The Atiyah Patodi Singer signature formula for measured foliations Paolo Antonini antoninimat.uniroma1.it paolo.antongmail. om 9 0 January 6, 2009 0 2 n Abstra t a (X0,F0) F0 J Let be a ompa t manifold with boundary endowed with a foliatΛion whi h isassumedtobemeasuredandtransversetotheboundary. Wedenoteby aholonomy 6 (X ,F ) R 0 0 0 invariant transverse measure on and by the equivalen e relation of the (X,F) ] foliation. Let be the orresRponding manifold with ylindri al end and extended G foliation with equivalen e relation . L2 Λ D In the (cid:28)rst part of tDhiFs worXk we prove a formula for the - index of a longitudinal Dira -typeoperator on inthespiritofAlainConnes' non ommutativegeometry . h [26℄ ind (DF,+)=hAˆ(TF)Ch(E/S),C i+1/2[η (DF∂)−h++h−]. t L2,Λ Λ Λ Λ Λ a m In the se ond part we spe ialize to the signature operator. We de(cid:28)ne three types [ of signσature(Xfo,r∂Xthe) pair (foLl2iaΛtion, boundary foliation): the analyti signature, de- noted Λ,an σ0 is th(Xe,∂X- )-index of the signature operator on the ylinRder; the 2 Λ,Hodge 0 Hodgesignature ,de(cid:28)nedusingthenatural representationof onthe v (cid:28)eld of square integrable harmoni forms on the leaves and the de Rham signature, 3 σΛ,dR(X,∂X0) R0 ,de(cid:28)nedusingthenatural representationof onthe(cid:28)eldof relative de 4 Rhamspa es of theleaves. We prove that thesethree signatures oin ide 1 0 σΛ,an(X0,∂X0)=σΛ,Hodge(X,∂X0)=σΛ,dR(X,∂X0). . 1 0 Asa onsequen eoftheseequalitiesandoftheindexformulawe(cid:28)nallyobtainthemain 9 result of this work, theAtiyah-Patodi-Singer signature formula for measuredfoliations: 0 F σ (X,∂X )=hL(TF ),C i+1/2[η (D ∂)] : Λ,dR 0 0 Λ Λ v i X Contents r a 1 Introdu tion 2 2 Geometri Setting 13 2.1 Holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Longitudinal Dira operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 The Atiyah Patodi Singer index theorem 16 4 Von Neumann algebras, foliations and index theory 18 4.1 Non(cid:21) ommutativeintegration theory.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Holonomyinvarianttransverse measures . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 Measures and urrents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 Paolo Antonini 4.2.2 Tangential ohomology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.3 Transverse measures and non ommutativeintegration theory . . . . . . . . . . 32 4.3 VonNeumannalgebras and Breuer Fredholmtheoryfor foliations . . . . . . . . . . . . 33 4.3.1 Thesplitting prin iple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 Analysis of the Dira operator 39 5.1 Finite dimensionalityof theindexproblem. . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Breuer(cid:21)Fredholm perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6 Cylindri al (cid:28)nite propagation speed and Cheeger Gromov Taylor type estimates. 49 6.1 The standard ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2 The ylindri al ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7 The eta invariant 58 7.1 The lassi al eta invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.2 The foliation ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.3 Eta invariantfor perturbationsof theDira operator . . . . . . . . . . . . . . . . . . . 62 8 The index formula 63 9 Comparison with Rama handran index formula 72 9.1 The Rama handranindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 10 The signature of a foliated manifold with boundary 76 10.1 The Hirzebru hformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 10.2 Computations with theleafwise signature operator . . . . . . . . . . . . . . . . . . . . 78 10.3 The Analyti signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 10.4 The Hodge signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 10.5 Analyti al signature=Hodge signature . