ebook img

The B/C and sub-Iron/Iron Cosmic ray ratios - further evidence in favor of the spiral arm diffusion model PDF

3.5 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The B/C and sub-Iron/Iron Cosmic ray ratios - further evidence in favor of the spiral arm diffusion model

PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 THEB/CANDSUB-IRON/IRONCOSMICRAYRATIOS-FURTHEREVIDENCEINFAVOROFTHESPIRALARM DIFFUSIONMODEL DAVIDBENYAMIN1,EHUDNAKAR2,TSVIPIRAN1&NIRJ.SHAVIV1,3 1.TheRacahInstituteofphysics,TheHebrewUniversityofJerusalem,Jerusalem91904,Israel 2.RaymondandBeverlySacklerSchoolofPhysics&Astronomy,TelAvivUniversity,TelAviv69978,Israeland 3.SchoolofNaturalSciences,InstituteforAdvancedStudy,EinsteinDrive,Princeton,NJ08540 ABSTRACT TheBorontoCarbon(B/C)andsub-Fe/FeratiosprovidesanimportantclueonCosmicRay(CR)propagation 6 within the Galaxy. These ratios estimate the grammage that the CR traverse as they propagate from their 1 sourcestoEarth. AttemptstoexplaintheseratioswithinthestandardCRpropagationmodelsrequireadhoc 0 modificationsandevenwiththosethesemodelsnecessitateinconsistentgrammagestoexplainbothratios. As 2 analternative,physicallymotivatedmodel,wehaveproposedthatCRoriginatepreferablywithinthegalactic r spiralarms. CRpropagationfromdynamicspiralarmshasimportantimprintsonvarioussecondarytoprimary p ratios,suchastheB/Cratioandthepositronfraction.Weuseourspiralarmdiffusionmodelwiththespallation A networkextendeduptoNickeltocalculatethesub-Fe/Feratio.Weshowthatwithoutanyadditionalparameters thespiralarmmodelconsistentlyexplainsbothratioswiththesamegrammage,providingfurtherevidencein 8 2 favorofthismodel. Subjectheadings:cosmicrays—diffusion—Galaxy: kinematicsanddynamics ] E H 1. INTRODUCTION to find any combination of parameters that fit both ratios si- multaneously, for the aforementioned reason. Namely, Iron . Cosmic ray (CR) composition measurements have been h nuclei do not produce enough secondaries given model pa- collectedforalmostfourdecades. Theiranalysisprovidesin- p rametersthatcorrectlyreproducetheB/C. formationonthepropagationthroughtheinterstellarmedium - Over the past decade, CRs propagation models evolved to o (ISM),whichfurtherprovidesinformationontheCRsources includespiralarmsasthesourceoftheCRparticles(Shaviv r andvariouspropertiesoftheISM.Oneofthemostimportant t aspects characterizing the propagation is the CR path length 2003;Shavivetal. 2009;Gaggeroetal. 2013a;Effenberger s et al. 2012; Werner et al. 2013). In these models, the CR a distribution (PLD), which describes the probability distribu- [ tion function of the path lengths traversed by CRs between sourcesprimarilyresideatafinitedistancefromthesolarsys- tem,andthisnaturallysuppressestheshortpathlengths(e.g., theiroriginandtheirmeasurementnearEarth. ThisPLDde- 2 see figs. 4 and 6 in Benyamin et al. 2014, hereafter B14). termines the amount of spallation and radioactive decay the v Hence, spiral arm models could in principle fit both ratios particles will undergo on the way to Earth. Thus, by mea- 2 with the same model parameters. We study this possibility suring the ratio between secondary CR particles, formed en 7 here. 0 route, to primary particles accelerated at the source, one can B14 considered the spiral arms to be dynamic as well, 3 constrainthePLD. showingthatthismodelrecoversthelowenergybehaviorof 0 Until recently one of the stringent and often implicit as- theB/Cratio. Morespecifically,secondariestoprimariesra- . sumptions in CR propagation models was an azimuthally 1 tios such as the B/C, are expected to decrease with energy symmetric source distribution (e.g. Strong et al. 2007; di 0 becausethetimerequiredforparticlestoreachthesolarsys- Bernardo et al. 2010). The PLD resulting from such mod- 6 tem(i.e.,their“age”)decreaseswiththediffusivity,whichin- elscloselyresemblesanexponentialPLD. 1 creaseswiththeenergy.However,below1GeV/nuc.,theB/C Oneoftheproblemsinthesedisk-likemodelsistheamount : ratio exhibits the opposite behavior. Although unexpected v of grammage the models require to explain the B/C and the i sub-Fe/Fe ratios given the same geometric parameters. Be- fromjustdiffusion,itcanbeexplainedbytakingintoaccount X thedynamicsofthespiralarms.Thisisbecauseatsufficiently cause of the higher spallation cross-sections, the sub-Fe/Fe r ratioistypicallysensitivetotherelativefractionofshortpath low energies the CR age will be governed not by the diffu- a sionfromthespiralarmsbutinsteadbythetimesincethelast lengths in the PLD. The B/C ratio, with lower spallations spiral arm passage, which would be shorter. Since CRs be- crosssections,ismoresensitivetotherelativefractionoflong low 1 GeV/nuc. are non-relativistic, an energy independent path lengths. When trying to fit both measured ratios simul- propagationtimethengiveslessspallationproductsatlower taneously in a disk-like model, one finds inconsistency with energies,thusreproducingtheB/Criseatlowenergies(B14), thenearlyexponentialPLDofthedisk-likemodels—thesub- withoutrequiringanyadditionalassumptionsonthepropaga- Fe/Fe ratio requires a larger mean grammage than the B/C tions(suchasagalacticwind,reaccalerationorbreaksinthe ratio. Garcia-Munozetal. (1987)suggestedthatthisincon- diffusioncoefficient). sistency