ebook img

The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal PDF

859 Pages·2010·4.218 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal

de Gruyter Series in Logic and Its Applications 1 Editors: Wilfrid A. Hodges (London) Steffen Lempp (Madison) Menachem Magidor (Jerusalem) W. Hugh Woodin The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal Second revised edition De Gruyter Mathematics Subject Classification 2010: 03-02, 03E05, 03E15, 03E25, 03E35, 03E40, 03E57, 03E60. ISBN 978-3-11-019702-0 e-ISBN 978-3-11-021317-1 ISSN 1438-1893 LibraryofCongressCataloging-in-PublicationData Woodin,W.H.(W.Hugh) The axiom of determinacy, forcing axioms, and the nonstationary ideal/byW.HughWoodin.(cid:2)2ndrev.andupdateded. p.cm.(cid:2)(DeGruyterseriesinlogicanditsapplications;1) Includesbibliographicalreferencesandindex. ISBN978-3-11-019702-0(alk.paper) 1.Forcing(Modeltheory) I.Title. QA9.7.W66 2010 511.3(cid:2)dc22 2010011786 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheInternetathttp://dnb.d-nb.de. (cid:2)2010WalterdeGruyterGmbH&Co.KG,Berlin/NewYork Typesetting:Da-TeXGerdBlumenstein,Leipzig,www.da-tex.de Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen (cid:3)Printedonacid-freepaper PrintedinGermany www.degruyter.com Contents 1 Introduction 1 1.1 Thenonstationaryidealon! . . . . . . . . . . . . . . . . . . . . . 2 1 1.2 ThepartialorderP . . . . . . . . . . . . . . . . . . . . . . . . . . 6 max 1.3 P variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 max 1.4 ExtensionsofinnermodelsbeyondL.R/ . . . . . . . . . . . . . . . 13 1.5 Concludingremarks–theviewfromBerlinin1999 . . . . . . . . . . 15 1.6 TheviewfromHeidelbergin2010 . . . . . . . . . . . . . . . . . . . 18 2 Preliminaries 21 2.1 Weaklyhomogeneoustreesandscales . . . . . . . . . . . . . . . . . 21 2.2 Genericabsoluteness . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 Thestationarytower . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 ForcingAxioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 ReflectionPrinciples . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6 Genericideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3 Thenonstationaryideal 51 3.1 Thenonstationaryidealandı1 . . . . . . . . . . . . . . . . . . . . . 51 (cid:2)2 3.2 ThenonstationaryidealandCH . . . . . . . . . . . . . . . . . . . . 108 4 TheP -extension 116 max 4.1 Iterablestructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.2 ThepartialorderP . . . . . . . . . . . . . . . . . . . . . . . . . . 136 max 5 Applications 184 5.1 Thesentence(cid:2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 AC 5.2 Martin’sMaximumand(cid:2) . . . . . . . . . . . . . . . . . . . . . . 187 AC 5.3 Thesentence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 AC 5.4 ThestationarytowerandP . . . . . . . . . . . . . . . . . . . . . 199 max 5.5 P(cid:2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 max 5.6 P0 . . . .(cid:2).(cid:3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 max (cid:2) 5.7 TheAxiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 (cid:2) 5.8 HomogeneitypropertiesofP.! /=I . . . . . . . . . . . . . . . . . 274 1 NS 6 P variations 287 max 6.1 2P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 max 6.2 Variationsforobtaining! -denseideals . . . . . . . . . . . . . . . . 306 1 6.2.1 Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 max 6.2.2 Q(cid:2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 max vi Contents 6.2.3 2Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 max 6.2.4 WeakKurepatreesandQ . . . . . . . . . . . . . . . . . . 377 max 6.2.5 KTQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 max 6.2.6 Nullsetsandthenonstationaryideal . . . . . . . . . . . . . . 403 6.3 Nonregularultrafilterson! . . . . . . . . . . . . . . . . . . . . . . 421 1 7 Conditionalvariations 426 7.1 Suslintrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 7.2 TheBorelConjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 441 8 |principlesfor!1 493 8.1 CondensationPrinciples . . . . . . . . . . . . . . . . . . . . . . . . 496 8.2 P|NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 max 8.3 Theprinciples,|C and|CC . . . . . . . . . . . . . . . . . . . . . . 577 NS NS 9 ExtensionsofL.(cid:2);R/ 609 C 9.1 AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610 9.2 TheP -extensionofL.(cid:3);R/ . . . . . . . . . . . . . . . . . . . . . 