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 L2 10.6 The (cid:21)deRhamsignature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 10.6.1 manifolds with boundarywith bounded geometry. . . . . . . . . . . . . . . . . 84 10.6.2 RandomHilbert omplexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 10.6.3 De(cid:28)nitionof thede Rhamsignature . . . . . . . . . . . . . . . . . . . . . . . . 88 L2 10.7 de Rhamsignature=Harmoni signature . . . . . . . . . . . . . . . . . . . . . . . . 88 R 0 10.7.1 Theboundaryfoliation and . . . . . . . . . . . . . . . . . . . . . . . . . . 89 10.7.2 Weaklyexa tsequen es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 10.7.3 Spe traldensityfun tions and Fredholm omplexes. . . . . . . . . . . . . . . . 94 10.7.4 Theproof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 A Analysis on Manifolds with bounded geometry 105 A.1 Spe tral fun tions of ellipti operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A.2 Some omputations onCli(cid:27)ord algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 109 1 Introdu tion X 4k 0 Let bea (cid:21)dimensionalorientedmanifoldwithout boundary. One angivefourdi(cid:27)erent de(cid:28)nitions of the signature. σ(X ) 0 • The topologi al signature is de(cid:28)ned as the signature of the interse tion form in (x,y):= x y,[X ] , x,y H2k(X ,R). 0 0 the middle degree ohomology; h ∪ i ∈ σ (X ) dR 0 • The de Rham signature is the signature of the Poin aré interse tion form in ([ω],[φ]):= ω φ; ω,φ H2k(X ). the middle de Rham ohomology; X0 ∧ ∈ dR 0 R 3 σ (X ) Hodge 0 • The Hodge signature, is the signature of the Poin aré interse tion form 2k de(cid:28)ned in the spa e of Harmoni forms with respe t to some hoosen Riemannian (ω,φ):= ω φ; ω,φ 2k(X ). stru ture X0 ∧ ∈H 0 R 1 • The analyti al signature is the index of the hiral signature operator σ (X ):=ind(Dsign,+). an 0 One an provethat all these numbers oin ide, σ(X )=σ (X )=σ (X )=σ (X ). 0 dR 0 Hodge 0 an 0 (1) The Hirzebru h formula σ(X )= L(X ) 0 0 ZX0 an be proven using obordism arguments as in the original work of Hirzebru h or an be seen asa onsequen eofthe Atiyah(cid:21)Singerindex formula[10℄ and the hainofequalities (1). X X Γ X 0 0 0 If −→ is a Galois overing with de k group with as above Atiyah [2℄ used the Γ Von Neumann algebra asso iated to the regular right representation of to normalize the f L2 σ (X ) Γ 0 signature on middle degree harmoni forms on the total spa e. This signature again enters in a Hirzebru h type formula σ (X )= L(X ). Γ 0 0 ZX0 L2 This is the elebrated Atiyah (cid:21)signature theorem. L2 The Atiyah (cid:21)signature theorem was extended by Alain Connes [26℄ to the situation in X 0 whi h the total spa e is foliated by an even dimensional foliation. This is the realm of non(cid:21) ommutative geometry. We shall have the o asion to des ribe extensively this kind of result. X 0 What an one say if has non empty boundary ? X 0 So let now be an oriented ompa t manifold with boundary and suppose the metri is produ t typenear the boundary. Atta h an in(cid:28)nite ylinder a rossthe boundaryto form the manifold with ylindri al ends, X =X ∂X [0, ) 0 0 × ∞ ∂[X0h i IntheseminalpaperbyAtiyahPatodiandSinger[5℄isshowenthattheFredholmindexofthe generalized boundary value problem with the pseudodi(cid:27)erential APS boundary ondition on X L2 0 for the signature operator (or a hiral Dira type operator) is onne ted to the (cid:21)index X L2 X oftheextendedoperatoron . IndeedthisFredholmindexisthe indexon plusadefe t dependingonthespa eofextendedsolutionsonthe ylinder. Morepre iselytheoperatoron L2 the ylinder a ting on the natural spa e of (cid:21)se tions is no more Fredholm (in the general d+d∗ hir1atlhigsraisditnhgeτdi:(cid:27)=er(e−n1ti)akl∗op(−er1a)t|o·|r(|·2|−1),Da sitginng=o„ntDhesi 0gonm,+plexDosif0gnd,i−(cid:27)er«ential forms,odd w.r.t. the natural 4 Paolo Antonini ase in whi h the boundary operator is not invertible) but its kernel and the kernel of its 2 formal adjoint are (cid:28)nite dimensional and this di(cid:27)eren e is given by the formula η(0) h (D ) h (D+) indL2(D+)= Aˆ(X,∇)Ch(E)+ 2 + ∞ − −2 ∞ ; ZX0 h (D ) L2 ± where ∞ are the dimensions of the limiting values of the extended solutions and η(0) is the eta invariant of the boundary operator. 