Availableonlineatwww.sciencedirect.com ScienceDirect J.DifferentialEquations256(2014)3497–3523 www.elsevier.com/locate/jde The Armstrong–Frederick cyclic hardening plasticity model with Cosserat effects Krzysztof Chełmin´skia, Patrizio Neffb, Sebastian Owczareka,∗ aFacultyofMathematicsandInformationScience,WarsawUniversityofTechnology,ul.Koszykowa75, 00-662Warsaw,Poland bFakultätfürMathematik,UniversitätDuisburg-Essen,LehrstuhlfürNichtlineareAnalysisundModellierung, Thea-LeymannStrasse9,45141Essen,Germany Received11May2013;revised25January2014 Availableonline12March2014 Abstract WeproposeanextensionofthecyclichardeningplasticitymodelformulatedbyArmstrongandFrederick whichincludesmicropolareffects.Ourmicropolarextensionestablishescoercivityofthemodelwhichis otherwisenotpresent.Westudythenexistenceofsolutionstothequasistatic,rate-independentArmstrong– Frederick model with Cosserat effects which is, however,still of non-monotone, non-associated type. In ordertodothis,weneedtorelaxthepointwisedefinitionoftheflowruleintoasuitableweakenergy-type inequality.ItisshownthatthelimitintheYosidaapproximationprocesssatisfiesthisnewsolutioncon- cept.Thelimitfunctionshaveabetterregularitythanpreviouslyknownintheliterature,wheretheoriginal Armstrong–Frederickmodelhasbeenstudied. ©2014ElsevierInc.Allrightsreserved. 1. Introduction Oneofthewell-knownmodelstodescribecyclicplasticityisthenon-linearkinematicharden- ingmodelformulatedbyArmstrongandFrederick[3].Thismodelhasbeenhighlyrated,because it is based on a physical mechanism of strain hardening and dynamic recovery, and because it * Correspondingauthor. E-mailaddresses:[email protected](K.Chełmin´ski),[email protected](P.Neff), [email protected](S.Owczarek). http://dx.doi.org/10.1016/j.jde.2014.02.003 0022-0396/©2014ElsevierInc.Allrightsreserved. 3498 K.Chełmin´skietal./J.DifferentialEquations256(2014)3497–3523 hasthecapabilityofrepresentingreasonablywelltheshapesofstress–strainhysteresisloops,es- peciallythoseofconstantstrainranges.Therefore,implementationoftheArmstrong–Frederick modelinfiniteelementmethodshasbeenexaminedinseveralstudiestodate.Thus,thatmodelis nowavailableasamaterialmodelofcyclichardeningplasticityincommercial,general-purpose softwareforfiniteelementanalysis. The Armstrong–Frederick model (AF) is a modification of the Melan–Prager model, which iswellknownintheliteratureanditcanalsobeseenasanapproximationofthePrandtl–Reuss model. The key modification of this simple model is the so-called “recall”-term, changing the evolutionlawforthesymmetricbackstresstensorb fromaclassicallinearkinematichardening law(Melan–Prager)toanonlinearkinematichardeninglaw,i.e., b = cεp − d|εp|b . t (cid:2)(cid:3)(cid:4)t(cid:5) (cid:2) (cid:3)(cid:4)t (cid:5) lin.kin.hardening recall-term,nonlinearhardening Here, εp is the symmetric plastic strain tensor, c and d are positive material constants. The ∞ “recall”-term entails the L -boundedness of the