ebook img

The ARTEMIS Mission PDF

109 Pages·2014·11.02 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The ARTEMIS Mission

The ARTEMIS Mission Christopher Russell (cid:2) Vassilis Angelopoulos Editors The ARTEMIS Mission Previously published in Space Science Reviews Volume 165, Issues 1–4, 2011 Editors ChristopherRussell VassilisAngelopoulos UniversityofCaliforniaLosAngeles UniversityofCaliforniaLosAngeles LosAngeles,CA,USA LosAngeles,CA,USA ISBN978-1-4614-9553-6 ISBN978-1-4614-9554-3(eBook) DOI10.1007/978-1-4614-9554-3 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013951820 ©SpringerScience+BusinessMediaNewYork2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorage andretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknown orhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnectionwithreviews orscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredandexecutedona computersystem,forexclusiveusebythepurchaserofthework.Duplicationofthispublicationorparts thereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’slocation,initscur- rentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissionsforusemaybe obtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliabletoprosecutionunder therespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neitherthe authors nor theeditors nor the publisher canacceptanylegalresponsibility for anyerrors or omissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothematerial containedherein. Coverillustration:Anartist’sconceptofARTEMIS-P1andP2inlunarorbit. Credit:NASA/ConceptualImageLab. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents (cid:3) Foreword AccelerationReconnectionTurbulenceandElectrodynamicsofMoon’s InteractionwiththeSun(ARTEMIS)mission (cid:3) C.T.Russell V.Angelopoulos 1 TheARTEMISMission V.Angelopoulos 3 ARTEMISScienceObjectives (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) D.G.Sibeck V.Angelopoulos D.A.Brain G.T.Delory J.P.Eastwood (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) W.M.Farrell R.E.Grimm J.S.Halekas H.Hasegawa P.Hellinger K.K.Khurana (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) R.J.Lillis M.Øieroset T.-D.Phan J.Raeder C.T.Russell D.Schriver (cid:3) (cid:3) J.A.Slavin P.M.Travnicek J.M.Weygand 27 ARTEMISMissionDesign (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) T.H.Sweetser S.B.Broschart V.Angelopoulos G.J.Whiffen D.C.Folta (cid:3) (cid:3) M.-K.Chung S.J.Hatch M.A.Woodard 61 FirstResultsfromARTEMIS,aNewTwo-SpacecraftLunarMission: Counter-StreamingPlasmaPopulationsintheLunarWake (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) J.S.Halekas V.Angelopoulos D.G.Sibeck K.K.Khurana C.T.Russell (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) G.T.Delory W.M.Farrell J.P.McFadden J.W.Bonnell D.Larson R.E.Ergun (cid:3) F.Plaschke K.H.Glassmeier 93 DOI10.1007/978-1-4614-9554-3_1 ReprintedfromSpaceScienceReviewsJournal,DOI10.1007/s11214-012-9875-3 Foreword AccelerationReconnectionTurbulenceandElectrodynamics ofMoon’sInteractionwiththeSun(ARTEMIS)mission C.T.Russell·V.Angelopoulos Publishedonline:22March2012 ©SpringerScience+BusinessMediaB.V.2012 TheMoon’sspaceenvironment,tenuousneutralexosphere,wake,surfaceandinteriorhave been studied with single spacecraft missions since the beginning of the space age: The Apollomissionsextendednotonlythehumanexperiencetothelunarsurfacebutalsocar- ried our extended eyes and ears to the lunar surface and into lunar orbit to study for the first time how the solar wind interacts with airless bodies and, using magnetic induction, toprobetheinteriorcoreproperties.Sincethen,theUSClementine,LunarProspectorand LunarReconnaissanceOrbitermissions,ESA’sSMART-1,theJapaneseKaguya,theIndian