4k Then, in the ase of the signature operator, in dimension the authors investigate the X (X ,∂X ) 0 0 0 relationshipbetweentheAPSindexoftheoperatoron ,thesignatureofthepair , L2 X X the indexon andthespa eofharmoni formson . The on lusionisthatthesignature σ(X ) L2 h 0 ± is exa tly the (cid:21)index on the ylinder i.e. the di(cid:27)eren e of the dimensions of X 3 positive/negativesquare integrable harmoni forms on , σ(X )=h+ h =ind (Dsign,+) 0 − L2 − h (Dsign, )=h (Dsign,+) − while ∞ ∞ by spe i(cid:28) simmetries of the signature operator. In parti - ular the APS signature formula be omes σ(X )= L(X , )+η Dsign . 0 ZX0 0 ∇ |∂X0 (cid:0) (cid:1) Γ In the ase of (cid:21)Galois overings of a manifold with boundary with a ylinder atta hed, X X −→ this program is partially arried on by Vaillant [93℄ in his Master thesis. More spe i(cid:28) ally he estabilishes a Von Neumann index formula in the sense of Atiyah [2℄ for a e Γ Dira type operator and relates this index with the (cid:21)dimensions of the harmoni forms on thetotalspa e. Theremainingpartofthestoryi.e. therelationwiththetopologi allyde(cid:28)ned L2 (cid:21)signatureis arried out by Lü k and S hi k [60℄. Call the index of Vaillant the analyti al L2 X σ (X ) σ (X ) 0 an,(2) 0 Ho 0 (cid:21)signatureofthe ompa tpie e , insymbols whileHarmoni isthe L2 X˜ signature de(cid:28)ned using harmoni forms on . Then Vaillant proves that σ (X )= L(X , )+η Dsign =σ (X ). an,(2) 0 ZX0 0 ∇ Γ |∂X˜ Hodge 0 (cid:0) (cid:1) L2 σ (X ) dR,(2) 0 Lu k and S hi k de(cid:28)ne other di(cid:27)erent types of signatures, de Rham and σ (X ) top,(2) 0 simpli ial and prove that they are all the same and oin ide with the signatures of Vaillant. To be more pre ise they prove σ (X )=σ (X )=σ (X ). Hodge 0 dR,(2) 0 top,(2) 0 None of these steps are easy adaptations of the losed ase sin e in the lassi al proof a fundamental role is played by the existen e of a gap around the zero in the spe trum of the boundaryoperator. Thissituationfailstobetrueinnon ompa t(also o ompa t)ambients. I this thesis I arry out this program for a foliated manifold with ylindri al ends endowed Λ with a holonomy invariant measure [26℄. The framework is that explained by Connes in his seminal paper on non ommutative integration theory [26℄ in parti ular I use in a ru ial way the semi(cid:28)nite Von Neumann algebras asso iated to a measured foliation. Working with the Borel groupoid de(cid:28)ned by the equivalen e relation R I (cid:28)rst extend the index formula of Vaillant. 2oppositeorientation w.r.t. APS 3indeed theinterse tion formispassestobenon(cid:21)degenerate totheimagLe2oftherelative ohomXologyinto theabsoluteone. Thisve tor spa eisnaturally isomorphi tothespa e of (cid:21)harmoni formson . 