could be resolved with the ad hoc assumption that One interesting ramification of the modified PLD of the shortpathlengthsaresuppressed. spiral arm model is that it requires a notably smaller halo In a different analysis, Davis et al. (2000) investigated size and diffusion coefficients to recover the observed B/C whether the introduction of a second, low-energy CR source and 10Be/Be ratio. Namely, by modifying the PLD one has can reproduce the B/C and sub-Fe/Fe ratios, in particular, at tochangethe“canonical”diffusionparameterscharacterizing low energies. Although they found that one can recover the thecosmicrays(B14). Thisisreasonableandevenexpected B/Cratioandthesub-Fe/Feratioseparately,theywereunable 2 Benyaminetal. giventhatthose“canonical”parameterswereobtainedwithin 1988) and SANRIKU (Hareyama 1999). We carry out the the standard disk-like model whose propagation characteris- analysis twice, once for a disk-like model having no spiral ticsarequitedifferentfromthoseofthespiralarmmodelthat arms,andonceforthespiralarmmodelofB14. weconsiderhere. We begin in §2 by briefly describing the model we devel- An interesting related phenomenon is the unexpected en- oped in B14 and the parameters we use. In §2.1 we detail ergy dependence of the positron fraction, e+/(e+ + e−), the improvements carried out for the present work. The re- of CRs. Since positrons in standard scenarios are sec- sults are then described §4, the main part of which includes ondaryparticles,theratioisexpectedtodecreasewithenergy separate fits of δ, and D to the observed B/C ratio and to 0 (Moskalenko&Strong1998).However,thePAMELAsatellite thesub-Fe/Feratio. Theimplicationsoftheseresultsarethen measurementsrevealedthattheratioincreaseswiththeenergy discussedin§5. above10GeVuptoatleast100GeV(Adriani2009). More 2. THENUMERICALMODEL recent measurements by AMS-02 show leveling at 300 GeV (Accardoetal. 2014). InB14wedevelopedaCRadvection-diffusionmodelwith Given that standard models could not explain this behav- which we recovered the B/C ratio. The nuclear network in ior,severalsolutionsweresuggested. Theincreasedpositron the model included all stable and long lived radioactive iso- fraction at higher energies can be explained in any scenario topes between Beryllium and Oxygen. The model followed havinganadditionalprimarypopulationofpairswithahard the propagation of primary and secondary CRs from their spectrum,suchthatitdominatesthepopulationofsecondary sources,primarilylocatedonspiralarms. Unlikepresentday positronsabove10GeV.Pairscannaturallybecreatedbydark state of the art simulations (such as GALPROP, Strong et al. matter annihilation (Bergstro¨m et al. 2008; Ibarra & Tran 2007 and DRAGON, di Bernardo et al. 2010) that solve the 2008),bypulsars(Harding&Ramaty1987,Chietal. 1996, partial differential equations of the describing advection and Aharonian et al. 1995, Hooper et al. 2009, and Profumo diffusion,ourmodelusesaMonteCarlo(MC)algorithm. 2008) or in aged SNRs (Blasi 2009, Blasi & Serpico 2009a, Instead of simulating the small steps corresponding to the Ahlersetal. 2009,andMertsch&Sarkar2009). physicalmeanfreepath(m.f.p.) oftheCRs,around1pc,our AnothertypeofexplanationdirectlyrelatedtothePLDwas MCsimulationusesalargereffectivem.f.p.,whichlumpsto- proposedbyShavivetal. (2009). IftheCRsourcesarecon- gethermanysmalleffectivephysicalsteps. Thiscorresponds centrated at a finite distance from the solar system, as is ex- to a larger effective time step chosen to be τesc/100, where pectedfromthespiralarmstructure,thepaucityofshortpath τ ≈ Z2/2D is the typical escape time of a CR from the esc h lengthsimpliesthatprimaryelectronswithahighenoughen- galaxy2. In the present simulations, we fix Z to be 250 pc, h ergy will cool before reaching the solar system. In contrast, likeournominalmodelinB14. Thiscorrespondstoaneffec- thesecondarypositronsareformedbyprotonsthateffectively tivem.f.p.of25pc, Whichissmallerthanthetypicallength donotcool,suchthattheycanbeformedinthesolarsystem’s scaleoverwhichthegasdensityvaries. vicinity. For the local electron cooling rate determined by Each time step, we check whether the CR bundle had left Synchrotronandinverse-Comptonscattering,andthetypical the galaxy. If it did not, we calculate the grammage that the CR age determined by Beryllium isotope ratios, this behav- bundletraversedinthistimestep. Wethencalculatetheprob- ior predicts that the Positron fraction should start increasing abilitythattheparticleshadundergoneanuclearreactionwith above10GeV,thusexplainingthe“PamelaAnomaly”,effec- ISM. If the particles did undergo spallation into secondary tivelywithoutanyfreeparameters. particles,wefollowthelatterwiththesamemethodology.We In the present work we study the B/C and sub-Fe/Fe ra- nominally use the YIELDX subroutine of Silberberg & Tsao tios using an extended version of the B14 model, as is de- (1990) for the nuclear cross-secitons. However, we repeat scribedin§2.1. Oneofthemajoruncertaintiesarisingwhen the analysis with Webber et al. (2003) to obtain a handle studyingthesub-IrontoIronratioanditsimplicationstothe on the uncertainty introduced by the nuclear cross-sections, PLD,istheenergydependentspallationcross-sections. Since as described below. For long-lived radioactive isotopes, we many of the partial cross-sections are poorly measured, the also check each time step for radioactive decay. The code values used are often the results of fits and extrapolations, also considers Coulomb and ionization losses as elaborated giving rise to large uncertainties (Moskalenko 2011; Web- inMannheim&Schlickeiser(1994)andappliedinGALPROP ber et al. 2003). The problem is aggravated below a few (Strong&Moskalenko1998). GeV/nuc.,wherethecross-sectionshavelargerenergydepen- Forthepresentsimulations,eachrunuses109 CRbundles dences(Moskalenko&Mashnik2003;Schwalleretal. 