ChandrayaanandtheChineseChang’eIandIImissionshaverevealedwithgreaterdetail properties of lunar crustal magnetism and surface composition, while analysis of Apollo samples have rewritten textbooks regarding the formation of the Earth-Moon system and Solar System evolution. It has become apparent recently that to make further progress in understandingthecomplexinteractionoftheMoon’ssurfacewithitsspaceenvironment,as wellastobetterprobetheMoon’sinteriorwithnaturalelectromagneticsignalsfromabove, singlepointmeasurementsareinadequate.Thesolarwindbuffetingthesurfaceneverstays constant:itvariesonthetime-scalesthatcorrespondtodeepelectromagneticsoundingand onspatialscalescomparabletoseverallunarradii,renderingdistantspacecraft(e.g.,onesat theEarth-SunLagrangepoint)ineffectivemonitorsofthelocaldrivers. Atadistanceof55–65Earthradii,theMoonspendsmostofitstimeupstreamofEarth’s bow shock, and is thus exposed to either the pristine solar wind or to showers of parti- clesemittedbythesolarwind-magnetosphereinteraction.OnceperlunarmonththeMoon traversesEarth’smagnetotailatawoefullyundersampledregionwheremagneticreconnec- tion, plasma turbulence and particle acceleration are commonplace and have far-reaching consequencesformagnetosphericplasmacirculation.Lunarorbits,therefore,areidealplat- formsforobservationandstudyofthepristinesolarwindthatimpactsEarth,distanteffects at shocks, and the dominant method of energy release in the magnetosphere, namely dis- tantmagnetotail reconnection.Typical studiesofthesephenomenahave, again,beencon- (cid:2) C.T.Russell( )·V.Angelopoulos UniversityofCalifornia,LosAngeles,LosAngeles,CA,USA e-mail:[email protected] 1 Reprintedfromthejournal C.T.Russell,V.Angelopoulos ductedonlywithsinglespacecraftmissions.Thus,spatialextent,spatio-temporalambigui- ties,three-dimensionaleffectsanddynamicalevolutioncouldonlybelooselyinferredinthe pastbutnotdulyexplored. Recognizingthescientific returnfromatwo-pointinvestigation fromtheMoonandof theMoon,theNASA/THEMISteamembarkeduponaboldinitiativetousetheexcessfuel capacityoftwoofthefivespacecraftintheTHEMISconstellationorbitingEarthandsend them via low-thrust trajectories in orbit about the Moon. From those stable, yet scientifi- cally optimal orbits, the two spacecraft would conduct unprecedented observations of the solarwinddriveranditsinteractionwiththelunarexosphere,crustalmagnetism,lunarsur- face(wake),andlunarinterior,aswellasperformtwo-pointobservationsofthesolarwind, itsinteractionwiththemagnetosphere,andmagnetotailreconnectionandtheireffects(plas- moids,particleaccelerationandturbulence)inthedistantmagnetotail.HencetheARTEMIS missionwasbornoutofTHEMIS. ARTEMIS has been a mission of several “firsts”. It is the first mission to employ two identical coordinated spacecraft at the Moon, the first mission to conduct prolonged (9 month) observations and station-keeping at an Earth-Moon Lagrange point, the first to provide DC electric field measurements at the lunar space environment, and the first to provide comprehensive in-situ measurements in the lunar space environment from a high altitudelunarorbit. InthecompendiumofpapersinthisvolumeV.AngelopoulosdescribestheARTEMIS mission,andT.Sweetserandcolleaguespresentitscircuitous,mission-enabling,lowthrust trajectorydesign.Itsbroadscientificobjectivesspanningheliophysicsandplanetarygoals aredescribedbyD.Sibeckandcolleagues,andthefirstresultsfromthemission,obtained duringalunarflybyenroutetoatranslunarorbitinjectionbytheARTEMISP1spacecraft arepresentedbyJ.Halekasandcolleagues.Thelatterprovidesanexpositionofthescientific potentialfromtheinstrumentationaboardthathasbeenoperatingnominallyfiveyearsafter launchoftheARTEMIShardwareintospace.Thespacecraftandinstrumentation,including