5 L2 Λ Theorem 1.0 (cid:22) The Dira operator has (cid:28)nite dimensional − (cid:21)index and the following formula holds indL2,Λ(D+)=hAˆ(X)Ch(E/S),[CΛ]i+1/2[ηΛ(DF∂)−h+Λ +h−Λ]. (2) The dimensions of the spa es of extended solutions, h±Λ are suitably de(cid:28)ned using Von Neu- mannalgebrasasso iatedtosquareintegrablerepresentationsofR,thefoliationetainvariant is de(cid:28)ned by Rama handran [76℄ and the usual integral in the APS formula is hanged into the distributional pairing with a tangential distributional form with the Ruelle(cid:21)Sullivan ur- rent [65℄. In the proof of (81) a signi(cid:28) ative role is played by the introdu tion of a notion of Λ Λ (cid:21)essential spe trum of an operator, relative to the tra e de(cid:28)ned by in the leafwise Von Λ Neumann algebra of the foliation. This is stable by (cid:21) ompa t perturbations (in the sense of Breuer [17℄) and translate to the foliation ontest the general philosophy of Melrose [62℄ stating that the operator is Fredholm i(cid:27) is invertible at the boundary. Then we de(cid:28)ne a two parameter perturbation with invertible family at the boundary. This is a Breuer(cid:21)Fredholm perturbation. The strategy is to prove (cid:28)rst the formula for the perturbation then let the parameters go to zero. In the se ond part, inspired by the de(cid:28)nitions of Lü k and S hi k [60℄ I pass to the study of 0 three di(cid:27)erent representationsofR (the equivalen erelation ofthe foliation on the ompa t X σ (X ,∂X ) 0 Λ,an 0 0 pie e )inordertode(cid:28)netheAnalyti al Signature, (i.e. themeasuredindex σ (X ,∂X ) Λ,dR 0 0 ofthesignatureoperatoronthe ylinder),thede Rham signature (i.etheone indu ed by the representation whi h is valued in the relative de Rham spa es of the leaves) σ (X ,∂X ) Λ,Hodge 0 0 0 and the Hodge signature, (de(cid:28)ned in terms of the representationof R in X the harmoni forms on the leaves of the foliation on ). L2 Combining a generalization of the notion of the long exa t sequen e of the pair (folia- tion,boundary foliation), in the sense of sequen es of Random Hilbert omplexes (the analog L2 Γ ofthehomology longsequen eofHilbert (cid:21)modulesinCheegerandGromov[22℄)together with the analysisof boundary value problems of [87℄, one shows that the methods in [60℄ an be generalized and give the following Λ X 0 Theorem 1.0 (cid:22) The above three notions of (cid:21)signature for the foliation on oin ide, σ (X,X )=σ (X,X )=σ (X,X ) Λ,dR 0 Λ,Hodge 0 Λ,an 0 and the followingAPS signature formula holds true σΛ,an(X0,∂X0)= L(X),[CΛ] +1/2[ηΛ(DF∂)] h i A more detailed des ription of the various se tions follows. Geometri setting In this se tionthe whole geometri stru ture is introdu ed. We speak about ylindri alfolia- tionsandallthedataneededtode(cid:28)nethelongitudinalDira operatorasso iatedtoaCli(cid:27)ord bundle. Every ylindri alfoliation arisesfrom a gluingpro ess, startingfrom afoliated man- ifold with boundary and foliation transverseto the boundary. The (cid:28)rst geometri alinvariant of a foliation is its holonomy. It enters into index theory in an essentialway providing a nat- ural desingularization of the leaf spa e. The various holonomy overs glue all together into a G manifold, the holonomy groupoid where one an speak about smooth fun tions and apply 6 Paolo Antonini theusualanalyti alte hniques. FollowingRama handranweworkatlevelofthe equivalen e relation R of being on the same leaf. This is the most elementary level of desingularization where boundary value problems an be set up without ambiguity. Von Neumann algebras, foliations and index theory Von Neumann algebras and Breuer Fredholm theory with tra es. In this se tion generalitiesaboutVonNeumannalgebrasaregiven. Theseareparti ular∗(cid:21)subalgebrasofall bounded operators a ting on an Hilbert spa e. We spe ialize to Von Neumann algebras that an be equipped with a semi(cid:21)(cid:28)nite normal faithful tra e like Von Neumann algebras arising from foliations admitting a holonomy invariant transverse measure. Indeed Connes [27℄ has shownthatholonomyinvarianttransversemeasure orrespondonetoonetosemi(cid:28)nitenormal faithful tra es on the Von Neumann algebra of the foliation. More generally a transverse measuregivesaweight. Thisweightisinvariantunderinteriorautomorphisms,i.e. isatra