1979), inthespiralarmssimulationsand108inthedisk-likesimula- and for heavier elements (e.g., see appendix II in Garcia- tions.Foreachbundle,werandomlychooseitsinitialisotopic Munozetal. 1987;Titarenkoetal. 2008;Sisterson&Vincent identity and initial location in the galaxy, and follow it until 2006).Welimittheanalysistoenergiesbetween10GeV/nuc. itescapesthegalaxy,coolbelowthe10GeV/nuc.,breakinto to 1000 GeV/nuc. Although it is not clear by how much it isotopes lighter than the lightest element simulated or reach decreases the uncertainties in the cross-sections, the weaker the solar vicinity. In the latter case we record all simulated energydependencewilltranslateintoasmalleruncertaintyin isotopes (Beryllium to Silicon in the light elements simula- theinferredspectralslopeofthediffusioncoefficient. Weuse tions and Scandium to Nickel in the heavy elements simula- thenominalmodelparametersofB14,assummarizedin§2.3, tions),ina3Darray(Z,A,energy).Theenergiesarerecorded andsearchtheoptimaldiffusioncoefficientspectralindexand in10binsperdecade, coveringtherangeof10GeV/nuc. to normalization,namely,δ,andD inD =D (E/E )δ1,with 1000GeV/nuc.. 0 0 0 E = 3 GeV/nuc., to fit both the B/C from AMS-02 (Oliva 0 etal. 2013)andthesub-Fe/FedatafromHEAO-3(Binnsetal. 2.1. Theextendedcode 1Throughoutthepaper,theterm“diffusioncoefficient”actuallyrefersto 2Althoughthetimestepδt(E)isenergydependent,theeffectivem.f.p.is thenormalizationD0andnotD(E). not,asitdependsonthecombinationδt(E)×D(E). 3 Below we detail specific modifications and improvements TABLE1 ofthecodeusedinthiswork. NOMINALMODELPARAMETERS 2.1.1. Nuclearnetwork valuefor valuefor parameter definition spiralarm disk-like AsweareinterestedinsecondordercorrectionstotheB/C model model ratio,weextendedthecodetodescribethespallationnetwork Zh Halfhaloheight 250 pc 1kpc allthewayuptoSilicon. τarm Lastspiralarmpassage 5 Myr Inadditiontotherangeof“light”elementsnecessaryforthe i4 4-armsset’spitchangle 28◦ aforementionedcalculation,wearealsointerestedincalculat- i2 2-armsset’spitchangle 11◦ iwnogrkthoefshueba-Fviee/rFeelreamtieon.tsW, ferothmerSefcoarnedaiudmdetdotNheicnkuecllaesarwneeltl-, Ω4 Antghuela4r-avremloscsiteytof 15(km/s)kpc−1 usingthe YIELDX (Silberberg&Tsao1990),oralternatively Ω2 Antghuela2r-avremloscsiteytof 25(km/s)kpc−1 Webberetal. (2003)forthepartialspallationcross-sections PercentageofSNin describingtheinteractionwithHydrogen.Weusetheapprox- fSN,4 the4-armsset 48.4% imate formulae of Karol (1975) for the total inelastic cross- PercentageofSNin sectionsofinteractionswithHelium. fSN,2 the2-armsset 24.2% Percentageofcorecollapse 2.1.2. Fastercode fSN,CC SNeinthedisk 8.1% 80.7% The code was accelerated by limiting the CR diffusion in Percentageof the spiral-arms models to take place only within of a radius fSN,Ia SNTypeIa 19.3% 19.3% 5 times the halo size around the solar system. This captures 4. RESULTS 97% of the total CRs reaching the solar system, when com- paring to a full calculation without the distance cutoff, but We have separately fitted the B/C data and the sub-Fe/Fe increases the speed by about an order of magnitude to reach data to the two CR source models: the spiral arms sources, similarstatistics. Forthedisk-likemodelsimulations, thisis andadisk-like,azimuthallysymmetric,one. Foreachmodel unnecessary. Theazimuthalsymmetryallowsformuchbetter wethencheckeditsconsistency,asthedifferentdatasets(B/C statisticsthanthespiral-armssimulationwithmuchfewerCR andsub-Fe/Fe)shouldbefittedwiththesamemodelsparame- bundles. ters. Ifwefindconsistencytheoptimalparametersthenteach Inordertoincreasetheaccuracy,wedecreasethetimestep usaboutCRdiffusionintheinterstellarmedium. 10-fold when the CR bundle is within a distance of 150 pc To obtain the best fit values, we minimize the χ2 for each fromthesolarsystem,anadditional10-foldwhenthebundle simulation. Theuncertaintyusedinestimatingtheχ2 values is within 120 pc, and we take a time step for which the ef- includeboththosearisingfromthe(MonteCarlo)simulation fectivemeanfreepath(m.f.p.) isofordertheactualphysical andthequotedobservationalerrorswhicharetypicallyanor- m.f.p. (oforder1pc), whentheCRbundleiswithin100pc derofmagnitudelarger. fromthesolarsystem. 