ebook img

The Bergman kernel: explicit formulas, deflation, Lu Qi-Keng problem and Jacobi Polynomials PDF

0.16 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Bergman kernel: explicit formulas, deflation, Lu Qi-Keng problem and Jacobi Polynomials

THE BERGMAN KERNEL: EXPLICIT FORMULAS, DEFLATION, LU QI-KENG PROBLEM AND JACOBI POLYNOMIALS Tomasz Beberok In this paper we investigate the Bergman kernel function forintersection of two complex ellipsoids 6 (z,w ,w ) Cn+2 : z 2+ + z 2+ w q < 1, z 2+ + z 2+ w r < 1 . 1 { 1 2 ∈ | 1| ··· | n| | 1| | 1| ··· | n| | 2| } 0 2 n Keyword: Lu Qi-Keng problem, Bergman kernel, Routh-Hurwitz theorem, a Jacobi polynomials J 2 AMS Subject Classifications: 32A25; 33D70 1 ] V 1 Introduction C . h Let D be a bounded domain in Cn. The Bergman space L2(D) is the space of all t a a square integrable holomorphic functions onD. Then the Bergmankernel K (z,w) m D is defined [2] by [ 1 ∞ v K (z,w) = Φ (z)Φ (w), (z,w) D D, D j j 9 ∈ × 8 Xj=0 9 2 where Φ ( ): j = 0,1,2,... is a complete orthonormal basis for L2(D). It is 0 { j · } a defined for arbitrary domains, but it is hard to obtain concrete representations . 1 for the Bergman kernel except for special cases like a Hermitian ball or polydisk. 0 6 Refer to [6] for more on this topic. 1 In 2015 [1] the author of this paper computed the Bergman kernel for Dq,r = : 1 v z = (z ,w ,w ) C3: z 2+ w q < 1, z 2+ w r < 1 explicitly. The goal of 1 1 2 1 1 1 2 i { ∈ | | | | | | | | } X thispaperistoextendtheresultin[1]tohigherdimensionalcase, namelytoDq,r = n r (z,w ,w ) Cn+2 : z 2+ + z 2+ w q < 1, z 2+ + z 2+ w r < 1 . a { 1 2 ∈ | 1| ··· | n| | 1| | 1| ··· | n| | 2| } This paper will be organized as follows. In Section 2, we will compute ex- plicit formula of the Bergman kernel for Dq,r and we show deflation identity n between domains Dq,r and Dq,r = z = (z ,w ,w ) C3: z 2/n + w q < n 1/n { 1 1 2 ∈ | 1| | 1| 1, z 2/n + w r < 1 . In Section 3, we show some relation between Bergman 1 2 | | | | } kernel for D2,2 and Jacobi polynomials. In Section 4, we investigate the Lu Qi- n Keng problem for D2,2. In the final section, we consider the Bergman kernel for n Ωr := (z,w) C Cn: z 2 + w r < 1,..., z 2 + w r < 1 . n { ∈ × | | | 1| | | | n| } 1 2 Bergman Kernel Let ζ = (z,w ,w ) Cn+2. Put Φ (ζ) = ζκ = zαwγ1wγ2 for each multi-index 1 2 ∈ κ 1 2 κ = (α,γ ,γ ). Since Dq,r is complete Reinhardt domain, the collection of Φ 1 2 n { κ} such that each α 0 and γ 0 is a complete orthogonal set for L2(Dq,r). i ≥ j ≥ n Proposition 2.1 Let α Z for i = 1,...,n and γ 0, γ 0. Then, we have i + 1 2 ∈ ≥ ≥ πn+2Γ(2γ1+2 + 2γ2+2 +1) n Γ(α +1) zαwγ1wγ2 2 = q r i=1 i , k 1 2 kL2(Dnq,r) (γ +1)(γ +1)Γ(2γ1+2 + 2γ2+2 + α +n+1) 2 2 q Qr | | where α = α + +α . 