ebook img

The Art of Mathematics – Take Two: Tea Time in Cambridge PDF

349 Pages·2022·12.613 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Art of Mathematics – Take Two: Tea Time in Cambridge

TheArtofMathematics–TakeTwo Lovers of mathematics, young and old, professional and amateur, will enjoy this book.Itismathematicswithfun:acollectionofattractiveproblemsthatwilldelight andtestreaders.Manyoftheproblemsaredrawnfromthelargenumberthathave entertained and challenged students, guests and colleagues over the years during afternoon tea. The problems have their roots in many areas of mathematics. They varygreatlyindifficulty:someareveryeasy,butmostarefarfromtrivial,andquite afewratherhard.Manyprovidesubstantialandsurprisingresultsthatformthetip ofaniceberg,providinganintroductiontoanimportanttopic. To enjoy and appreciate the problems, readers should browse the book, choose onethatlooksparticularlyenticing,andthinkaboutitonandoffforawhilebefore resortingtothehintorthesolution. Followthreadsforanenjoyableandenrichingjourneythroughmathematics. be´la bolloba´s has been a Fellow at Trinity College, Cambridge, for over fifty years, for decades as aDirector of Studies inMathematics, teaching thevery best undergraduatesinEngland,andistheChairofExcellenceinCombinatoricsatthe UniversityofMemphis.HehashadoverseventyPh.D.students.HeisaFellowof theRoyalSocietyandaMemberoftheAcademiaEuropaea,andaForeignMember of the Hungarian Academy of Sciences and of the Polish Academy of Sciences. AmongtheawardshehasreceivedareaSeniorWhiteheadPrize(2007),aBocskai Prize (2016), a Sze´chenyi Prize (2017) and an Honorary Doctorate from Adam MickiewiczUniversity,Poznan´.Thisishisthirteenthbook. Published online by Cambridge University Press Learningisthegreatestpleasureinlife Published online by Cambridge University Press The Art of Mathematics – Take Two Tea Time in Cambridge Be´laBolloba´s UniversityofCambridgeand UniversityofMemphis Published online by Cambridge University Press UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108833271 DOI:10.1017/9781108973885 ©Be´laBolloba´s2022 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2022 PrintedintheUnitedKingdombyTJBooksLimited,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-108-83327-1Hardback ISBN978-1-108-97826-2Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Published online by Cambridge University Press Contents Preface pagexi TheProblems 1 TheHints 33 TheSolutions 45 1.RealSequences–AnInterviewQuestion 47 2.VulgarFractions–Sylvester’sTheorem 49 3.RationalandIrrationalSums 53 4.ShipsinFog 55 5.AFamilyofIntersections 56 6.TheBaselProblem–Euler’sSolution 58 7.ReciprocalsofPrimes–EulerandErdős 61 8.ReciprocalsofIntegers 65 9.CompletingMatrices 66 10.ConvexPolyhedra–TakeOne 68 11.ConvexPolyhedra–TakeTwo 70 12.AVeryOldTriposProblem 72 13.AngleBisectors–theLehmus–SteinerTheorem 74 14.Langley’sAdventitiousAngles 76 15.TheTantalusProblem–fromTheWashingtonPost 79 16.PythagoreanTriples 81 17.Fermat’sTheoremforFourthPowers 84 18.CongruentNumbers–Fermat 86 v Published online by Cambridge University Press vi Contents 19.ARationalSum 89 20.AQuarticEquation 92 21.RegularPolygons 95 22.FlexiblePolygons 99 23.PolygonsofMaximalArea 100 √ 24.Constructing 32–PhilonofByzantium 105 25.CircumscribedQuadrilaterals–Newton 108 26.PartitionsofIntegers 111 27.PartsDivisiblebymand2m 114 28.UnequalvsOddPartitions 115 29.SparseBases 117 30.SmallIntersections–SárközyandSzemerédi 119 31.TheDiagonalsofZero–OneMatrices 122 