backstress b, a property which is an experi- mental fact since to the contrary, for high frequency cycles softening and rupture will occur. Therefore,theAF-modelshowsnonlinearkinematichardening,butonlytowithinacertainex- tent.ThemorerealisticdescriptionofcyclichardeningplasticityexperimentswiththeAF-model, however, has a prize to be paid: the model is non-coercive (bounded hardening), it is of non- monotonetypeandnotofgradienttype(non-associatedflowrule).Thus,theAF-modelisoneof theprominentsmallstrainplasticitymodelswhichhasyetescapedtheeffortsofmathematicians toestablishwell-posedness. The mathematical analysis being quite challenging, there are no encompassing existence resultsforthismodelintheliterature.Thefirst(partial)mathematicalresultfortheArmstrong– Frederick model was obtained by the first author in the article [10]. There, the non-monotone, non-associated AF-model was written as a model of pre-monotone type (for the definition we refer to [2]). In this work the author used a Yosida approximation to the monotone part of the flow rule. The obtained a priori estimates are, however, not sufficient to pass to the limit with such approximations and to get L2-strong solutions (see Section 3 in [10]). It was only shown that the limit functions satisfy the so-called “reduced energy inequality”. In the article [19] a regularizationofthe“recall”-termintheequationforthebackstresswasproposed.Theexistence of a rescaled in time solution to the Armstrong–Frederick model with the regularized equation forthebackstresscouldthenbeestablished.Therescalingideaisverysimple:anewtimevari- able τ =ζ(t) is proposed. Then the new system is easier to analyze, because the plastic strain is now uniformly Lipschitz with respect to the rescaled time. The main problem is to get back to the original system with the rescaled in time solution. It is, in principle, possible for rate- independent models, where the flow rule is invariant under scaling of the time variable. The Armstrong–Frederickmodelisrate-independentbuttheauthorsof[19]arenotabletogetback to the original system. The rescaling idea has already been applied in the plasticity context in [4,16,17]. In this paper we want to extend the system of equations proposed by Armstrong and Fred- erick to include micropolar effects. In the classical metal perfect plasticity models at infinites- imal strains it has been shown in a series of papers [11–13,24] that a coupling with Cosserat elasticity may also regularize the ill-posedness of the Prandtl–Reuss plasticity model. This is possible because the Cosserat coupling leads to coercivity. Perfect plasticity, however, is yet characterized by a monotone flow rule of gradient type (associated plasticity). Therefore, K.Chełmin´skietal./J.DifferentialEquations256(2014)3497–3523 3499 the question arises naturally, whether adding Cosserat microrotations to the AF-model is still enough to regularize the problem in