1 n | | ··· Proof. zαwγ2wγ3 2 = z 2α w 2γ2 w 2γ3 dV(z)dV(w) k 1 2 kL2(Dnq,r) | | | 1| | 2| Z Dnq,r We introduce polar coordinate in each variable by putting z = reiθ, w = s eiλ1, 1 1 w = s eiλ2. After doing so, and integrating out the angular variables we have 2 2 (2π)n+2 r2α+1s2γ1+1s2γ2+1dV(r)dV(s), 1 2 ZRe(Dnq,r) where Re(Dq,r) = (r,s) Rn R2 : r 2 +sq < 1, r 2 +sr < 1 . Next we n ∈ + × + k k 1 k k 2 use spherical coordinates in the r variable to obtain (cid:8) (cid:9) (2π)n+2 ρ2|α|+2n−1ω2α+1s2γ1+1s2γ2+1dσ(ω)dV(s)dρ, 1 2 ZS∗Re(Dnq,r)ZSn+1−1 where S Re(Dq,r) = (ρ,s) R R2 : ρ2 +sq < 1, ρ2 +sr < 1 . Using (6) ∗ n ∈ + × + 1 2 form Lemma 1 in [4] we obtain (cid:8) (cid:9) β(α+1) 1 (1−ρ2)1/q (1−ρ2)1/r (2π)n+2 ρ2|α|+2n−1s2γ1+1s2γ2+1ds ds dρ, 2n−1 1 2 1 2 Z0 Z0 Z0 where β(α) = Qni=1Γ(αi) . Integrating out of s and s variables, we have Γ(α1+···+αn) 1 2 (2π)n+2β(α+1) 1ρ2|α|+2n−1(1 ρ2)2γ1q+2+2γ2r+2 dρ 2n+1(γ +1)(γ +1) − 1 2 Z0 After a little calculation using well known fact 1 Γ((a+1)/p)Γ(b+1) xa(1 xp)bdx = , − pΓ((a+1)/p+b+1) Z0 we obtain desired result. Now we discuss the Bergman kernel for Dq,r. n 2 Theorem 2.1 The Bergman kernel for Dq,r is given by n Lq,r(a,b) KDnq,r((z,w1,w2),(η,ξ1,ξ2)) = πn+2(1−z1η1n−···−znηn)2q+r2+1, where w ξ w ξ a = 1 1 , b = 2 2 2 2 (1−z1η1 −···−znηn)q (1−z1η1 −···−znηn)r 2 ∂ 2 ∂ Lq,r (x,y) = nLq,r(x,y)+ xLq,r(x,y)+ yLq,r(x,y) and n+1 n q∂x n r∂y n 2(q(1 x)(y +1)+r(x+1)(1 y)) Lq,r(x,y) = − − 1 qr(1 x)3(1 y)3 − − Proof. By Proposition 2.1, we have K ((z,w ,w ),(η,ξ ,ξ )) Dnq,r 1 2 1 2 = 1 ∞ ∞ (γ1 +1)(γ2 +1)Γ(2γ1q+2 + 2γ2r+2 +|α|+n+1)µανγ1νγ2, πn+2 Γ(2γ1+2 + 2γ2+2 +1) n Γ(α +1) 1 2 Xα=0γ1X,γ2=0 q r i=1 i Q where µα = (z η )α1 (z η )αn and ν = w ξ , ν = w ξ . Sum out of each α , 1 1 ····· n n 1 1 1 2 2 2 i we have 1 ∞ (γ1 +1)(γ2 +1)Γ(2γ1q+2 + 2γ2r+2 +n+1)νγ1νγ2, πn+2(1−τ)q2+2r+1 γ1X,γ2=0 Γ(2γ1q+2 + 2γ2r+2 +1)(1−τ)2γq1+2γr2 1 2 where τ = z η + + z η . Now we will consider sequence of functions Lq,r 1 1 ··· n n n defined as follows ∞ (γ +1)(γ +1)Γ(2γ1+2 + 2γ2+2 +n+1) Lq,r(x,y) = 1 2 q r xγ1yγ2 n Γ(2γ1+2 + 2γ2+2 +1) γ1X,γ2=0 q r Using the identity Γ(t+1) = tΓ(t) we easily obtain recursion formula 2 ∂ 2 ∂ Lq,r (x,y) = nLq,r(x,y)+ xLq,r(x,y)+ yLq,r(x,y) n+1 n q∂x n r∂y n Moreover ∞ 2γ +2 2γ +2 Lq,r(x,y) = (γ +1)(γ +1) 1 + 2 +1 xγ1yγ2 1 1 2 q r γ1X,γ2=0 (cid:18) (cid:19) Hence 2(q(1 x)(y +1)+r(x+1)(1 y)) Lq,r(x,y) = − − 1 qr(1 x)3(1 y)3 − − which completes the proof. 