4.1. B/C 2.2. Initialcomposition Thefittotheoptimalspectralslopeδ anddiffusioncoeffi- Theinitialcompositionforwhichweobtaintheoptimalfit cient D is carried by calculating the χ2 over a two dimen- 0 tothemeasuredsecondary/primaryisotoperatiosinthelight sionalarrayofvalues. Then,thesetofχ2 foreachvalueofδ elementssimulationsis37%Carbon(bynumber),3%Nitro- intherangeof0.3to0.7isfittedwithapolynomial,andthe gen,52%Oxygen,4%Neon,2%Magnesiumand2%Silicon. minimumfound. Note that although the method for finding the initial compo- Theoptimaldiffusioncoefficientasafunctionofδisgiven sition is the same as in B14, the composition is somewhat in table 2. By comparing the disk-like models to the spiral differentbecausethecodenowfollowsmoreisotopes,asde- arm models, it is evident that the typical D required to fit 0 scribedin§2.1.1.Fortheheavyelementssimulations,thebest theobservationsin“standard”disk-likemodelsismuchlarger fittotheobservedNi/Feratio,isobtainedforaninitialcom- thanthetypicalD requiredtofitthesamedatainthespiral 0 positionconsistingof95%Ironand5%Nickel. armmodel. Thisrecapturestheresultpreviouslydescribedin B14,andarisesfromthesmallerhalointhespiralarmmodel. 2.3. Thenominalmodelparameters The modelfits tothe data, asa functionof δ, aredepicted in fig. 1 for the disk-like model and fig. 2 for the spiral arm Table. 1 summarizes the nominal model parameters ob- model. Oneseesfromthesefitsthatonerequiresroughlythe tained by or referenced within B14. These parameters are sameδ ∼0.4(thickerpurpleline)tofitboththedisk-likeand separately fixed for either the spiral-arms simulations or the spiralarmmodels. disk-likesimulations. Figs.5&6depicttheχ2asafunctionofbothδandD . 0 3. OBSERVATIONALDATASETS Thelatterplotsalsodemonstratethatforagivenvalueofδ thereisanarrowrangeofD forwhichthereisareasonable We compare the model predictions for the B/C ratio with 0 fit. However, without prior knowledge of δ, there is a much theAMS-02results,whoseadvantageoverpreviousdatasets widerallowedrangeforoptimalD . isthenotablybetterstatistics.Intotal,thereare10datapoints 0 between10GeV/nuc.and1000GeV/nuc.(Olivaetal. 2013). 4.2. Iron Thesub-Fe/FedatasetsusedboththeHEAO-3(Binnsetal. 1988)andtheSANRIKUmeasurements(Hareyama1999).In IndependentlyoffittingtheB/Cdata,wefitthesub-Ironto total,thereare21datapointsbetween10GeV/nuc.and1000 Irondatainasimilarway. ThemodelfitstotheIrondataas GeV/nucleon. afunctionofδ, aredepictedinfig.3forthedisk-likemodel 4 Benyaminetal. BC(cid:230) (cid:230)00000(cid:230).....0112250505(cid:230)(cid:144)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)∆∆∆∆∆∆∆∆∆(cid:230)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)000000000.........(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)334455667(cid:230)5555(cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230)(cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230)(cid:230) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230)(cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230)(cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) AAMM(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)SS(cid:45)(cid:45)00(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)22 (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:43)(cid:43)ScTiVFe0000....(cid:224)01125050(cid:224)(cid:72)(cid:76)(cid:144)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:224) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:224)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)∆∆∆∆∆∆∆∆∆(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:230)000000000.........(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)334455667(cid:224)5555(cid:230) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:224)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:224)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:224)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:224)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:224) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:224) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:230)(cid:224)(cid:224)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) SSHH(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)AAEENNAARROO(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)II(cid:224)KK(cid:45)(cid:45)33UU(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) 0.00 0.00 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 Log10EGeVnucleon Log10EGeVnucleon FIG.1.—Theoptimalχ2fitoftheB/Cdataforseveralδvaluesintherange FIG.3.—Theoptimalχ2fitofthesub-Fe/Fedataforasetofδ’sbetween (cid:64) (cid:144) (cid:68) (cid:64) (cid:144) (cid:68) 0.3to0.7,fordisk-likesimulations. DataistakenfromOlivaetal. (2013). 0.3to0.7,indisk-likesimulations. Thethickermustardcoloredlinecorre- Thethickerpurplelinecorrespondstotheoverallbestfit,withδ=0.45. spondstotheoverallbestfit,withδ=0.5.DatatakenfromHEAO-3(Binns etal. 1988)andSANRIKU(Hareyama1999). (cid:230) 0.25 (cid:42)(cid:42) BC(cid:230)00000(cid:230).....0011205050(cid:230)(cid:144)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)∆∆∆∆∆∆∆∆∆(cid:230)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)000000000.........(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)334455667(cid:230)5555(cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230)(cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230)(cid:230) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230)(cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230)(cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:230)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) AAMM(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)SS(cid:45)(cid:45)00(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)22 (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:43)(cid:43)ScTiVFe(cid:224) 0000....