the way to satisfy the flow rule in a standard point- wise sense. From a modelling perspective, adding microrotations means to consider a material made up of individual particles which can rotate and interact with each other [21–23,26]. For phenomenological polycrystalline plasticity adding Cosserat effects is arguably a physically motivated regularization: the individual crystal grains are rotating and interacting with each other. TheextensionoftheArmstrong–FrederickmodeltoincludeCosserateffectsfollowsthelines proposed in [11], where the authors added the Cosserat effect to the classical elastoplasticity modelwithamonotoneflowrule.There,andinourpresentapproach,onlytheelasticityrelation isaugmentedwithCosserateffects,theplasticconstitutiveequations,andnotablythe“recall”- term, is left unchanged, contrary to [19]. Regarding the effect of the Cosserat-modification for classicalplasticitymodels,ithasbeenprovedthatthenewmodelisthermodynamicallyadmis- sibleandthatthereexistsaunique,globalintimesolutiontoCosseratelasto-plasticity.In[14] anH1 -regularityresultforthestressesandstrainswasproved,cf.[27].ThedynamicCosserat loc plasticity was studied in [12], see also [13,24]. Another way to regularize classical plasticity models is by introducing gradient plasticity effects [18,25,28–30]. However, a modification of the AF-model to include higher gradients will be left to future work. Moreover, the coupling with thermal effects can be treated as another attempt to regularize models from the inelastic deformationtheory(cf.[5,6]). Manynon-monotonemodelsfromthetheoryofinelasticdeformationprocessesinmetalsare also non-coercive (for the definition see [2]) and the existence results for such models is only veryweaklyexamined.Forexample:thesolutionsobtainedinarticles[10],and[19]hadalow regularitywithrespecttotimeandspace(seealso[31,32],wherethenon-monotonemodelsof poroplasticitywasconsidered).Inouropinion,itisexpedienttofirstconsidernon-monotonebut coercivemodelsandtoobtainbetterregularityresultsforthesolutions.Thisarticlepresentsthe first mathematicalresult in this respect for our new Armstrong–Frederickmodel with Cosserat effects,whichisnon-monotone,non-associatedbutcoercive. 2. TheArmstrong–FrederickmodelwithCosserateffect This section is devotedto the formulation of the Armstrong–Frederickmodel with Cosserat effects. FromthemechanicalresultsforCosseratplasticity(seeforexample[11,12])weconcludethat wedealwiththefollowinginitial–boundaryvalueproblem:wearelookingforthedisplacement fieldu:Ω×[0,T]→R3,themicrorotationmatrixA:Ω×[0,T]→so(3)(so(3)isthesetof skew-symmetric3×3matrices)andthevectorofinternalvariablesz=(εp,b):Ω×[0,T]→ S3 ×S3 (εp istheclassicalinfinitesimalsymmetricplasticstraintensor,b isthesymmetric dev dev backstresstensorandthespaceS3 denotesthesetofsymmetric3×3-matriceswithvanishing dev trace)satisfyingthefollowingsystemofequations div T =−f, x (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:7) T =2μ ε(u)−εp +2μ skew(∇ u)−A +λtr ε(u)−εp 1, c x (cid:6) (cid:7) −l (cid:7) axl(A)=μ axl skew(∇ u)−A , c x c x εp ∈∂I (T ), t K(b) E 3500 K.Chełmin´skietal./J.DifferentialEquations256(2014)3497–3523 (cid:6) (cid:7) (cid:6) (cid:7) T =2μ ε(u)−εp +λtr ε(u)−εp 1, E (cid:8) (cid:8) b =cεp−d(cid:8)εp(cid:8)b, (2.1) t t t where ε(u)=sym(∇ u) denotes the symmetric part of the gradient of the displacement. The x aboveequationsarestudiedforx∈Ω⊂R3 andt∈[0,T],whereΩ⊂R3 isaboundeddomain withsmoothboundary∂Ω andt denotesthetime. The set of admissible elastic stresses K(b(x,t)) is defined in the form K(b)={T ∈S3: E |dev(T )−b|(cid:2)σ },wheredev(T )=T − 1tr(T )·1,σ isamaterialparameter(theyield E y E E 3 E y limit)and1denotestheidentitymatrix.ThefunctionI istheindicatorfunctionoftheadmis- K(b) siblesetK(b)and∂I isthesubgradientoftheconvex,proper,lowersemicontinuousfunction K(b) I . The function f :Ω ×[0,T]→R3 describes the density of the applied body forces, the K(b) parametersμ,λarepositiveLaméconstants(theelasticconstitutiveequationcanbegeneralized in the obvious way to anisotropic case), μ >0 is the Cosserat couple modulus and l >0 is c c a material parameter with dimensions [m2], describing a length scale of the model due to the Cosserat effects. c,d >0 are material constants. The operator skew(T)= 1(T −TT) denotes 2 theskew-symmetricpartofa3×3-tensor.Theoperatoraxl:so(3)→R3 establishestheiden- tificationofaskew-symmetricmatrixwithvectorsinR3.ThismeansthatifwetakeA∈so(3), whichisintheformA=((0,α,β),(−α,0,γ),(−β,−γ,0)),thenaxl(A)=(α,β,γ). Notice again that the expression |εp|b is a perturbation of Melan–Prager model – if d =0 t thenweobtaintheMelan–Pragerlinearkinematichardeningmodel. Thesystem(2.1)isconsideredwithDirichletboundaryconditionforthedisplacement: u(x,t)=g (x,t) forx∈∂Ω andt(cid:3)0 (2.2) D andwithDirichletboundaryconditionforthemicrorotation: A(x,t)=A (x,t) forx∈∂Ω andt(cid:3)0. (2.3) D Finally,weconsiderthesystem(2.1)withthefollowinginitialconditions εp(x,0)=εp,0(x), b(x,0)=b0(x). (2.4) Thefreeenergyfunctionassociatedwiththesystem(2.1)isgivenbytheformula (cid:6) (cid:7) (cid:9) (cid:9) (cid:9) (cid:9) ρψ ε,εp,A,b =μ(cid:9)ε(u)−εp(cid:9)2+μ (cid:9)skew(∇ u)−A(cid:9)2 c x (cid:6) (cid:6) (cid:7)(cid:7) (cid:9) (cid:9) + λ tr ε(u)−εp 2+2l (cid:9)∇ axl(A)(cid:9)2+ 1 (cid:8)b(cid:8)2, (2.5) c x 2 2c whereρ isthemassdensitywhichweassumetobeconstantintimeandspace.Thetotalenergy isoftheform: (cid:10) (cid:6) (cid:7) (cid:6) (cid:7) E ε,εp,A,b (t)= ρψ ε(x,t),εp(x,t),A(x,t),b(x,t) dx. Ω FromSection2 ofthearticle[10]weknowthattheinelasticconstitutiveequationoccurringin (2.1)isofpre-monotonetype.Thismeansthatthereexistsamultifunctiong:D(g)⊂S3×S3→ K.Chełmin´skietal./J.DifferentialEquations256(2014)3497–3523 3501 2S3×S3 “monotone at the point zero” (∀z∈D(g) g(z)·z(cid:3)0) such that the flow rule can be writtenintheform (cid:6) (cid:7) (cid:6) (cid:6) (cid:7)(cid:7) εp,b ∈g −ρ∇ ψ ε,εp,A,b , t t z where ψ(ε,εp,A,b) is the free energy associated with the model. Additionally, every pre- monotone system of equations is thermodynamically admissible – see [2] for more details. Moreover, if initial data (εp,0,b0)∈S3 ×S3 , then any solution (εp(t),b(t)) (if there ex- dev dev ists) belongs to S3 ×S3 , because the right hand side of (2.1) is a subset of S3 and the dev dev 4 dev followingsystem (cid:6) (cid:7) d trεp =0 with trεp(0)=0, dt (cid:8) (cid:8) d (trb)+d(cid:8)εp(cid:8)trb=0 with trb(0)=0, dt t possesses the unique solution (trεp,trb)=(0,0). Inspired by the work [10], we propose to rewritethesetofadmissiblestressesintheform (cid:11)(cid:6) (cid:7) (cid:8) (cid:8) (cid:12) K= dev(T ),b ∈S3 ×S3 : (cid:8)dev(T )+cb(cid:8)(cid:2)σ , E dev dev E y wheretheconstantσ isthesameasintheyieldconditionandtheinelasticconstitutiveequation y cannowbewrittenintheequivalentform (cid:13) (cid:14) (cid:13)(cid:13) (cid:14)(cid:14) (cid:13) (cid:14) d εp 1 0 dt b ∈∂IK dev(TE),−cb − d|εp|b . (2.6) t 3. Mainresult Herewedefineanotionofthedefinitionofthesolutionforthesystem(2.1).Nextweformu- latethemainresultofthispaper.First,letusstartwiththedefinitionofL2-strongsolutionofthe system(2.1). Definition 3.1. Fix T >0. We say that a vector (u,A,T,εp,b)∈W1,∞(0,T;H1(Ω;R3)× H2(Ω;so(3))×L2(Ω;R9)×L2(Ω;S3 )×L2(Ω;S3 ))isL2-strongsolutionofthesystem dev dev div T =−f, x (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:7) T =2μ ε(u)−εp +2μ skew(∇ u)−A +λtr ε(u)−εp 1, c x (cid:6) (cid:7) −l (cid:7) axl(A)=μ axl skew(∇ u)−A , c x c x (cid:13) (cid:14) (cid:13) (cid:14) (cid:13) (cid:14) d εp 0 dev(2μ(ε(u)−εp)) dt b + d|εp|b ∈∂IK −1b t c if 1. |dev(2μ(ε(u(x,t))−εp(x,t)))−b(x,t)|(cid:2)σ foralmostall(x,t)∈Ω×(0,T), y 2. theequationsandinclusionabovearesatisfiedforalmostall(x,t)∈Ω×(0,T). 3502 K.Chełmin´skietal./J.DifferentialEquations256(2014)3497–3523 Next, we are going to define a weaker notion of solutions to the system (2.1). We give a motivationofthisdefinition.Itwillbetheenergyinequalitycombinedwithspecialtestfunctions. Letusconsideranotherconvexset(whichwillbeusedassetoftestfunctionsfurtheron) (cid:15)(cid:13) (cid:14) (cid:16) (cid:8) (cid:8) K∗= dev(T ),−1b ∈S3 ×S3 : (cid:8)dev(T )−b(cid:8)+ d |b|2(cid:2)σ , E c dev dev E 2c y wheretheconstantσ isthesameasintheyieldconditionandletusassumethatσ > c .This y y 2d technicalassumptionimpliesthatthepointswith|b|2= 2σyc (“cornerpoints”ofthesetK∗)lie d outside of the set {|b|(cid:2) c} – for details we refer to Fig. 1 of [10]. It is not difficult to see that d K∗⊂K and on the set K∗ the constitutive equation associated withe the system (A-F) can be writtenintheform(therighthandsideoftheflowruleisorthogonaltotheboundaryoftheset K∗ –seealsoFig.1from[10]) (cid:13) (cid:14) (cid:13)(cid:13) (cid:14)(cid:14) d εp 1 dt b ∈∂IK∗ dev(TE),−cb . The set K∗ is convex and closed, thus the subgradient ∂IK∗ generates a maximal monotone operator