e, i(cid:27) the measure is invariant under holonomy. Then in some sense holonomy is represented in the Von Neumann algebra by the interior automorphisms. One an also use the language of foliated urrent. A transverse measure sele ts a transverse urrent. This urrent is losed i(cid:27) the transversemeasure is hol. invariant. M τ : M+ [0, ] So let be a Von Neumann agebra with a tra e −→ ∞ one has a natural M V notion of dimension of a losed subspa e a(cid:30)liated to , i.e. a subspa e whose proje tion Pr M τ(Pr ) V V belongs to . This is by de(cid:28)nition the relative dimension . Relative dimension M. is the ornerstone of a theory of Fredholm operators inside This story goes ba k to the seminal work of Breuer [16, 17℄. For this reason relatively Fredholm operators are alled Breuer(cid:21)Fredholm. A Breuer(cid:21)Fredholm operator has a (cid:28)nite real index with some stability properties as in the lassi al theory. Transverse measures and Von Neumann algebras. In the spirit of Alain Connes non ommutative geometry Von Neumann algebras stand for C ∗ measurespa eswhile (cid:21)algebrasdes ribestopologi alspa es. Intheseminalwork[26℄hehas shown that a foliation with a given transversemeasure gives rise to a Von Neumann algebra whose properties re(cid:29)e t the properties of the measure. First we de(cid:28)ne transverse measures as measures on the sigma ring of all Borel transversals. This is a ted by the holonomy pseudogroup. When the measure is invariantw.r.t. this a tion one has a holonomy invariant measures. W I II ∗ If a holonomy invariant measure exists then the asso iated (cid:21) algebrais type or type (the (cid:28)rst type appears only in the ergodi ase). In parti ular there's a natural tra e whose de(cid:28)nition is expli itly given as an integral of suitable obje ts living along leaves against the transversemeasure. Then transverse measures an be onsidered as some kind of measure on the spa e of the leaves. In this se tion we de(cid:28)ne the Von Neumann algebraasso iatedto the transversemeasureand x y x y a square representation of the Borel equivalen e relation R i(cid:27) and are in the same E leave. For a ve tor bundle this is the algebra of uniformly bounded (cid:28)elds of operators x A :L2(L ;E) L2(L ;E) L x x x x x 7−→ −→ ( is the leaveof ) a tingon the Borel (cid:28)eld of Hilbert x L2(X;E) spa es 7−→ suitably identi(cid:28)ed using the transverse measure. Thinking of an operator as a family of leafwise operators the tra e has a natural meaning, it is the integral against the transverse measure of a family of leafwise measures alled lo al tra es. M ForselfadjointintertwiningoΛperators,usingthespe traltheoreRmandthetra eon ( oming from a transverse measure ) one an de(cid:28)ne a measure on alled the spe tral measure (depending on the tra e). Breuer(cid:21)Fredholmproperties ofthe operatorareeasilydes ribed in 7 terms of this spe tral measure. In parti ular one an de(cid:28)ne some kind of essential spe trum Λ alled the (cid:21)essentialspe trum. Belongingof zero to the essential spe trum is equivalent for the operator to be Breuer(cid:21)Fredholm. We show also that for ellipti operators the essential spe trumisgovernedbythebehavioroftheoperatoroutside ompa tsubsetsontheambient K X K manifold. Noti e that if one (cid:28)x a ompa t set on every leaf an interse t in(cid:28)nitely K many times then our notion of "lying outside " must be explained with are. We all this result the Splitting prin iple. It will be useful in the study of the Dira operator. X Analysis of the Dira operator. Consider the leafwise Dira operator on asso iated to the geometri datas of the (cid:28)rst se tion. This is obtained from the olle tion of all Dira D L x x x oZperators {D =}Do+ne fDor ea h leave . If the