(cid:224)01125050(cid:224)(cid:72)(cid:76)(cid:144)(cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:224) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:224)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)∆∆∆∆∆∆∆∆(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:61)(cid:230)00000000........(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)33445566(cid:224)5555(cid:230) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:224)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:224)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:224)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:224)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:230) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:224) (cid:230)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:224) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) (cid:230)(cid:230)(cid:224)(cid:224)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) SSHH(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)AAEENNAARROO(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)II(cid:224)KK(cid:45)(cid:45)33UU(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) 1.0 1.5 2.0 2.5 3.0 0.00 ∆(cid:61)0.7 Log10EGeVnucleon 1.0 1.5 2.0 2.5 3.0 FIG.2.—Similartofig.1butforthespiralarmmodel.Theoveralloptimal Log10EGeVnucleon fithereisalsoδ=0.45. (cid:64) (cid:144) (cid:68) FIG.4.—Similartofig.3butforthespiralarmmodel.Unlikethedisk-like andfig.4forthespiralarmmodel. UnliketheB/Cfits,here model,theoveralloptimalfithereisδ(cid:64)=0(cid:144).35de(cid:68)pictedathickblueline. the optimal fits require a different δ values for the two mod- D ∼1027cm2s−1to1.2×1027cm2s−1andδ ∼0.35−0.45. 0 els. For the disk-like model, the optimal is δ ∼ 0.5 while Thiscanalsobeseenintable2. Whilethedisk-likemodelre- it is δ ∼ 0.35 for the spiral arm model. The source of the quires a similar δ to fit both datasets, the iron data requires difference points to an interesting physical effect associated a diffusion coefficient that is of order 35% smaller from the withthedifferentpathlengthdistribution. Becausethecross- diffusioncoefficientrequiredtorecovertheB/Cdata,forany sectionoftheheavierelementsislarger,theirmeanfreepaths given δ. The smaller diffusion coefficient corresponds to a are much smaller relative to the distance traversed, thus giv- largergrammage.ThisrecapturestheclaimsraisedbyGarcia- ing rise to saturation (especially at lower energies), whereby Munozetal. (1987),thatthesub-Fe/Fedatarequiresalarger an increase in the grammage does not increase as much the grammagethantheB/Cdatarequires.Herewelimitourselves ratio between secondary and primary isotopes. This satura- tohighenergies(>10GeV/nuc.)whereweexpectsmallerun- tioncausesadecreasesinthesecondary/primaryslope. How- certaintiesintheenergydependenceofthecross-sections,and ever,becauseofthedifferentpathlengthdistribution,theef- reachthesameconclusion. fect is notably larger for the disk like model with an expo- Thisinconsistencyismanifestedintheminimumχ2/d.o.f. nentialPLD.Thus,inordertocompensateforthiseffect,one (per degree of freedom) obtained in the combined analysis. requires a steeper diffusion power law index to explain the For the disk-like model, we find χ2/d.o.f. = 3.66 with small observed slope. For the spiral arm model, the satura- d.o.f. = 31−2 = 29. However, for the spiral arm model tionislessimportantsuchthatthediffusionpowerlawindex it is χ2/d.o.f. = 0.95, for the same number of degrees of shouldbeclosertotheobservedsub-Fe/Feslope. freedom. Formally, this implies that the disk like model can Figs.5&6showtheχ2asafunctionofbothδandD0. beruledoutatthe10−10level. Toseehowsensitivethisconclusionistothenuclearcross- 4.3. B/Cvs. sub-Fe/Fecomparison sections employed, we repeated the analysis with the cross- TheaboveanalysiswascarriedoutseparatelywithB/Cand sections of Silberberg & Tsao (1990) replaced with those of sub-Fe/Fe data sets. However, any consistent model should Webberetal. (2003). Theresultsaredepictedasthedashed be able to fit both datasets with the same model parameters. contoursinfigs. 5and6. Evidently,thediscrepancyremains This implies that the χ2 contours depicted in figs. 5 & 6 though it is more than twice smaller. In other words, the should overlay each other. A quick inspection reveals that uncertainties in the cross-sections are sufficiently large that only the spiral arm model gives consistent parameters, with one cannot unequivocally use the B/C and sub-Fe/Fe data to 5 rule out a disk-like model, though it is inconsistent with the presentspallationcross-sections. One should emphasize that the actual values of the diffu- 3 2 1 sion coefficients are less certain than from these fits. This is because we set the nominal halo sizes for the two models. 