hence for all L2-strong solutions the above differential inclusion is equivalent to the followingpointwisevariationalinequality (cid:13) (cid:14) (cid:6) (cid:6) (cid:7) (cid:6) (cid:7)(cid:7) εp(x,t) dev T (x,t) −dev Tˆ (x,t) +b (x,t) −1b(x,t)+ 1bˆ(x,t) (cid:3)0 (3.1) t E E t c c forall(dev(Tˆ ),bˆ)∈K∗ suchthat(Tˆ ,bˆ)∈L2(0,T;L2(Ω;S3)×L2(Ω;S3 )). E E dev Proposition3.2.Assumethatavector (cid:6) (cid:7) (cid:6) (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:7) u,A,T,εp,b ∈W1,∞ 0,T;H1 Ω;R3 ×H2 Ω;so(3) ×L2 Ω;R9 (cid:6) (cid:7) (cid:6) (cid:7)(cid:7) ×L2 Ω;S3 ×L2 Ω;S3 dev dev isL2-strongsolutionofthesystem(2.1)withboundaryandinitialconditions(2.2)–(2.4).Then forallfunctions(Tˆ ,bˆ)∈L2(0,T;L2(Ω;S3)×L2(Ω;S3 ))suchthat E dev (cid:6) (cid:7) (cid:6) (cid:6) (cid:7)(cid:7) dev(Tˆ ),bˆ ∈K∗, divTˆ ∈L2 0,T;L2 Ω,R3 , E E theinequality (cid:10) (cid:10) (cid:8) (cid:6) (cid:7) (cid:8) 1 C−1T (x,t)T (x,t)dx+μ (cid:8)skew ∇ u(x,t) −A(x,t)(cid:8)2dx E E c x 2 Ω Ω (cid:10) (cid:10) (cid:8) (cid:6) (cid:7)(cid:8) (cid:8) (cid:8) +2l (cid:8)∇axl A(x,t) (cid:8)2dx+ 1 (cid:8)b(x,t)(cid:8)2dx c 2c Ω Ω (cid:10) (cid:10) (cid:8) (cid:6) (cid:7) (cid:8) (cid:2) 1 C−1T0(x)T0(x)dx+μ (cid:8)skew ∇ u(x,0) −A(x,0)(cid:8)2dx 2 E E c x Ω Ω K.Chełmin´skietal./J.DifferentialEquations256(2014)3497–3523 3503 (cid:10) (cid:10) (cid:10)t (cid:10) (cid:8) (cid:8) (cid:8) (cid:6) (cid:7)(cid:8) + 1 (cid:8)b(x,0)(cid:8)2dx+2l (cid:8)∇axl A(x,0) (cid:8)2dx+ u (x,τ)f(x,τ)dxdτ c t 2c Ω Ω 0 Ω (cid:10)t (cid:10) (cid:10)t (cid:10) (cid:6) (cid:7) + u (x,τ)divTˆ (x,τ)dxdτ + g (x,τ) T(x,τ)−Tˆ (x,τ) ·n(x)dSdτ t E D,t E 0 Ω 0 ∂Ω (cid:10)t (cid:10) (cid:10)t (cid:10) + C−1T (x,τ)Tˆ (x,τ)dxdτ + 1 b (x,τ)bˆ(x,τ)dxdτ E,t E t c 0 Ω 0 Ω (cid:10)t (cid:10) (cid:6) (cid:7) (cid:6) (cid:7) +4l ∇axl A(x,τ) ·naxl A (x,τ) dSdτ c D,t 0 ∂Ω holdsforallt∈(0,T). Proof. Fromthetheoryofelasticity,weknowthatthereexistsapositivedefiniteoperatorC−1: S3→S3 suchthatC−1T =ε −εp.Integrating(3.1)overΩ×(0,t)fort(cid:2)T weobtain E,t t t (cid:10)t (cid:10) (cid:10)t (cid:10) 1 C−1T (x,τ)T (x,τ)dxdτ + b (x,τ)b(x,τ)dxdτ E,t E t c 0 Ω 0 Ω (cid:10)t (cid:10) (cid:10)t (cid:10) (cid:6) (cid:7) (cid:2) ε (x,τ) T (x,τ)−Tˆ (x,τ) dxdτ + C−1T (x,τ)Tˆ (x,τ)dxdτ t E E E,t E 0 Ω 0 Ω (cid:10)t (cid:10) + 1 b (x,τ)bˆ(x,τ)dxdτ t c 0 Ω (cid:10)t (cid:10) (cid:6) (cid:7) = ∇u (x,τ) T(x,τ)−Tˆ (x,τ) dxdτ t E 0 Ω (cid:10)t (cid:10) (cid:6) (cid:6) (cid:7) (cid:7) (cid:6) (cid:7) −2μ skew ∇ u(x,τ) −A(x,τ) skew ∇ u (x,τ) dxdτ c x x t 0 Ω (cid:10)t (cid:10) + 1 b (x,τ)bˆ(x,τ)dxdτ. (3.2) t c 0 Ω Integrating by parts in the first term on the right hand side of (3.2), using Eq.