salient features of calibration and generic data interpretation, have been described in the THEMISSpaceScienceReviewsvolume(Angelopoulos2008). Wehopethatthepresentvolumewillbeusefultoresearchersinbothheliophysicsand planetary physics for understanding published scientific results from the mission and in ordertoaidtheirownanalysisanddatainterpretationeffortsfromthesepubliclyavailable datasets. February23,2012 Acknowledgements WegreatlyappreciatetheeffortsoftheeditorialstaffattheSpaceScienceReviews,in particularMr.RandyCruzforhisrapidandefficientprocessingofthesubmissions,andthefigures,Mr.Em- manuelMasongsongforinterfacingwithauthorsandeditors,Ms.JudyHohlforeditorialassistancewiththe manuscriptsandMs.MarjorieSowmendranattheUniversityofCalifornia,LosAngeles,forinterfacingwith thereferees,authorsandpublishers. WearegratefultoDr.AyakoMatsuokawhosteppedintoeditthearticlesforwhichtheeditorswerecon- flicted.Theeditorsalsobenefitedfromanexcellentgroupofrefereeswhohelpedrefinethearticlesprovided bytheauthors.Theserefereesincluded:DennisByrnes,RobertFarquhar,YoshifumiFutaana,LonnieHood, ShinobuMachida,TomokoNakagawa,MasakiNNishino,YoshifumiSaito. References V.Angelopoulos,TheTHEMISMission.SpaceSciRev141,5–34(2008).doi:10.1007/s11214-008-9336-1 Reprintedfromthejournal 2 DOI10.1007/978-1-4614-9554-3_2 ReprintedfromSpaceScienceReviewsJournal,DOI10.1007/s11214-010-9687-2 The ARTEMIS Mission V.Angelopoulos Received:2December2009/Accepted:19August2010/Publishedonline:3November2010 ©TheAuthor(s)2010 Abstract TheAcceleration,Reconnection,Turbulence,andElectrodynamicsoftheMoon’s Interaction with the Sun (ARTEMIS) mission is a spin-off from NASA’s Medium-class Explorer (MIDEX) mission THEMIS, a five identical micro-satellite (hereafter termed “probe”)constellationinhighaltitudeEarth-orbitsince17February2007.Byrepositioning twoofthefiveTHEMISprobes(P1andP2)incoordinated,lunarequatorialorbits,atdis- tancesof∼55–65R geocentric(∼1.1–12R selenocentric),ARTEMISwillperformthe E L first systematic, two-point observations of thedistant magnetotail, the solar wind,and the lunarspaceandplanetaryenvironment.Theprimaryheliophysicsscienceobjectivesofthe mission are to study from such unprecedented vantage points and inter-probe separations howparticlesareacceleratedatreconnectionsitesandshocks,andhowturbulencedevelops andevolvesinEarth’smagnetotailandinthesolarwind.Additionally,themissionwillde- terminethestructure,formation,refilling,anddownstreamevolutionofthelunarwakeand exploreparticleaccelerationprocesseswithinit.ARTEMIS’sorbitsandinstrumentationwill also address key lunar planetary science objectives: the evolution of lunar exospheric and sputteredions,theoriginofelectricfieldscontributingtodustchargingandcirculation,the structure of the lunar interior as inferred by electromagnetic sounding, and the lunar sur- facepropertiesasrevealedbystudiesofcrustalmagnetism.ARTEMISissynergisticwith concurrentNASAmissionsLROandLADEEandtheanticipateddeploymentoftheInter- nationalLunarNetwork.ItisexpectedtobeakeyelementintheNASAHeliophysicsGreat Observatoryandtoplayanimportantroleininternationalplansforlunarexploration. Keywords THEMIS·ARTEMIS·Magnetosphere·Reconnection·Solarwind· Turbulence·Lunarexosphere 1 Introduction The “Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Inter- action with the Sun” (ARTEMIS) mission is a two-spacecraft (“probe”) complement that (cid:2) V.Angelopoulos( ) IGPP/ESSUCLA,LosAngeles,CA90095-1567,USA e-mail:[email protected] 3 Reprintedfromthejournal V.Angelopoulos addresses key science questions related to both heliophysics science as observed from/at thelunarenvironmentandthelunarexosphere,surface,andinterior.Themissionconcept utilizesthetwooutermostsatellitesoftheNASAMIDEXmissionTHEMIS(Angelopoulos 