1.4×1027 Changingthehalosizeswouldalsoscalethevaluesoftheop- timal D obtained. While this introduces an uncertainty in 0 theactualvaluesofD thiswillnotresolvetheinconsistency 0 binettrwodeeuncethaentywioncdoantasissetetsnicnytfhoerdtihsek-slipkieraml aordmelsmaonddewl.ilTlnhoatt 2msec/]1.2×1027 iFse,/tFheessuccahlinthgawt tohueldcobnesitshteenscaym(einfotrhebostphirtahlearBm/Cmaonddels)ubo-r Dc[0 1 inconsistency(inthedisk-likemodel)betweenthedatasetfits wouldremain. 1.0×1027 2 3 8.0×1026 1×1028 0.3 0.4 0.5 0.6 0.7 δ FIG.6.—Acontourplotofχ2forthespiralarmmodel.Theredcontours correspondtotheB/Cfit.Thebluecontourscorrespondtothesub-Fe/Fefit. Thedashedcontoursaresimilartothoseinfig.5. 8×1027 ec] 2Dcms[/0 1 2 3 In previous wo5r.kD, IwSCeUdSeSvIOelNop&eSdUaMfMuAllRyY3D CR diffusion model which not only considers that most CR acceleration 6×1027 takes place in the vicinity of spiral arms, but also that these arms are dynamic (Benyamin et al. 2014). It was shown thatbyaddingtheseobservationallybasedcomponentstothe model, one recovers observed secondary to primary ratios, 4×1027 1 such as of Boron to Carbon. In particular, it was found that 2 the ratio increases with energy below 1 GeV/nuc. and de- 3 creasesabovethisenergy, insteadofthemonotonicdecrease withenergyexpectedinthesimplestgalacticdiffusionmodel 0.3 0.4 0.5 0.6 0.7 δ (e.g.,Cesarsky1980,withouthavingtoassumeadditionalas- FIG.5.—Acontourplotofχ2forthedisk-likemodel. Theredcontours sumptions, such as reacceleration or a galactic wind). This correspondtotheB/Cfit.Thebluecontourscorrespondtothesub-Fe/Fefit. is because the age of the CRs at low energies is not deter- Thedashedlinescorrespondtothesamecontoursasobtainedwhenreplac- minedbythediffusiontimefromthespiralarms,butinstead ingthecross-sectionsofSilberberg&Tsao(1990)withthosecompiledby governedbythe(energyindependent)timesincethelastspi- Webberetal. (2003). NotethatthediscrepancybetweentheB/Candthe ral arm passage. Since below 1 GeV/nuc., the particles are sub-Fe/Federivedmodelparametersdecreases,butstillremains. non-relativistic,afixedagetranslatesintoagrammagewhich isincreasingwithenergy, andcorrespondinglyanincreasing secondarytoprimaryratioatlowenergies. One very important aspect of this model is that the path lengthdistributionisdifferentfromtheonefoundinstandard TABLE2 diffusion models. In the latter, the PLD is typically close to THEOPTIMALD0INUNITSOF1027CM2S−1ASOBTAINEDFORTHE being exponential. However, if most CRs arrive from a dis- TWOMODELS,WHENSEPARATELYFITTINGTHEB/CANDTHE SUB-FE/FEDATA. tance,thenthePLDwillshowapaucityofsmallpathlengths (comparefig. 4tofig.6inB14). D0fromspiralarmmodel D0fromdisk-likemodel ThedifferentPLDhasaninterestingramification. CRsar- δ B/C sub-Fe/Fe B/C sub-Fe/Fe riving after having passed a short path length necessarily re- 0.3 1.6 1.65 10.9 8.8 main close to the galactic plane. In contrast, CRs having a 0.35 1.37 1.4 9.5 7.4 longpathlengthcouldstrayfurtherfromtheplanebeforere- 0.4 1.17 1.2 8.2 6.2 0.45 1.03 1.01 7 5.3 turning back. Since the ISM density falls with the distance 0.5 0.89 0.9 6.2 4.5 from the plane, CRs with short paths therefore experience a 0.55 0.8 0.74 5.5 3.8 higheraverageISMdensitythanCRswithlongpaths. Thus, 0.6 0.65 0.66 4.7 3.2 a distribution which is missing the short path lengths, as is 0.65 0.58 0.56 4 2.6 the case in the spiral arm model, will have a lower average 0.7 0.5 0.5 3.6 2.3 interaction with the ISM for a given average path length. In otherwords,theaveragegrammagewillbelowerforthesame averagephysical length. Thisresultimplies thatifthe spiral 6 Benyaminetal. arm model is to recover the observed secondary to primary Thebestfitvaluesareadiffusionspectralslopeofδ =0.35 ratio, the model has to keep the CRs closer to the galactic toδ =0.43,andadiffusioncoefficientnormalizationbetween planewherethedensityishigher. Forthisreason,thetypical D =1×1027cm2s−1andD =1.5×1027cm2s−1(though 0 0 halo size required to fit the same secondary to primary ratio thediffusioncoefficientrangewouldscalewiththehalosize, dataislower(typicallyafewhundredpc,comparedwiththe which was chosen here to be 250 pc). To summarize, the 1to4kpcinmorestandarddiffusionmodels). However,be- consistencyfoundhereisoneofseveralsuccessfulpredictions causethetypicalageiscloselyrelatedtotheratiobetweenthe bornefromthespiralarmmodel: radioactive and stable Beryllium isotopes, which is a model 1. Theincrease inthepositron fractionabove ∼ 10 GeV independent observation, the smaller halo requires a smaller is a necessary outcome given that the primary elec- diffusioncoefficient.At1GeV/nuc.itshouldbeoforder1027 trons which arrive from a finite distance cool through andnot1028cm2s−1. inverse-Compton and synchrotron radiation while sec- HereweextendedthemodeldevelopedinB14,asdetailed ondarypositronscanformlocally(Shavivetal. 2009; in §2.1. In particular, we enlarged the spallation network to Gaggeroetal. 