(2.1) and the 1 boundarydatawehavethefollowinginequality (cid:10) (cid:10) (cid:10) (cid:8) (cid:6) (cid:7) (cid:8) (cid:8) (cid:8) 1 C−1T (x,t)T (x,t)dx+μ (cid:8)skew ∇ u(x,t) −A(x,t)(cid:8)2dx+ 1 (cid:8)b(x,t)(cid:8)2dx E E c x 2 2c Ω Ω Ω 3504 K.Chełmin´skietal./J.DifferentialEquations256(2014)3497–3523 (cid:10) (cid:10) (cid:8) (cid:6) (cid:7) (cid:8) (cid:2) 1 C−1T (x,0)T (x,0)dx+μ (cid:8)skew ∇ u(x,0) −A(x,0)(cid:8)2dx E E c x 2 Ω Ω (cid:10) (cid:10)t (cid:10) (cid:10)t (cid:10) (cid:8) (cid:8) + 1 (cid:8)b(x,0)(cid:8)2dx+ u (x,τ)f(x,τ)dxdτ + u (x,τ)divTˆ (x,τ)dxdτ t t E 2c Ω 0 Ω 0 Ω (cid:10)t (cid:10) (cid:6) (cid:7) + g (x,τ) T(x,τ)−Tˆ (x,τ) ·n(x)dSdτ D,t E 0 ∂Ω (cid:10)t (cid:10) (cid:10)t (cid:10) + C−1T (x,τ)Tˆ (x,τ)dxdτ + 1 b (x,τ)bˆ(x,τ)dxdτ E,t E t c 0 Ω 0 Ω (cid:10)t (cid:10) (cid:6) (cid:6) (cid:7) (cid:7) −2μ skew ∇ u(x,τ) −A(x,τ) A (x,τ)dxdτ. (3.3) c x t 0 Ω Using(2.1) tothelasttermoftheaboveinequalityandintegratingbypartsinthelasttermon 3 therighthandsideof(3.3)weobtain (cid:10) (cid:10) (cid:8) (cid:6) (cid:7) (cid:8) 1 C−1T (x,t)T (x,t)dx+μ (cid:8)skew ∇ u(x,t) −A(x,t)(cid:8)2dx E E c x 2 Ω Ω (cid:10) (cid:10) (cid:8) (cid:6) (cid:7)(cid:8) (cid:8) (cid:8) +2l (cid:8)∇axl A(x,t) (cid:8)2dx+ 1 (cid:8)b(x,t)(cid:8)2dx c 2c Ω Ω (cid:10) (cid:10) (cid:8) (cid:6) (cid:7) (cid:8) (cid:2) 1 C−1T (x,0)T (x,0)dx+μ (cid:8)skew ∇ u(x,0) −A(x,0)(cid:8)2dx E E c x 2 Ω Ω (cid:10) (cid:10) (cid:10)t (cid:10) (cid:8) (cid:8) (cid:8) (cid:6) (cid:7)(cid:8) + 1 (cid:8)b(x,0)(cid:8)2dx+2l (cid:8)∇axl A(x,0) (cid:8)2dx+ u (x,τ)f(x,τ)dxdτ c t 2c Ω Ω 0 Ω (cid:10)t (cid:10) (cid:10)t (cid:10) (cid:6) (cid:7) + u (x,τ)divTˆ (x,τ)dxdτ + g (x,τ) T(x,τ)−Tˆ (x,τ) ·n(x)dSdτ t E D,t E 0 Ω 0 ∂Ω (cid:10)t (cid:10) (cid:10)t (cid:10) + C−1T (x,τ)Tˆ (x,τ)dxdτ + 1 b (x,τ)bˆ(x,τ)dxdτ E,t E t c 0 Ω 0 Ω (cid:10)t (cid:10) (cid:6) (cid:7) (cid:6) (cid:7) +4l ∇axl A(x,τ) ·naxl A (x,τ) dSdτ, (3.4) c D,t 0 ∂Ω K.Chełmin´skietal./J.DifferentialEquations256(2014)3497–3523 3505 wheretheboundaryintegralsaredefinedinthesenseofdualitybetweenthespace (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:7) H12 ∂Ω;R3 and H−12 ∂Ω;R3 see[1]fordetails . Theproofiscompleted. (cid:2) LetusassumethatforallT >0thegivendataF,g ,A havetheregularity D D (cid:6) (cid:6) (cid:7)(cid:7) (cid:6) (cid:6) (cid:7)(cid:7) f ∈H1 0,T;L2 Ω;R3 , gD∈H1 0,T;H12 ∂Ω;R3 , (3.5) (cid:6) (cid:6) (cid:7)(cid:7) AD∈H1 0,T;H32 ∂Ω;so(3) . (3.6) Additionallyletusassumethattheinitialdata(εp,0,b0)∈L2(Ω;S3 )×L2(Ω;S3 )satisfy dev dev (cid:8) (cid:8) (cid:8) (cid:6) (cid:7) (cid:8) (cid:8)b0(x)(cid:8)(cid:2) c and (cid:8)dev T0(x) −b0(x)(cid:8)(cid:2)σ foralmostallx∈Ω, (3.7) d E y where the initial stress T0 =2μ(ε(u(0))−εp,0)+λtr(ε(u(0))−εp,0)1∈L2(Ω;S3) is the E uniquesolutionofthefollowinglinearproblem div T0(x)=−f(x,0), x (cid:6) (cid:7) (cid:6) (cid:6) (cid:7) (cid:7) −l (cid:7) axl A(x,0) =μ axl skew ∇ u(x,0) −A(x,0) , c x c x u(x,0)|∂Ω =gD(x,0) A(x,0)|∂Ω =AD(x,0), (3.8) with (cid:6) (cid:6) (cid:7) (cid:7) (cid:6) (cid:6) (cid:7) (cid:7) T0(x)=2μ ε u(x,0) −εp,0(x) +2μ skew ∇ u(x,0) −A(x,0) c x (cid:6) (cid:6) (cid:7) (cid:7) +λtr ε u(x,0) −εp,0(x) 1. Remark. The energy inequality from Proposition 3.2 that an L2-strong solution satisfies, is