foliation is assumed even dimEensional this is 2 − (cid:21)graded ⊕ withrespe ttoanaturalinvolutiononthebundle . Thisis alled the Chiral Dira operator. M This leafwise family of operatorsgivesan operatora(cid:30)liated to the Von Neumann algebra (the transverse measure gives the glue to join all the operators together). In parti ular ea h D M spe tralproje tionof de(cid:28)nesaproje tionin . Ifthefoliatedmanifoldis ompa tConnes han shown that this is a Breuer(cid:21)Fredholm operator and the index, the relative dimension of KernelminusCoKernelisrelatedtotopologi alinvariantsofthefoliationbytheConnesindex formula. ind (D+)= Ch(D+)Td(X),[C ] Λ Λ h i Onthe righthandside one(cid:28)nds the distributional ouplingbetweena longitudinal hara ter- C Λ isti lassandthehomology lassofa losed urrent asso iatedtothetransversemeasure by the Ruelle(cid:21)Sullivan method. Finite dimensionality of the index problem. In our ylindri al ase, the operator is in general non Breuer(cid:21)Fredholm. As a general philo- sophi al prin iple for manifolds with ylindri al ends and produ t(cid:21)stru tureoperators, Fred- L2 holm properties of the operator on the natural spa e are essentially aptured by the spe trum at zero of the operator on the ross se tion (the base of the ylinder). Thanks to the splitting prin iple the Philosophy invertibility at boundary ⇐⇒ Freholm property Λ arriesontothefoliated aseifonelooksatthe (cid:21)essentialspe trumoftheleafwiseoperator on the foliation indu ed on the transverse se tion of the ylinder (this is to be thought of as the foliation at in(cid:28)nity). Now it's a well known fa t that lots of Dira type operatorsof apital importan e in Physi s and Geometry are not invertible at the boundary (in(cid:28)nity). One example for all is the Signature operator, our main appli ation here. Howeversome work on ellipti regularity and the use of the generalized eigenfun tion expan- Λ L2 sion of Browderand Gårding shows that the (cid:21)dimension of the proje tion on the kernel D+ D M − of and are (cid:28)nite proje tions of the V.N. algebra . In parti ular we an de(cid:28)ne the L2 D+ hiral index of as ind (D+)=dim Ker (D+) dim Ker (D ). L2,Λ Λ L2 Λ L2 − − Ona ompa tfoliatedmanifold,ifafamilyofoperatorsisimplementedbyafamilyofleafwise uniformly smoothing s hwartz kernels the (cid:28)nite tra e property follows immediately from the remarkable fa t that integrating a longitudinal Radon measure against a transversemeasure gives a (cid:28)nite mass measure on the ambient. Now the ambient is a manifold with a ylinder, hen e Radon longitudinal measures do not give (cid:28)nite measures in general. Our strategy L2 L2 to prove the (cid:28)nite dimensionality of the index problem is to show that the (cid:28)eld of 8 Paolo Antonini D+ proje tions on the kernel of x enjoys the additional property to be lo ally tra eable with respe ttoabiggerfamilyofBorelsets. Tobemorepre iseweprovethatforevery ompa tset K on theL2b(oLun)dary of the ylinder of a leave the operator χK×R+ΠKerL2(D+)χK×R+ is tra e x lasson . Thisis su(cid:30) ient(by the integrationpro ess)to assure(cid:28)nite dimensionality. Breuer(cid:21)Fredholm perturbation. On e(cid:28)nitedimensionalityofkernelsisprovenweperformaperturbationargumentto hange the Dira operator into a Breuer(cid:21)Fredholm one. This is done following very losely Boris Vaillant paper [?