2013b). describethespallationofIronandNickelaswellastheirspal- lationproducts. Thus,wecouldpredictthesub-Fe/Feratioas 2. The increase in the B/C ratio for E/nucleon (cid:46) a function of model parameters, in addition to the B/C ra- 1 GeV/nuc. is recovered since the CR age saturates tio. We carried a parameter study whereby we fit both the over low energies at the time since the last spiral arm spectral slope δ of the diffusion coefficient and its normal- passage(B14). ization D (while keeping the other model parameters fixed 0 3. The concentration of CR sources around the galactic at their nominal values). This was carried out twice, for a spiral arms and lower diffusion coefficient give rise to (“standard”) disk-like model and for a spiral arm model, in a temporal variation in the CR flux, seen as 145 Myr theenergyrangeof10GeV/nuc. -1000GeV/nuc.. Therea- cyclesintheCRexposureagesbehaviorofironmete- son for focusing on high energies is to avoid the notorious orites(Shaviv2003). uncertainties associated with the spallation cross-sections at lowerenergies(e.g.,Moskalenko2011;Webberetal. 2003). 4. Thesmallerhaloofthespiralarmmodelexplainsthe32 These uncertainties become more acute as Z increases (see Myroscillationseeninthe550Myrlongpaleoclimatic Titarenkoetal. 2008;Sisterson&Vincent2006andalsoAp- record(Shavivetal. 2014). pendixIIinGarcia-Munozetal. 1987). Inastandarddisk-likemodel,wefindaninconsistencybe- 5. The lower diffusion coefficient implies that the ex- tweenthediffusioncoefficientrequiredtofittheB/Candthe pected anisotropy in the arrival direction of cosmic value required to fit the sub-Fe/Fe ratio. Phrased differently, rays should be smaller by an order of magnitude from it implies that the sub-Fe/Fe ratio requires more grammage predictions of disk-like models with a larger diffusion than the B/C ratio. One way to resolve the inconsistency coefficient, and consistent with the measurements be- present in the standard disk-like model would be to modify tween1to100TeV(Shavivetal. 2016). the cross-sections at the higher energies over which the fit to observational data was carried out. This is not inconceiv- 6. The arm dynamics are responsible for a CR “wake” able given that by replacing the cross-sections of Silberberg behind the arms with softer CRs, which give rise to &Tsao(1990)withthoseofWebberetal. (2003),wereduce a softer π0 produced spectrum. Together with the thediscrepancybymorethanafactorof2. smallerhalo,thepredictedspectralslopemapinγ-rays Another way to resolve the inconsistency within the stan- at around 1-10 GeV is consistent with the FERMI ob- dard disk like model would be to truncate the short paths servations(Navaetal. 2016). lengthsbylettingtheCRsinteractwithmaterialattheSNR. 7. Last, as we have shown here, the inconsistency be- Thisexplanationwhichwasoriginallyproposedtoresolvethe tween the required diffusion coefficient to fit the B/C PAMELAanomaly(Blasi&Serpico2009b), wouldrequires andthesub-Fe/Feratiosisresolvedgiventhedifferent however additional free parameters. A priori it is not clear PathLengthDistribution. thattheparametersthatresolvethePAMELAanomalywould alsoresolvethisinconsistency. Thus, the present results introduces further circumstantial A spiral arm source distribution consistently requires the evidencetoalistthatstronglyimpliesthatCRssourceinho- same diffusion coefficient (or grammage) when fitting the mogeneityplaysanimportantroleinCRphysics. sub-Fe/Fe and B/C datasets. This arises because the aver- age mean free path for spallation of Iron is notably smaller ACKNOWLEDGEMENTS than that of Carbon and Oxygen, such that the sub-Fe/Fe ThisworkishasbeensupportedbyISFgrantno.1423/15 and the B/C are not sensitive to the same path lengths. As (DB&NJS),aswellasbytheI-COREProgramofthePlan- a consequence, modifying the PLD in the spiral arm model ningandBudgetingCommitteeandTheIsraelScienceFoun- doesn’t change the average grammage needed to explain the dation(1829/12). NJSalsogratefullyacknowledgesthesup- sub-Fe/FeandtheB/Cbythesamefactor. port of the IBM Einstein Fellowship at the Institute for Ad- vancedStudy. REFERENCES Accardo,L.,Aguilar,M.,Aisa,D.,Alvino,A.,Ambrosi,G.,Andeen,K., Adriani,O.etal.2009. Ananomalouspositronabundanceincosmicrays Arruda,L.,Attig,N.,Azzarello,P.,Bachlechner,A.,&etal.2014. High withenergies1.5-100GeV. Nature,458,607–609. StatisticsMeasurementofthePositronFractioninPrimaryCosmicRays Aharonian,F.A.,Atoyan,A.M.,&Voelk,H.J.1995. Highenergy of0.5-500GeVwiththeAlphaMagneticSpectrometeronthe electronsandpositronsincosmicraysasanindicatoroftheexistenceofa InternationalSpaceStation. PhysicalReviewLetters,113(12),121101. nearbycosmictevatron. A&A,294,L41–L44. 7 Ahlers,M.,Mertsch,P.,&Sarkar,S.2009. Cosmicrayaccelerationin Mertsch,P.,&Sarkar,S.2009. TestingAstrophysicalModelsforthe supernovaremnantsandtheFERMI/PAMELAdata. Phys.Rev.D, PAMELAPositronExcesswithCosmicRayNuclei. PhysicalReview 80(12),123017. Letters,103(8),081104. Benyamin,D.,Nakar,E.,Piran,T.,&Shaviv,N.J.2014. Recoveringthe Moskalenko,I.2011. IsotopicProductionCrossSectionsforCR ObservedB/CRatioinaDynamicSpiral-armedCosmicRayModel. Applications(ISOPROCSProject). InternationalCosmicRay ApJ,782,34. Conference,6,283. Bergstro¨m,L.,Bringmann,T.,&Edsjo¨,J.2008. Newpositronspectral Moskalenko,I.V.,&Mashnik,S.G.2003. EvaluationofProductionCross featuresfromsupersymmetricdarkmatter:Awaytoexplainthe SectionsofLi,Be,BinCR. InternationalCosmicRayConference,4, PAMELAdata? Phys.Rev.D,78(10),103520. 