3 2.1 Deflation Now we will consider following domains Dq,r = (z,w ,w ) C3: z 2/n + w q < 1, z 2/n + w r < 1 1/n { 1 2 ∈ | | | 1| | | | 2| } Similarly as in Sect. 2, we have Proposition 2.2 Let α 0, γ 0 and γ 0. Then, we have 1 2 ≥ ≥ ≥ nπ3Γ(2γ1+2 + 2γ2+2 +1)Γ(nα+n) zαwγ1wγ2 2 = q r . k 1 2 kL2(D1q/,rn) (γ2 +1)(γ2 +1)Γ(2γ1q+2 + 2γ2r+2 +nα+n+1) Therefore K ((0,w ,w ),(0,ξ ,ξ )) Dq,r 1 2 1 2 1/n ∞ (γ +1)(γ +1)Γ(2γ1+2 + 2γ2+2 +n+1) = 1 2 q r (w ξ )γ1(w ξ )γ2 π3n!Γ(2γ1+2 + 2γ2+2 +1) 1 1 2 2 γ1X,γ2=0 q r Hance 1 KD1q/,rn((0,w1,w2),(0,ξ1,ξ2)) = π3n!Lqn,r(w1ξ1,w2ξ2) Comparing formulas for KD1q/,rn and KDnq,r, we obtain following deflation identity Proposition 2.3 For every n N and every positive numbers q and r, we have ∈ n! πn−1KD1q/,rn((0,w1,w2),(0,ξ1,ξ2)) = KDnq,r((0,...,0,w1,w2),(0,...,0,ξ1,ξ2)) Note that, we have some kind of deflation result similar to that obtained in [3]. 3 Some representations of Bergman kernel for D2,2 n Jacobi polynomials are a class of classical orthogonal polynomials. They are or- thogonal with respect to the weight (1 x)k(1 + x)l on the interval [ 1,1]. For − − k, l > 1 the Jacobi polynomials are given by the formula − ( 1)d ∂ P(k,l)(z) = − (1 z)−k(1+z)−l (1 z)k(1+z)l(1 z2)d . d 2dd! − ∂zd − − (cid:8) (cid:9) The Jacobi polynomials are defined via the hypergeometric function as follows (k +1) 1 z (k,l) d P (z) = F d,1+k +l+d;k +1, − , (1) d d! 2 1 − 2 (cid:18) (cid:19) where (k+1) is Pochhammer’s symbol and F is Gaussian or ordinary hyperge- d 2 1 ometric function defined for z < 1 by the power series | | ∞ (a) (b) F (a,b;c;z) = n nzn 2 1 n!(c) n n=0 X 4 Appell series F defined by 1 ∞ ∞ (a) (b) (b′) F (a;b,b′;c,x,y) = m+n n mxnym, ( x < 1, y < 1) 1 n!m!(c) | | | | n+m n=0m=0 XX is one of a natural two-variable extension of hypergeometric series F . 2 1 The following reduction formulas can be proved (see, for details [5], p. 238-239) F (a;b,b′;b+b′;x,y) = (1 y)−a F (a,b;b+b′;(x y)/(1 y)) (2) 1 2 1 − − − F (a;b,b′;c;x,x) = F (a,b+b′;c;x) (3) 1 2 1 Comparing functions F and L2,2 it is easy to see 1 n Γ(3+n) F (3+n;2,2;3;x,y) = L2,2(x,y) 2 1 n The following is the main theorem of this section. Theorem 3.1 The Bergman kernel for D2,2 can be expressed in the following ways n (i) K ((0,w ,w ),(0,ξ ,ξ )) = Dn2,2 1 2 1 2 Γ(3+n) n n−i n n 1 (2) (2) (w ξ )i(w ξ )k − i k 1 1 2 2 2πn+2 i k (3) (1 w ξ )2+i(1 w ξ )2+k i=0 k=0(cid:18) (cid:19)(cid:18) (cid:19) i+k − 1 1 − 2 2 XX (ii) For every m N 0 , we have ∈ ∪{ } C (2+m)(2 ν ν )P(32,21)(x′+1) K ((0,w ,w ),(0,ξ ,ξ )) = m − 1 − 2 m 1−x′ D22m,2+1 1 2 1 2 π2m+3(1 ν1 ν2 ν1ν2)m+3 − − − C (2m+1)P(32,−12)(x′+1) m m 1−x′ , − π2m+3(1 ν ν ν ν )m+2 1 2 1 2 − − − 2 where ν = w ξ , ν = w ξ , x′ = ν1−ν2 and C = Γ(4+2m)m! . 