℄ where the same problem is studied for Galois overings of manifolds with ylindri al ends. Sin e we are working with Von Neumann algebras the possibilty to use Borel fun tional al ulus gives a great help in a way that we an de(cid:28)ne our two parameters perturbation essentially by boundary operator minus the boundary operator restri ted to some small spe tral interval near zero D ;D , D :=D ǫ,u ǫ,0 ǫ D ǫ,u Next we prove (through the splitting prin iple) that is Breuer(cid:21)Fredholm for small pa- rametersanditsindexapproximatesthe hiralindex. A tuallywehaveto onsiderseparately the two parameters limits. L2 The analysis of the relation between the perturbed Fredholm index and the hiral index L2 euθL2 u > 0 r requires the introdu tion of weighted spa es along the leaves, for ( is the ylindri al oordinate). Smooth solutions belonging to ea h weighted spa e are alled Ext(D ) ± Extended Solutions, . They enternaturallyinto the A.P.S index formulabut do not L2 Λ form a losed subspa e in . Some are is needed in de(cid:28)ning their (cid:21)dimension and prove that this is (cid:28)nite. The remaining part of the se tion is devoted to the proof of the fundamental asymptoti relations limind (D+)=ind (D+), limdim Ext(D )=Ext(D ). L2,Λ ǫ L2,Λ Λ ǫ± ± ǫ 0 ǫ 0 → → Cylindri al (cid:28)nite propagation speed and Cheeger Gromov Taylor type estimates. To prove the index formula we need some pointwise estimates on the S hwartz kernels of fun tions of the leafwise Dira operator. Our perturbation on the ylinder has the shape D+Q Q where is some selfadjoint order zero pseudodi(cid:27)erential operator on the base of the Q uId ylinder (a tually is just a sum of a uniformly smoothing operator and ) in parti ular one an repeat the proof of energy estimates as in the Book by John Roe for example [79℄ ∂L (a,b) ∂L x x for the wave equation no more on a small geodesi ball but on a strip × ( is ξ 0 the base of the ylinder) (cid:28)nding out that unitary ylindri al di(cid:27)usion speed holds i.e. if ∂L (a,b) eiQξ x 0 is supported in × then the solution of the wave equation is supported in ∂L (a t,b+ t). x × −| | | | Thisissu(cid:30) ienttoextimatekernelsof lasss hwartzspe tralfun tions D Q of and following the method of Cheeger, Gromov and Taylor [23℄ obtaining de aying estimates for the heat kernel |∇lz1∇kz2[Tme−tT2](z1,z2)|≤C(k,l,m,T)e(|s1−s2|−r1)2/6t. (3) [] r 1 With the notation · one denotes the S hwartz kernel, and is some positive number while z =(x ,s ) s s >2r i i i 1 2 1 aretwopointsonthe ylinderwith | − | . Itis learwhy oneisbrought to all these the Chegeer Gromov Taylor estimates in the ylindri al dire tion. There is also an extremely useful relative version of estimate (3) where one an estimate the di(cid:27)eren e of U the kernels of spe tral fun tions of two operators that agree on some open subset of the ylinder. This is an estimate of the form 2n¯+l+k l k([f(P )] [f(P )]) (P ,k,l,r ) fˆ(j)(s)ds, |∇x∇y 1 − 2 (x,y)|≤C 1 2 Xj=0 ZR−J(x,y)| | 9 l r >0 x,y U Q(x,y):=max min d(x,∂U);d(y,∂U) r ;0 2 2 where is a leaf, , ∈ , { { }− }, Q(x,y) Q(x,y) J(x,y):= − , f (R) c c and ∈S isaS hwartzfun tiontoapplytotheoperator (cid:16) (cid:17) using the spe tral theorem. In pra ti e we shall olle t all these estimates, one for ea h leaf. Thanks to the uniformly bounded geometry of the leaves that run trough a ompa t manifold (with boundary) the onstants an be made independend. This is an extremely important fa t. The foliated eta invariant. Sin e its (cid:28)rst apparitionin [5℄ the eta invariantof a Dira operator asthe di(cid:27)eren e between the lo al and global term on the Atiyah Patodi Singer index formula 1/2η(D )= ω ind(D+)+1/2dimKer(D ) 0 D 0 −{ } ZX or the spe tral asimmetry de(cid:28)ned as the regular value at zero of the meromorphi fun tion (summation overeigenvalues) signλ η (s):= , Re(s)>dim∂X D0 λs (4) λ=0 | | X6 has be ome a key on ept a in Spe tral geometry and modern Physi s. The foliation eta invariant on a ompa t manifold (when a transverse invariant measure is (cid:28)xed)wasde(cid:28)nedindependentlyandessentiallyinthesamewaybyPeri [70℄andRama han- dran [76℄ and enters into our A.P.S index formula exa tly in the way it enters lassi ally. It should