2008), a five identical satellite mission launched on 17 February 2007 to study the origin of the magnetospheric substorms, a fundamental space weather process (Sibeck and An- gelopoulos2008). From distances hundreds of kilometers to 120,000 km (from the Moon and at variable inter-probeseparationsoptimizedforheliophysicsscience,thetwoARTEMISprobeswill study:(i)particleacceleration,reconnection,andturbulenceinthemagnetosphereand(ii) inthesolarwind;and(iii)theelectrodynamicsofthelunarenvironment.Withitsunique, coordinated,two-pointmeasurements,ARTEMISwillrevealthedynamics,scalesize,and evolutionofthedistanttail,the3-dimensionalstructureofsolarwindshocks,andthestruc- ture, evolution and kinetic properties of the lunar wake. ARTEMIS builds on our under- standingofthemagnetotailandsolarwindenvironmentatlunardistancesthatwasacquired fromISEE3(TsurutaniandvonRosenvinge1984),Geotail(Nishida1994)andWind(Acuña etal.1995).ARTEMISwillalsoadvanceourunderstandingtheMoon’swakegoingbeyond theobservationsfromWindhighaltitude(10R )wakecrossingsandthelow(∼100km) L altitude wake and exospheric observations by Lunar Prospector (LP, Hubbard et al. 1998; Binder 1998), Kaguya (e.g., Saito et al. 2010) and Chang’E. ARTEMIS’s comprehensive plasma and fields observations over an extensive range of distances from low to high al- titudes fill an observational gap in wake behavior and extend the measurement capability byincludingDCelectricfieldobservationsandatwospacecraftcomplement.ARTEMIS’s multi-pointobservations,orbits,andinstrumentationarealsoideallysuitedtoadvanceour knowledge of several key topics raised in the 2003 National Research Council’s (NRC) DecadalSurveyforSolarSystemExplorationandseveralprioritizedscienceconceptslisted inthe2007NationalAcademyofSciences(NAC)report,“TheScientificContextforExplo- rationoftheMoon”.Withallitsinstrumentsoperatingflawlesslyandfromtheachievable 100kmperigeealtitude,∼10°inclinationorbit,ARTEMIScouldcontributegreatlytoour understanding of the formation and evolution of the exosphere, dust levitation by electric fields,thecrustalfieldsandregolithpropertiesandtheinterioroftheMoon.Byoptimizing periselene to obtain low-altitude passes below 100 km and inclinations as high as 20° to reach the outskirts of the South Pole—Aitken basin, the ARTEMIS team can further op- timize the science return from the mission for planetary science in its prime or extended phase. ThispaperdescribestheARTEMISmissionconcept.Followinganoverviewofthemis- sion history, instrument and spacecraft capabilities, and mission phases (Sect. 1), Sect. 2 presents the scientific objectives in relation to the mission design. Section 3 discusses the aspectsofmissiondesignthatenabledoptimalsciencewithinthecapabilitiesofspacecraft already in orbit. Section 4 describes the unique features of the ARTEMIS operations that werecritical inachievingtheheliophysicsandplanetary aspectsofthemission.Thissec- tion also provides an overview of the data processing and data dissemination system as it has evolved through the successful THEMIS mission practices and is now applied on ARTEMIS.Detailedaspectsofthescientificobjectives,missiondesign,navigation,opera- tions,andfirstresultswillbepresentedinfuturepublications. 