617 max 9.2.1 Thebasicanalysis . . . . . . . . . . . . . . . . . . . . . . . 618 9.2.2 Martin’sMaximumCC.c/ . . . . . . . . . . . . . . . . . . . 622 9.3 TheQ -extensionofL.(cid:3);R/. . . . . . . . . . . . . . . . . . . . . 633 max 9.4 Chang’sConjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 9.5 WeakandStrongReflectionPrinciples . . . . . . . . . . . . . . . . . 651 9.6 StrongChang’sConjecture . . . . . . . . . . . . . . . . . . . . . . . 667 9.7 Idealson! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683 2 10 Furtherresults 694 10.1 Forcingnotionsandlargecardinals . . . . . . . . . . . . . . . . . . . 694 10.2 CodingintoL.P.! // . . . . . . . . . . . . . . . . . . . . . . . . . 701 1 Q 10.2.1 Codingbysets,S . . . . . . . . . . . . . . . . . . . . . . . . 703 10.2.2 Q.X/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708 max 10.2.3 P.;/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739 max 10.2.4 P.;;B/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768 max 10.3 BoundedformsofMartin’sMaximum . . . . . . . . . . . . . . . . . 784 10.4 (cid:4)-logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807 10.5 (cid:4)-logicandtheContinuumHypothesis . . . . . . . . . . . . . . . . 813 10.6 TheAxiom.(cid:2)/C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827 10.7 TheEffectiveSingularCardinalsHypothesis . . . . . . . . . . . . . . 835 11 Questions 840 Bibliography 845 Index 849 Chapter 1 Introduction As always I suppose, when contemplating a new edition one must decide whether to rewrite the introduction or simply write an addendum to the original introduction. I have chosen the latter course and so after this paragraph the current edition begins with the original introduction and summary from the first edition (with comments inserted in italics and some other minor changes) and then continues beginning on page18withcommentsregardingthisedition. The main result of this book is the identification of a canonical model in which the Continuum Hypothesis (CH) is false. This model is canonical in the sense that Go¨del’sconstructibleuniverseLanditsrelativizationtothereals,L.R/,arecanonical models though of course the assertion that L.R/is a canonical model is made in the contextoflargecardinals. Ourclaimisvague,neverthelessthemodelweidentifycan becharacterizedbyitsabsolutenessproperties. Thismodelcanalsobecharacterized by certain homogeneity properties. From the point of view of forcing axioms it is theultimatemodel atleastasfaras thesubsetsof ! areconcerned. Itisarguably a 1 completionofP.! /,thepowersetof! . 1 1 This model is a forcing extension of L.R/ and the method can be varied to pro- duce a wide class of similar models each of which can be viewed as a reduction of this model. The methodology for producing these models is quite different than that behind the usual forcing constructions. For example the corresponding partial orders are countably closed and they are not constructed as forcing iterations. We provideevidencethatthisisausefulmethodforachievingconsistencyresults,obtain- inganumberofresultswhichseemoutofreachofthecurrenttechnologyofiterated forcing. The analysis of these models arises from an interesting interplay between ideas from descriptive set theory and from combinatorial set theory. More precisely it is the existence of definable scales which is ultimately the driving force behind the ar- guments. Boundedness arguments also play a key role. These results contribute to a curious circle of relationships between large cardinals, determinacy, and forcing ax- ioms. Another interesting feature of these models is that although these models are genericextensionsofspecificinnermodels(L.R/inmostcases),thesemodelscanbe characterizedwithoutreferencetothis. Forexample,aswehaveindicatedabove,our canonical model is a generic extension of L.R/. The corresponding partial order we denote(cid:2)by(cid:3) Pmax. In Chapter 5(cid:2)w(cid:3)e give a characterization for this model isolating an axiom (cid:2) . Theformulationof (cid:2) doesnotinvolveP ,nordoesitobviouslyreferto (cid:2) (cid:2) max L.R/. InsteaditspecifiespropertiesofdefinablesubsetsofP.! /. 