be remarked that Peri and Rama handran numbers are not the same. The reason is simple. Peri uses the holonomy groupoid to desingularize the spa e of the leaves while Rama handran works dire tly on the Borel equivalen e relation. Due to their global nature the eta invariants obtained are not the same. As a striking onsequen e one gets that on a ylindri alfoliatedmanifoldevery hoi eofdesingularizationfromtheequivalen erelationto the holonomy (or the monodromy groupoid ) leads to di(cid:27)erent index formulas with di(cid:27)erent eta invariants. This is a genuine new feature of the boundary ( ylindri al) ase. Sin eweworkwiththeBorelequivalen erelationoureta(cid:21)invariantisthatofRama handran. DF∂ 4 DF∂ Re(s) 0 So onsiderthebaseDira operator the etafun tion of isde(cid:28)ned for ≤ by η(DF∂,s):= 1 ∞ts−21 trΛ(DF∂e−DF∂)dt, λ >0, s> 1. Γ((s+1)/2) | | − Z0 Re(λ) 0 (dim ∂ It an be shown that this is meromorphi for ≤ with simple poles at F − k)/2, k =0,1,... and a regular value at zero. In this se tion we des ribe this result and we extend it to some lasses of perturbations of theoperatorneeded in the proofoftheindexformula. Weshall onsiderperturbationsofthe Q = DF∂ +K K K = f(DF∂) f : f(oram,a) R f =witχh( ǫ,ǫ)some uniformly smoothing spe traQl fuu:n= tDionF∂+DF∂f(DF∂,)+u − −→ . For − more anbesaidaboutthefamily in fa t we an de(cid:28)ne ηΛ(Qu)=LIMδ 0 k t−1/2 trΛ(Que−tQ2u)dt+ ∞ t−1/2 trΛ(Que−tQ2u)dt → Zδ Γ(1/2) Zk Γ(1/2) LIM δ where is the oknstant term in the asymptoti development in powers of near zero of δ the fun tion 7−→ δ . Moreovertwo important formulas hold true 4therelationwith(R4) omesfromtheidentitysign(λ)|λ|−1=Γ s+21 −1 0∞ts−21λe−tλ2dt ` ´ R 10 Paolo Antonini ηΛ(Qu) ηΛ(Q0)=sign(u)trΛ(f(DF∂) • − • η (Q )=1/2(η (Q )+η (Q )). Λ 0 Λ u Λ u − (5) This only requires a minimal modi(cid:28) ation of the proof given by Vaillant [93℄ for Galois ov- erings. The point is that the relevant Von Neumann algebras are losed under the Borel fun tional al ulus. The index formula. Finally we prove the index formula indL2,Λ(D+)=hAˆ(X)Ch(E/S),[CΛ]i+1/2[ηΛ(D0F)−h+Λ +h+Λ] whereh±Λ :=dimΛ(Ext(D±)−dimΛ(KerL2(D±).Ourproofisamodi(cid:28) ationofVaillantproof L2 that in turnis inspiredby Müller proofofthe (cid:21)index formulaon manifolds with ornersof odimension two [66℄. This is a (of ourse) a proof based on the heat equation. The starting point is the identity indL2,Λ(Dǫ+)=luim01/2{indΛ(Dǫ+,u)+indΛ(Dǫ+,−u)+h−Λ,ǫ−h+Λ,ǫ} (6) ↓ where h±Λ,ǫ :=dimΛExt(Dǫ±)−dimΛKerL2(Dǫ±) ǫ=0 de(cid:28)nition also valid for . Next we prove indΛ(Dǫ+,u)=hAˆ(X)Ch(E/S),[CΛ]i+1/2ηΛ(DǫF,u∂)+g(u) (7) g(u) 0 u with −→ . u Equation (7) ombined with (6) and (5) be omes, after the (cid:21)limit indL2,Λ(Dǫ+)=hAˆ(X)Ch(E/S),[CΛ]i+1/2ηΛ(DF0)+h−ǫ −h−ǫ . ǫ 0 ǫ The last step is to assure that under → ea h (cid:21)depending obje t in the above equation ǫ=0 goes to the orresponding value for . Some words about the proof of (7). This is inspired from the work of Müller [66℄. We [exp( tD2 )] start from the onvergen e into the spa e of leafwise smoothing kernels of − ǫ,u to [Ker (D )] φ X X L2 ǫ,u k k+1 m . The hoi e of ut o(cid:27) fun tions supported in ( is the manifold r =m X trun ated at ) gives an exaustion of into ompa t pie es. Consider the equation indΛ(Dǫ+,u)=strΛχ 0 (Dǫ,u)= lim lim strΛ(φke−tDǫ2,uφk)= { } k + t + → ∞ → ∞ kl→im∞strΛ(φke−sDǫ2,uφk)−Zs∞strΛ(φkDǫ2,ue−tDǫ2,uφk)dt. (8) √k t + ∞ The (cid:21)integral is splitted into s √k the se ond one going to zero thanks to the Breuer(cid:21) D ǫ,u Fredholmpropertyof . MoRreworRkis needed in the studyofthe(cid:28)rst one, theresponsible for the presen e of the eta invariant in the formula. Using heavily the relative version of the Cheeger(cid:21)Gromov(cid:21)Taylorestimate (3) one shows that √k lim LIMs 0 =1/2ηΛ(DǫF,u0). k→∞ → Zs