1 1 1 2 2 2 2−ν1−ν2 m 6(52)m (cid:16) (cid:17) (iii) For every m N, we have K ((0,w ,w ),(0,ξ ,ξ )) = ∈ D22m,2 1 2 1 2 2P(32,−21)(x′+1) (2 ν ν )P(23,21)(x′+1) Γ(3+2m)m! m 1−x′ − − 1 − 2 m−1 1−x′ , π2m+26(5) (1 ν ν ν ν )m+2 2 m−1 − 1 − 2 − 1 2 (iv) If w ξ = w ξ then 1 1 2 2 Γ(3+n)(3+nw ξ ) K ((0,w ,w ),(0,ξ ,ξ )) = 1 1 Dn2,2 1 2 1 2 6πn+2(1 w ξ )4+n − 1 1 5 Proof. For the proof of (i), if we apply the recursion formula (see [8]) n n−i n n 1 (b) (b′) F (a+n;b,b′;c;x,y) = − i k 1 i k (c) i=0 k=0(cid:18) (cid:19)(cid:18) (cid:19) i+k XX xiykF (a+i+k;b+i,b′ +k;c+i+k;x,y), 1 × then using formula 1 F (3+i+k;2+i,2+k;3+i+k;x,y) = 1 (1 x)2+i(1 y)2+k − − we obtain (i). In order to prove the second statements we need the following well-known contigu- ous relation cF (a;b,b′;c;x,y) (c a)F (a;b,b′;c+1;x,y) 1 1 − − aF (a+1;b,b′;c+1;x,y) = 0 1 − It follows that 2m+1 F (4+2m;2,2;3;x,y) = F (2m+4;2,2;4;x,y) 1 1 − 3 4+2m + F (2m+5;2,2;4;x,y) 1 3 By (2), we have 2m+1 x y F (4+2m;2,2;3;x,y) = F 2m+4,2;4; − 1 − 3(1 y)4+2m2 1 1 y − (cid:18) − (cid:19) 4+2m x y + F 2m+5,2;4; − 3(1 y)5+2m2 1 1 y − (cid:18) − (cid:19) Then by (see, for details [5], p. 66) z −a a a+1 1 F (a,b;2b;z) = 1 F , ;b+ ;[z/(2 z)]2 , 2 1 2 1 − 2 2 2 2 − (cid:18) (cid:19) (cid:16) (cid:17) we have (2m+1)24+2m 5 5 F (4+2m;2,2;3;x,y) = F m+2,m+ ; ;(x′)2 1 − 3(2 x y)4+2m2 1 2 2 − − (cid:18) (cid:19) (4+2m)25+2m 5 5 + F m+ ,m+3; ;(x′)2 , 3(2 x y)5+2m2 1 2 2 − − (cid:18) (cid:19) 2 where x′ = x−y . Next by (see, for details [5], p. 64) 2−x−y (cid:16) (cid:17) F (a,b;c;z) =(1 z)−a F (a,c b;c;z/(z 1)) 2 1 2 1 − − − =(1 z)−b F (c a,b;c;z/(z 1)), 2 1 − − − 6 we can easily get F (4+2m;2,2;3;x,y) = 1 2m+1 5 x′ 2 F m+2, m; ; − 3(1 x y xy)m+22 1 − 2 x′ 1 ! − − − (cid:18) − (cid:19) (2+m)(2 x y) 5 5 x′ 2 + − − F m+ ,m+3; ; , 3(1 x y xy)m+32 1 2 2 x′ 1 ! − − − (cid:18) − (cid:19) Finally, by (1) we obtain (ii). The formula (iii) can be obtained by the same method and we omit the details. Nowwewillprove(iv). This isaformalexercise butweinclude itforcompleteness: From (3) F (3+n;2,2;3;x,y) = F (3+n,4;3;x) 1 2 1 Now it is relatively easy to compute the following result 3+nx F (3+n,4;3;x) = 2 1 3(1 x)4+n − Thus we prove (iv). 4 Lu Qi-Keng problem The explicit formula of the Bergman kernel function for the domains Dq,r enables n us to investigate whether the Bergman kernel has zeros in Dq,r Dq,r or not. We n × n will call this kind of problem a Lu Qi-Keng problem. If the Bergman kernel for a bounded domain does not have zeros, then the domain will be called a Lu Qi-Keng domain. By Theorem 1.2 form [1] if n = 1, then Dq,r is a Lu Qi-Keng domain for all n positive real numbers q and r. Combining deflation identity (Proposition 2.3) and Proposition 4.4 from [1], if n = 2 and q = r, then Dr,r is not a Lu Qi-Keng domain. 