1 2 1 Introduction The original motivation for the definition of these models resulted from the dis- covery that it is possible, in the presence of the appropriate large cardinals, to force (quitebyaccident)theeffectivefailureofCH. Thisandrelatedresultsarethesubject ofChapter3. WediscusseffectiveversionsofCHbelow. Gdel was the first to propose that large cardinal axioms could be used to settle questionsthatwereotherwiseunsolvable. Thishasbeenremarkablysuccessfulpartic- ularlyintheareaofdescriptivesettheorywheremostoftheclassicalquestionshave nowbeenanswered. HoweveraftertheresultsofCohenitbecameapparentthatlarge cardinalscouldnotbeusedtosettletheContinuumHypothesis. Thiswasfirstargued byLevyandSolovay.1967/. NeverthelesslargecardinalsdoprovidesomeinsighttotheContinuumHypothesis. One example of this is the absoluteness theorem of Woodin .1985/. Roughly this theoremstatesthatinthepresenceofsuitablelargecardinalsCH“settles”allquestions withthelogicalcomplexityofCH. MorepreciselyifthereexistsaproperclassofmeasurableWoodincardinalsthen †2sentencesareabsolutebetweenallsetgenericextensionsofV whichsatisfyCH. 1 Theresultsofthisbookcanbeviewedcollectivelyasaversionofthisabsoluteness theoremforthenegationoftheContinuumHypothesis(:CH). 1.1 The nonstationary ideal on ! 1 Webeginwiththefollowingquestion. Isthereafamily¹S j ˛ < ! ºofstationarysubsetsof! suchthatS \S is ˛ 2 1 ˛ ˇ nonstationarywhenever˛ ¤ˇ? Theanalysisofthisquestionhasplayed(perhapscoincidentally)animportantrole insettheory particularly inthe studyof forcing axioms, large cardinals and determi- nacy. The nonstationary ideal on ! is ! -saturated if there is no such family. This 1 2 statement is independent of the axioms of set theory. We let I denote the set of NS subsets of ! which are not stationary. Clearly I is a countably additive uniform 1 NS idealon! . Ifthenonstationaryidealon! is! -saturatedthenthebooleanalgebra 1 1 2 P.! /=I 1 NS isacompletebooleanalgebrawhichsatisfiesthe! chaincondition.Kanamori.2008/ 2 surveyssomeofthehistoryregardingsaturatedideals,theconceptwasintroducedby Tarski. The first consistency proof for the saturation of the nonstationary ideal was ob- tainedbySteelandVanWesep.1982/.Theyusedtheconsistencyofaverystrongform oftheAxiomofDeterminacy(AD),see.Kanamori2008/andMoschovakis.1980/for thehistoryoftheseaxioms. 1.1 Thenonstationaryidealon!1 3 SteelandVanWesepprovedtheconsistencyof ZFCC “Thenonstationaryidealon! is! -saturated” 1 2 assumingtheconsistencyof ZFCADRC“‚isregular”: ADRistheassertionthatallrealgamesoflength! aredeterminedand‚denotesthe supremumoftheordinalswhicharethesurjectiveimageofthereals. Thehypothesis waslaterreducedbyWoodin.1983/totheconsistencyofZFCAD. Thearguments ofSteelandVanWesepweremotivatedbytheproblemofobtainingamodelofZFCin which! istheseconduniformindiscernible.ForthisSteeldefinedanotionofforcing 2 whichforcesoverasuitablemodelofADthatZFCholds(i.e.thattheAxiomof Choice holds)andforcesboththat! istheseconduniformindiscernibleand(byargumentsof 2 VanWesep)thatthenonstationaryidealon! is! -saturated. Themethodof.Woodin 1 2 1983/ uses the same notion of forcing and a finer analysis of the forcing conditions to show that things work out over L.R/. In these models obtained by forcing over a ground model satisfying AD not only is the nonstationary ideal saturated but the quotientalgebraP.! /=I hasaparticularlysimpleform, 1 NS P.! /=I ŠRO.Coll.!;<! //: 1 NS 2 WehaveprovedthatthisinturnimpliesADL.R/ andsothehypothesisused(thecon- sistencyofAD)isthebestpossible. Thenextprogressontheproblemofthesaturationofthenonstationaryidealwas obtainedinaseriesofresultsbyForeman,Magidor,andShelah.1988/. Theyproved thatageneralizationofMartin’sAxiomwhichtheytermedMartin’sMaximumactually implies that the nonstationary ideal is saturated. They also proved that if there is a supercompact cardinal then Martin’s Maximum is true in a forcing extension of V. LaterShelahprovedthatifthereexistsaWoodincardinaltheninaforcingextension ofV thenonstationaryidealissaturated. Thislatterresultismostlikelyoptimalinthe sensethatitseemsveryplausiblethat ZFCC“Thenonstationaryidealon! is! -saturated” 1 2 isequiconsistentwith ZFCC“ThereexistsaWoodincardinal” see.Steel1996/. Therewaslittleapparentprogressonobtainingamodelinwhich! isthesecond 2 uniform indiscernible beyond the original results of .Steel and VanWesep 1982/ and .Woodin1983/. Recallthatassumingthatforeveryrealx,x# exists,theseconduni- formindiscernibleisequalto(cid:2)ı12,thesupremumofthelengthsof(cid:3)(cid:5)12prewellorderings. Thustheproblemofthesizeoftheseconduniformindiscernibleisaninstanceofthe

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.