . . . . . . 86 5.1.3 The Taylor-T4 Formula. . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 Quantities of Merger Remnants. . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.1 Quantities of the Remnant Disk . . . . . . . . . . . . . . . . . . 90 5.2.2 Quantities of the Remnant Black Hole. . . . . . . . . . . . . . 91 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6 The Merger of Nonspinning Black Hole–Neutron Star Binaries. . . 93 6.1 Models and Setup of AMR Grids . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Orbital Evolution and General Merger Process . . . . . . . . . . . . . 95 6.3 Gravitational Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.4 Gravitational-Wave Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 101

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.