ebook img

The Basics of Molecular Biology PDF

188 Pages·2022·9.562 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Basics of Molecular Biology

Alexander Vologodskii The Basics of Molecular Biology The Basics of Molecular Biology Alexander Vologodskii The Basics of Molecular Biology Alexander Vologodskii New York University New York, NY, USA ISBN 978-3-031-19403-0 ISBN 978-3-031-19404-7 (eBook) https://doi.org/10.1007/978-3-031-19404-7 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface This book represents an attempt to describe the major features of life in a very short volume. It is addressed to people who have an education in areas different from biology and who want to receive some ideas about the world of molecular and cell biology. The book assumes a certain knowledge of physics, chemistry, and mathe- matics that corresponds to the level of high school. The primary attention is paid here to the most fundamental features of life. The book also briefly considers the developing areas of biology, which are especially important for medicine and the future of humankind. Recommended Literature There are many excellent textbooks on molecular and cell biology which describe the subject in detail. Three of these popular titles are shown below. Two other refer- ences are covering new fast-growing topics related to human genetics. 1. Alberts B, Heald R, Johnson A et al. (2022). Molecular biology of the cell. 7th ed. New York, NY: Norton & Company. 2. Watson J, Baker T, Bell S et al. (2013). Molecular biology of the gene. 7th ed. Menlo Park, CA: Benjamin Cummings. 3. Zlatanova J & van Holde K (2015). Molecular Biology: Structure and Dynamics of Genomes and Proteomes. New York, NY: Garland Science. 4. Reich D (2018). Who we are and how we got here. Ancient DNA and the new science of the human past. New York, NY: Pantheon Books. 5. Plomin R. (2019). Blueprint: How DNA Makes Us Who We Are. Cambridge, MA: The MIT Press. New York, NY, USA Alexander Vologodskii v Introduction We do not know how life appeared on our planet. However, we do know a lot about the organization of this life, and the goal of this book is to give a brief outline of its major features. Among natural sciences, biology stays apart from physics and chemistry in one very important respect. We can deduce, at least qualitatively, prop- erties of physical objects from the small number of the basic laws of physics. We can predict the motion of planets around the Sun, the magnetic field around electric current, the way light passes through the lens, and so on. Although it is technically difficult to deduce the properties of atoms and molecules from the laws of quantum mechanics, we are confident that this is possible in principle. Biology is different. There is no way to deduce the way of life from general principles. There is an enor- mous amount of specific complex problems that have to be solved by living organ- isms, and these problems have many different solutions. Although each of these solutions has to follow the laws of physics and chemistry, it is impractical to search for all possible solutions to a particular problem in the biological world. Life could happen in many different ways. We, however, want to know the way of life on our planet, the one very special choice of many possibilities. To learn about this way, we have to study life experimentally. It makes the task more difficult. However, the evolution of life always had certain logic behind it, and finding this logic greatly helps in the study. We will try to articulate this logic through this book. Although we cannot deduce much knowledge about life from the general laws of physics and chemistry, we are confident that life follows these laws. This belief will be at the base of the book. Analyzing basic processes of life, we will try to consider them as physical phenomena, wherever such consideration is useful. Complexity is not the only striking feature of life. It is also incredibly diverse. Indeed, trees do not resemble animals, and animals seem to have little in common with bacteria. We know today, however, that the most fundamental features of all living organisms are nearly identical. All living organisms consist of cells. Some of them, like animals, have many trillions of cells in their bodies, while others consist of a single cell. But in all cases, the cell represents a unit of life. It has all the neces- sary elements for self-reproduction, and new cells can be only formed by the divi- sion of the existing cells. All basic elements involved in cell reproduction are vii viii Introduction essentially identical in all organisms living on our planet. Through all living organ- isms, hereditary information is kept in DNA molecules (molecules of deoxyribo- nucleic acid), and this information is coded in the same way! The same intracellular mechanisms are used to read this information and to use it for cell growth and repro- duction. And all cells use the same mechanism for another major process, duplica- tion of the hereditary information before the cell division. All cells are fundamentally similar inside, regardless of the striking difference in their appearances. These fun- damental features of life clearly manifest that all living cells originate from a single colony that somehow emerged on Earth more than 3 billion years ago. Acknowledgments I would like to thank my friends Anshel Gorokhovsky and Igor Kulikov, and my sister Elena Vologodskaia for their remarks and suggestions which helped me greatly in preparing this book. ix Contents 1 The Major Processes in the Biological World . . . . . . . . . . . . . . . . . . . . 1 1.1 Cells as Basic Units of Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Important Facts from Chemistry and Physics . . . . . . . . . . . . . . . . . 2 1.2.1 The Flexibility of Polymer Chains . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Noncovalent Interactions Between Atoms . . . . . . . . . . . . . . 3 1.3 Structure of DNA and Inheritance of Genetic Information . . . . . . . 5 1.3.1 The General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Chemical Structure of DNA . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.3 The Double Helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 RNA Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.1 The General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.2 Structure of Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Genetic Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.7 From DNA to Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 Enzymes, Conformational Changes, Energy, and Molecular Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1 The Motion of Macromolecules in Water . . . . . . . . . . . . . . . . . . . . 23 2.2 Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Conformational Flexibility of Proteins and Allosteric Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 The Energy in Cell Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Molecular Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Energy Transfer from Food to ATP . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 The Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 The Lipid Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Membrane Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 xi xii Contents 3.2.1 General View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.3 Osmotic Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.4 Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Prokaryotic and Eukaryotic Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 The Cell Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4 Genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Prokaryotic Genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Eukaryotic Genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.1 RNA Splicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.2 Mobile Genetic Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 Chromosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.1 General Features of Eukaryotic Chromosomes . . . . . . . . . . 55 4.4.2 Nucleosomes and Epigenetic Inheritance . . . . . . . . . . . . . . 56 4.4.3 Higher Orders of Chromatin Structure . . . . . . . . . . . . . . . . 58 4.5 DNA Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.6 Genome Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.6.1 Plasmids and Genetic Engineering . . . . . . . . . . . . . . . . . . . 61 4.6.2 CRISPR-Cas9 and Editing of Large Genomes . . . . . . . . . . 63 5 Regulation of Gene Expression and Protein Activity. . . . . . . . . . . . . . 67 5.1 Regulation of Transcription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.1 Transcription Regulation in Prokaryotes . . . . . . . . . . . . . . . 68 5.1.2 Eukaryotic Transcription . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.3 Cell Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2 Posttranscriptional Changes of mRNAs . . . . . . . . . . . . . . . . . . . . . 76 5.2.1 Degradation of mRNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.2 Alternative RNA Splicing . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.3 Editing of mRNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 Suppression of Gene Expression by Small Noncoding RNA Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 DNA Replication, Its Fidelity, Mutations, and Repair . . . . . . . . . . . . 81 6.1 Replication of the Double Helix . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.1.1 Directionality and Proofreading of DNA Synthesis . . . . . . 81 6.1.2 Replication of Leading and Lagging Strands. . . . . . . . . . . . 83 6.1.3 Telomeres and the Organism Aging . . . . . . . . . . . . . . . . . . . 85 6.1.4 Replication Complex and Epigenetic Inheritance . . . . . . . . 85 6.2 DNA Damage and Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3 Evolution of Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.1 The Theory of Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.2 The Evolution Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.3 Conserved Regions of Eukaryotic Genomes . . . . . . . . . . . . 91 6.3.4 Genomes and the Human History . . . . . . . . . . . . . . . . . . . . 92

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.