2 Using the same method as in [1] we will prove that it is also true for n = 3. Denote by G(x,y) =3r3(1 x)3(1 y)3+22r2(1 x)2(1 y)2(1 xy) − − − − − +24r(1 x)(1 y) x(2x+1)y2+(x 8)xy +x+y +2 − − − +8(1 xy) x2y(4y+7)+x2 +y2 +xy(7y 38)+7x+7y +4 . (cid:0) (cid:1) − − (cid:0) (cid:1) Since r3(1 x)5(1 y)5 G(x,y) = − − Lr,r(x,y) 2 3 then the Bergman kernel KD3r,r has zero inside D2r,r ×D2r,r if polynomial G(ǫx,ǫy) does not satisfy the stability property (see [1], for details) for some 0 < ǫ < 1. By following Šiljak and Stipanović [7] we consider polynomial z3G(eiη,1/z) = d(z) =d z3 +d z2 +d z +d , 3 2 1 0 7 where d = 3r3( 1+t)3 22r2( 1+t)2t+24rt( 1 t+2t2) 8t(1+7t+4t2), 0 − − − − − − d = 8 9r3( 1+t)3 +336t2 56t3 +22r2( 1+t)2(1+2t) 1 − − − − 24r(1 10t+8t2 +t3), − − d = 9r3( 1+t)3 22r2(2 3t+t3) 8( 7+42t+t3) 2 − − − − − 24r(1+8t 10t2 +t3), − − d = 22r2( 1+t)2 3r3( 1+t)3 24r( 2+t+t2)+8(4+7t+t2) 3 − − − − − and t = eiη. With the polynomial d(z) we associate the Schur-Cohn 3 3 matrix × d d d 11 12 13 M(eiη) = d d d , 21 22 23   d d d 31 32 33   d = j (d d d d ), where 1 j k. The matrix M(eiη) is jk l=1 m−j+l m−k+l − j−l k−l ≤ ≤ defined when j > k to become Hermitian. After some calculation (with the help P of a computer program Maple or Mathematica), we have 3 detM(eiη) = 130459631616r3sin12(η/2) g (r)cos(nη) , n − " # n=0 X where g (r) = 26624 24672r2+15724r4 2430r6 0 − − g (r) = 12288+22496r2 20822r4+3645r6 1 − g (r) = 512+2208r2+5012r4 1458r6 2 − − g (r) = r2( 32+86r2 +243r4) 3 − Since 3 g (r) = 38400 n n=0 X Therefore it is easy to see that for every r > 0 there exist η such that detM(eiη) < 0. Hence there exist 1 > ǫ > 0, such that polynomial G(ǫx,ǫy) does not satisfy the stability property (see [7]). As a consequence of above consideration, we have following corollary Corollary 4.1 For any r > 0, domains Dr,r and Dr,r are not Lu Qi-Keng. 3 1/3 Now we will study Lu Qi-Keng problem for D2,2 in the case when n > 3. By n representation (iv) from Theorem 3.1 Γ(3+n)(3+nw ξ ) K ((0,w ,w ),(0,ξ ,ξ )) = 1 1 . Dn2,2 1 1 1 1 6πn+2(1 w ξ )4+n − 1 1 8 Hence K (0,i 3/n,i 3/n),(0, i 3/n, i 3/n) = 0. Dn2,2 − − (cid:16) p p p p (cid:17) For brevity, we shall summarize these last statements by saying that Proposition 4.1 Domain D2,2 is Lu Qi-Keng if and only if n = 1. n At the end of this section we would like to present following relations between zeros of the Bergman kernel for domains Dq,r and Dq,r . n 1/n Proposition 4.2 For any positive real numbers q and r (i) If KDnq,r has zeros, then KD1q/,rn also has zeros, (ii) If Dq,r is Lu Qi-Keng domain, then Dq,r is Lu Qi-Keng domain. 