1969. Binns,W.R.,Garrard,T.L.,Israel,M.H.,Jones,M.D.,Kamionkowski, Moskalenko,I.V.,&Strong,A.W.1998. ProductionandPropagationof M.P.,Klarmann,J.,Stone,E.C.,&Waddington,C.J.1988. Cosmic-ray Cosmic-RayPositronsandElectrons. ApJ,493,694–707. energyspectrabetween10andseveralhundredGeVperatomicmassunit Nava,L.,Benyamin,D.,Piran,T.,&Shaviv,N.J.2016. Spectralmapof forelementsfromAr-18toNi-28-ResultsfromHEAO3. ApJ,324, thediffuseγ-rayemissionfromπ0-decayinadynamicspiralarmmodel: 1106–1117. comparisonwithobservations. inpreparation. Blasi,P.2009. OriginofthePositronExcessinCosmicRays. Physical Oliva,A,Collaboration,AMS,etal..2013. Precisionmeasurementofthe ReviewLetters,103(5),051104. cosmicrayboron-to-carbonrationwithAMS. Proceedings33rdICRC, Blasi,P.,&Serpico,P.D.2009a. High-EnergyAntiprotonsfromOld RiodeJaneiro. SupernovaRemnants. PhysicalReviewLetters,103(8),081103. Profumo,S.2008. Dissectingcosmic-rayelectron-positrondatawith Blasi,P.,&Serpico,P.D.2009b. High-EnergyAntiprotonsfromOld Occam’sRazor:theroleofknownPulsars. ArXive-prints. SupernovaRemnants. PhysicalReviewLetters,103(8),081103. Schwaller,P.,Pepin,M.,Favier,B.,Richard-Serre,C.,Measday,D.F.,& Cesarsky,C.J.1980. Cosmic-rayconfinementinthegalaxy. ARA&A,18, Renberg,P.U.1979. Protontotalcrosssectionson1H,2H,4He,9Be,C 289–319. andOintheenergyrange180to560MeV. NuclearPhysicsA,316, Chi,X.,Cheng,K.S.,&Young,E.C.M.1996. PulsarWindOriginof 317–344. CosmicRayPositrons. ApJ,459,L83. Shaviv,N.J.2003. ThespiralstructureoftheMilkyWay,cosmicrays,and Davis,A.J.,Mewaldt,R.A.,Binns,W.R.,Christian,E.R.,Cummings, iceageepochsonEarth. NewAstron.,8,39–77. A.C.,George,J.S.,Hink,P.L.,Leske,R.A.,vonRosenvinge,T.T., Shaviv,N.J.,Nakar,E.,&Piran,T.2009. InhomogeneityinCosmicRay Wiedenbeck,M.E.,&Yanasak,N.E.2000. Onthelowenergydecrease SourcesastheOriginoftheElectronSpectrumandthePAMELA ingalacticcosmicraysecondary/primaryratios. Pages421–424of: Anomaly. PhysicalReviewLetters,103(11),111302. Mewaldt,R.A.,Jokipii,J.R.,Lee,M.A.,Mo¨bius,E.,&Zurbuchen,T.H. Shaviv,N.J.,Benyamin,D.,Murase,K.,&Piran,T.2016. Implicationsof (eds),AccelerationandTransportofEnergeticParticlesObservedinthe SmallerCosmicRayHaloandDiffusionCoefficienttounderstandingthe Heliosphere. AmericanInstituteofPhysicsConferenceSeries,vol.528. KneesandObservedAnisotropy. submittedtoPRL. diBernardo,G.,Evoli,C.,Gaggero,D.,Grasso,D.,&Maccione,L.2010. Shaviv,NirJ,Prokoph,Andreas,&Veizer,Ja´n.2014. Isthesolarsystem’s Unifiedinterpretationofcosmicraynucleiandantiprotonrecent galacticmotionimprintedinthephanerozoicclimate? Scientificreports, measurements. AstroparticlePhysics,34,274–283. 4. Effenberger,F.,Fichtner,H.,Scherer,K.,&Bu¨sching,I.2012. Anisotropic Silberberg,R.,&Tsao,C.H.1990. Spallationprocessesandnuclear diffusionofGalacticcosmicrayprotonsandtheirsteady-stateazimuthal interactionproductsofcosmicrays. Phys.Rep.,191,351–408. distribution. A&A,547,A120. Sisterson,J.M.,&Vincent,J.2006. Crosssectionmeasurementsfor Gaggero,D.,Maccione,L.,DiBernardo,G.,Evoli,C.,&Grasso,D.2013a. proton-inducedreactionsinFeandNiproducingrelativelyshort-lived Three-DimensionalModelofCosmic-RayLeptonPropagation radionuclidesatEp=140500MeV. NuclearInstrumentsandMethodsin ReproducesDatafromtheAlphaMagneticSpectrometeronthe PhysicsResearchB,251,1–8. InternationalSpaceStation. PhysicalReviewLetters,111(2),021102. Strong,A.W.,&Moskalenko,I.V.1998. PropagationofCosmic-Ray Gaggero,D.,Maccione,L.,DiBernardo,G.,Evoli,C.,&Grasso,D.2013b. NucleonsintheGalaxy. ApJ,509,212–228. Three-DimensionalModelofCosmic-RayLeptonPropagation Strong,A.W.,Moskalenko,I.V.,&Ptuskin,V.S.2007. Cosmic-Ray ReproducesDatafromtheAlphaMagneticSpectrometeronthe PropagationandInteractionsintheGalaxy. AnnualReviewofNuclear InternationalSpaceStation. PhysicalReviewLetters,111(2),021102. andParticleScience,57,285–327. Garcia-Munoz,M.,Simpson,J.A.,Guzik,T.G.,Wefel,J.P.,&Margolis, Titarenko,Y.E.,Batyaev,V.F.,Titarenko,A.Y.,Butko,M.A.,Pavlov, S.H.1987. Cosmic-raypropagationintheGalaxyandintheheliosphere K.V.,Florya,S.N.,Tikhonov,R.S.,Mashnik,S.G.,Ignatyuk,A.V., -Thepath-lengthdistributionatlowenergy. ApJS,64,269–304. Titarenko,N.N.,Gudowski,W.,Teˇsˇ´ınsky´,M.,Persson,C.-M.L., Harding,A.K.,&Ramaty,R.1987. ThePulsarContributiontoGalactic Abderrahim,H.A.,Kumawat,H.,&Duarte,H.2008. Crosssectionsfor CosmicRayPositrons. Page 92of:InternationalCosmicRay nuclideproductioninaFe56targetirradiatedby300,500,750,1000, Conference. InternationalCosmicRayConference,vol.2. 1500,and2600MeVprotonscomparedwithdataonahydrogentarget Hareyama,M.1999. Sub-Fe/FeratioobtainedbySanrikuballoon irradiatedby300,500,750,1000,and1500MeV/nucleonFe56ions. experiment. InternationalCosmicRayConference,3,105. Phys.Rev.C,78(3),034615. Hooper,D.,Blasi,P.,&DarioSerpico,P.2009. Pulsarsasthesourcesof Webber,W.R.,Soutoul,A.,Kish,J.C.,&Rockstroh,J.M.2003. Updated highenergycosmicraypositrons. J.Cos.Astropart.Phys.,1,25. FormulaforCalculatingPartialCrossSectionsforNuclearReactionsof Ibarra,A.,&Tran,D.2008. Antimattersignaturesofgravitinodarkmatter NucleiwithZ<=28andE>150MeVNucleon−1inHydrogen decay. J.Cos.Astropart.Phys.,7,2. Targets. ApJS,144,153–167. Karol,P.J.1975. Nucleus-nucleusreactioncrosssectionsathighenergies: Werner,M.,Kissmann,R.,Strong,A.W.,&Reimer,O.2013. Anew3D Softspheresmodel. Phys.Rev.C,11,1203–1209. transportandradiationcodeforgalacticcosmicrays. ArXive-prints. Mannheim,K.,&Schlickeiser,R.1994. Interactionsofcosmicraynuclei. A&A,286(June).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.