2 Overview ARTEMIS arose well into the THEMIS mission’s Phase-C development cycle, when it was recognized that Earth shadows exceeding the spacecraft bus thermal design limits Reprintedfromthejournal 4 TheARTEMISMission would threaten THEMIS probes TH-B (P1) and TH-C (P2) during their third tail sea- son. This was destined to happen on March 2010, about six months after the end of the prime mission (Fig. 1(a)). Additionally, at that time the angles between the lines of ap- sides for P1 and P2 would be 54° and 27° away from those of P3, P4, and P5, render- ingtheclassicfive-probeconjunctionsoftheprimeTHEMISmissiondesignnon-optimal. Preliminary studies by NASA/JPL in 2005 indicated that by placing P1 and P2 into lu- nar orbits (Fig. 1(b)) using a low-thrust lunar capture mission design, the risk of freez- ing would be avoided as the shadow durations would become small and manageable. The potential of P1 and P2 for scientific discovery could be further maximized for helio- physics science by careful optimization of the mission design to result in variable inter- probe separation vectors relative to the Sun-Moon and Sun-Earth line. This optimization was the genesis of the ARTEMIS concept. An ARTEMIS science team was formed at thatpointtodefinethescientificgoalsofthemissionandworkedonscienceoptimization. ThemissionwasapprovedbytheNASAHeliophysicsSenior Reviewpanel inMay 2008 (http://wind.nasa.gov/docs/Senior_Review_2008_Report_Final.pdf),andARTEMISopera- tionscommencedonJuly20th,2009—coincidingwiththe40thanniversaryofNASA’sfirst lunarlanding. WiththeprimeTHEMISmissionsuccessfullycompletedbySeptember2009andwith fuelmarginsonP1andP2remainingrobust,theARTEMISimplementationisproceeding asplanned.ThreelunarflybysinJanuary-Marchof2010resultingintranslunarinjections (TLI)willplacetheprobesinorbitsneartheEarth-SunLagrangepoints.Theseflybysare also expected to provide a first glimpse into the type of ARTEMIS lunar wake data to be expected from the nominal mission. Following a series of Earth flybys in 2010, the two probesareexpectedtoreachLissajousorbits(theLagrangepointsoftheEarth-Moonsys- tem)inOctober2010andenterintolunarorbitsinApril2011.Figure2showsthegeometry of those orbits in a coordinate system centered at the Moon, with X-axis opposite Earth, Z axis perpendicular to the Earth-Moon orbit plane, positive North, and Y axis complet- ing the right-hand coordinate system. Very little fuel is needed to move a probe from the LunarLagrangepoint1(LL1)ontheEarthside,totheLL2,oppositetoEarth.Verylittle fuelisrequiredtomaintainthespacecraftfromoneLagrangepointtotheother,resultingin semi-periodicLissajousorbitsinthiscoordinatesystem. The ARTEMIS team has been given the go-ahead to implement a 2 year mission. The probes’radiationsafetymargin,robustinstrumentation,andstableorbits,however,makethe missioncapableofprovidinghighqualitymeasurementsofthelunarenvironmentduringthe nextsolarcycle.Table1outlinesthemissionphases,durations,andtypicalorbitseparations ineachphaseandlinksthemtothescienceobjectivesdiscussedaboveandinSect.2.The mission phases are as follows: The two probes, P1 and P2, arrive at the Lissajous orbits, onoppositesidesoftheMoon,onSeptember1,2010(P1,near-side)andOctober19,2010 (P2,far-side),respectively.TheinsertionofP2isgradual,suchthatusefultailandsolarwind two-probeconjunctionscancommenceasearlyasSeptember21,2010.Theprobesstayin thisconfigurationuntilJanuary8,2011.IntheLissajousorbits,althoughtheprobeshover ∼60,000kmawayfromtheMoonalongtheEarth-Moonline(ontheirrespectivesidesof theMoon),theyarelibratingalongtheirorbit-tracksaboutEarth,±60,000kmaheadofor behindtheMoon.ThisstrategyresultsinavarietyofP1-P2conjunctionswithinter-probe separations of 60,000–120,000 km (dR∼10–20 R , or 35–70 R ) that are either along E L the Sun-Earth line or across it; those conjunctions can be either in the solar wind, or in themagnetotailandmagnetosheath.Thisstrategyalsoresultsinsixlong-rangelunarwake crossings by either P1 or P2 from around 20 and 30 R . Figure 3(a) shows snapshots of L twopossiblerelativepositionsofP1andP2inthemagnetosphereandthesolarwind.Due 5 Reprintedfromthejournal

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.