32.TrominoandTetronimoTilings 123 33.TrominoTilingsofRectangles 126 34.NumberofMatrices 128 35.HalvingCircles 129 36.TheNumberofHalvingCircles 131 37.ABasicIdentityofBinomialCoefficients 134 38.Tepper’sIdentity 136 39.Dixon’sIdentity–TakeOne 138 40.Dixon’sIdentity–TakeTwo 140 41.AnUnusualInequality 143 42.Hilbert’sInequality 145 43.TheCentralBinomialCoefficient 147 44.PropertiesoftheCentralBinomialCoefficient 149 45.ProductsofPrimes 151 46.TheErdősProofofBertrand’sPostulate 153 47.Powersof2and3 155 48.Powersof2JustLessThanaPerfectPower 156 49.Powersof2JustGreaterThanaPerfectPower 158 50.PowersofPrimesJustLessThanaPerfectPower 159 Published online by Cambridge University Press Contents vii 51.Banach’sMatchboxProblem 164 52.Cayley’sProblem 166 53.MinvsMax 168 54.SumsofSquares 170 55.TheMonkeyandtheCoconuts 172 56.ComplexPolynomials 174 57.Gambler’sRuin 175 58.Bertrand’sBoxParadox 179 59.TheMontyHallProblem 181 60.DivisibilityinaSequenceofIntegers 185 61.MovingSofaProblem 187 62.MinimumLeastCommonMultiple 191 63.VietaJumping 193 64.InfinitePrimitiveSequences 195 65.PrimitiveSequenceswithaSmallTerm 197 66.Hypertrees 199 67.Subtrees 200 68.AllinaRow 201 69.AnAmericanStory 203 70.SixEqualParts 205 71.ProductsofRealPolynomials 208 72.SumsofSquares 210 73.DiagramsofPartitions 212 74.Euler’sPentagonalNumberTheorem 214 75.Partitions–MaximumandParity 218 76.PeriodicCellularAutomata 220 77.MeetingSetSystems 223 78. Dense Sets of Reals – An Application of the Baire Category Theorem 225 79.PartitionsofBoxes 227 80.DistinctRepresentatives 229 81.DecomposingaCompleteGraph:TheGraham–PollakTheorem –TakeOne 230 Published online by Cambridge University Press viii Contents 82. Matrices and Decompositions: The Graham–Pollak Theorem – TakeTwo 232 83. Patterns and Decompositions: The Graham–Pollak Theorem – TakeThree 234 84.SixConcurrentLines 236 85.ShortWords–FirstCases 237 86.ShortWords–TheGeneralCase 239 87.TheNumberofDivisors 241 88.CommonNeighbours 243 89.SquaresinSums 244 90.ExtensionofBessel’sInequality–BombieriandSelberg 245 91.EquitableColourings 247 92.ScatteredDiscs 249 93.EastModel 251 94.PerfectTriangles 254 95.ATriangleInequality 256 96.AnInequalityforTwoTriangles 258 97.RandomIntersections 260 98.DisjointSquares 262 99.IncreasingSubsequences–ErdősandSzekeres 264 100.APermutationGame 266 101.AntsonaRod 267 102.TwoCyclistsandaSwallow 268 103.AlmostDisjointSubsetsofNaturalNumbers 270 104.PrimitiveSequences 272 105.TheTimeofInfectiononaGrid 274 106.AreasofTriangles:Routh’sTheorem 276 107.LinesandVectors–EulerandSylvester 282 108.Feuerbach’sRemarkableCircle 284 109.Euler’sRatio–Product–SumTheorem 286 110.Bachet’sWeightProblem 288 111.PerfectPartitions 291 112.CountablyManyPlayers 294 Published online by Cambridge University Press Contents ix 113.OneHundredPlayers 296 114.RiverCrossings:AlcuinofYork–TakeOne 298 115.RiverCrossings:AlcuinofYork–TakeTwo 301 116.FibonacciandaMedievalMathematicsTournament 303 117.TrianglesandQuadrilaterals–Regiomontanus 305 118.TheCross-RatiosofPointsandLines 308 119.HexagonsinCircles:Pascal’sHexagonTheorem–TakeOne 312 120.HexagonsinCircles:Pascal’sTheorem–TakeTwo 315 121.ASequenceinZ 318 p 122.ElementsofPrimeOrder 319 123.FlatTriangulations 320 124.TriangularBilliardTables 322 125.ChordsofanEllipse:TheButterflyTheorem 324 126.RecurrenceRelationsforthePartitionFunction 326 127.TheGrowthofthePartitionFunction 328 128.DenseOrbits 332 Published online by Cambridge University Press

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.