1/n n Proof. Note that the zero set is a bi-holomorphic invariant object. Since any point (z,w ,w ) Dq,r can be mapped equivalently onto the form (0,w ,w ) by 1 2 ∈ n 1 2 following automorphism of the Dq,r n f f (1 a 2)1/q (1 a 2)1/r Dq,r (z,w ,w ) Ψ (z), −k k w , −k k w Cn+2, n ∋ 1 2 7→ a (1 z,a )2/q 1 (1 z,a )2/r 2 ∈ (cid:18) −h i −h i (cid:19) where hz,ai 1 a+z 1 a 2 1+√1−kak2 − −k k Ψ (z) = (cid:18) (cid:19) . a 1 z,a p −h i Therefore, we need only consider the zeroes restricted to 0 D D, where { } × × D := z C : z < 1 . The results now follows from Proposition 2.3. { ∈ | | } 5 Additional Results Our purpose in this section is to consider domains Ωr defined for every positive n real number r by Ωr := (z,w) C Cn: z 2 + w r < 1,..., z 2 + w r < 1 n ∈ × | | | 1| | | | n| (cid:8) (cid:9) The reader can see that following proposition is completely analogous to the results presented earlier. Proposition 5.1 For j = 1,2,...,n let β 0. Then for α 0, we have j ≥ ≥ πn+1Γ 2( n β +n)+1 Γ(α+1) zαwβ 2 = r j=1 j . L2(Ωn) Γ 2( n(cid:16) βP+n)+α+2 (cid:17)n (β +1) (cid:13) (cid:13) r j=1 j j=1 j (cid:13) (cid:13) (cid:16) (cid:17) P Q Now we will give an explicit formula for the kernel K of Ωr. Ωrn n 9 Theorem 5.1 If w,ζ Dn, then the Bergman kernel for Ωr is ∈ n n n 2(1+ν ) πn+1K ((0,w),(0,ζ))= (1 ν )−2 + k , Ωrn − k r(1 ν )2 (1 ν )2(1 ν ) 1 n k k=1 k=1 − ··· − − Y X where ν = w ζ for k = 1,...,n. Moreover if ν = ν = = ν , then k k k 1 2 ··· n (2n r)ν +2n+r πn+1K ((0,w),(0,ζ))= − 1 . Ωr n r(1 ν )2n+1 1 − Proof. As a consequence of Proposition 5.1, we have ∞ Γ 2( n β +n)+2 n (β +1) r j=1 j j=1 j πn+1K ((0,w),(0,ζ)) = νβ, Ωrn (cid:16) PΓ 2( n β +(cid:17)nQ)+1 β1,.X..,βn≥0 r j=1 j (cid:16) (cid:17) P where νβ = νβ1 νβn. Then, using the fact that aΓ(a) = Γ(a+1), 1 ····· n ∞ n 2 r πn+1K ((0,w),(0,ζ)) = β + +β +n+ (β +1)νβ. Ωr 1 n j n r ··· 2 β1,.X..,βn≥0 (cid:16) (cid:17)Yj=1 Hence, the kernel is n ∞ n 2 (β +1) (β +1)νβ, rπn+1 k j Xk=0β1,.X..,βn≥0 Yj=1 where β = r/2 1. After some calculation using formulas 0 − ∞ ∞ 1+x (m+1)xm = (1 x)−2 and (m+1)2xm = , − (1 x)3 m=0 m=0 − X X we obtain desired formula. r 5.1 Zeros of Bergman kernels on Ω n In this section, we will prove that the Bergman kernel function of Ωr for any n natural number n and positive real number r is zero-free. Proposition 5.2 For any positive integer n, the domain Ωr is a Lu Qi-Keng n domain. Proof. It is obvious that the Bergman kernel for Ωr has no zeros. The Bergman 1 kernel function of Ωr has zeros iff n n n r 1+ν r 2ν k k + = n+ + = 0, 2 1 ν 2 1 ν k k k=1 − k=1 − X X 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.