equivalenttothefollowingintegralversionofinequality(3.1) (cid:10)t (cid:10) (cid:13) (cid:14) (cid:6) (cid:6) (cid:7) (cid:6) (cid:7)(cid:7) εp(x,t) dev T (x,t) −dev Tˆ (x,t) +b (x,t) −1b(x,t)+ 1bˆ(x,t) dxdτ (cid:3)0 t E E t c c 0 Ω for all (dev(Tˆ ),bˆ)∈K∗ such that (Tˆ ,bˆ)∈L2(0,T;L2(Ω;S3)×L2(Ω;S3 )). From this E E dev followsthatthelastinequalitycanalsobeusedasasolutionconcept.Inthisarticlewewantto work with so-called energetic solution introduced by Suquet in [33] and by Chełmin´ski in [8] thereforeweintroducethefollowingdefinitionofsolution. Definition3.3(Solutionconcept-energyinequality).FixT >0.Supposethatthegivendatasat- isfy(3.5)and(3.6).Wesaythatavector(u,T,A,εp,b)∈L∞(0,T;H1(Ω;R3)×L2(Ω;S3)× H2(Ω;so(3))×(L∞(Ω;S3 ))2)solvestheproblem(2.1)–(2.4)if dev (cid:6) (cid:7) (cid:6) (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:6) (cid:7)(cid:7) (cid:7) u ,T ,A ,εp,b ∈L2 0,T;H1 Ω;R3 ×L2 Ω;R9 ×H2 Ω;so(3) × L2 Ω;S3 2 , t t t t t dev 3506 K.Chełmin´skietal./J.DifferentialEquations256(2014)3497–3523 Eqs. (2.1) and (2.1) are satisfiedpointwisealmosteverywhereon Ω ×(0,T) and forall test 1 3 functions(Tˆ ,bˆ)∈L2(0,T;L2(Ω;S3)×L2(Ω;S3 ))suchthat E dev (cid:6) (cid:7) (cid:6) (cid:6) (cid:7)(cid:7) dev(Tˆ ),bˆ ∈K∗,divTˆ ∈L2 0,T;L2 Ω,R3 , E E theinequality (cid:10) (cid:10) (cid:8) (cid:6) (cid:7) (cid:8) 1 C−1T (x,t)T (x,t)dx+μ (cid:8)skew ∇ u(x,t) −A(x,t)(cid:8)2dx E E c x 2 Ω Ω (cid:10) (cid:10) (cid:8) (cid:6) (cid:7)(cid:8) (cid:8) (cid:8) +2l (cid:8)∇axl A(x,t) (cid:8)2dx+ 1 (cid:8)b(x,t)(cid:8)2dx c 2c Ω Ω (cid:10) (cid:10) (cid:8) (cid:6) (cid:7) (cid:8) (cid:2) 1 C−1T0(x)T0(x)dx+μ (cid:8)skew ∇ u(x,0) −A(x,0)(cid:8)2dx 2 E E c x Ω Ω (cid:10) (cid:10) (cid:10)t (cid:10) (cid:8) (cid:8) (cid:8) (cid:6) (cid:7)(cid:8) + 1 (cid:8)b(x,0)(cid:8)2dx+2l (cid:8)∇axl A(x,0) (cid:8)2dx+ u (x,τ)f(x,τ)dxdτ c t 2c Ω Ω 0 Ω (cid:10)t (cid:10) (cid:10)t (cid:10) (cid:6) (cid:7) + u (x,τ)divTˆ (x,τ)dxdτ + g (x,τ) T(x,τ)−Tˆ (x,τ) ·n(x)dSdτ t E D,t E 0 Ω 0 ∂Ω (cid:10)t (cid:10) (cid:10)t (cid:10) + C−1T (x,τ)Tˆ (x,τ)dxdτ + 1 b (x,τ)bˆ(x,τ)dxdτ E,t E t c 0 Ω 0 Ω (cid:10)t (cid:10) (cid:6) (cid:7) (cid:6) (cid:7) +4l ∇axl A(x,τ) ·naxl A (x,τ) dSdτ (3.9) c D,t 0 ∂Ω is satisfied for all t ∈ (0,T), where T0 ∈ L2(Ω;S3) and (u(0),A(0)) ∈ H1(Ω;R3) × E H2(Ω;so(3)) are unique solutions of the problem (3.8). Moreover the stress constraint 1 in Definition3.1issatisfied. Theorem3.4(Mainexistenceresult).Letusassumethatthegivendataandinitialdatasatisfy theproperties,whicharespecifiedin(3.5)–(3.8).Thenthereexistsaglobalintimesolution(in thesenseof Definition3.3)ofthesystem(2.1)withboundaryconditions(2.2),(2.3)andinitial condition(2.4). Notice that the solution defined above has a quite nice regularity. We even get that εp ∈ t L2(L2), which yields |εp|b ∈L2(L2). Unfortunately, this information is still not enough to t obtain L2-strong solutions. This paper presents the first existence result for the Armstrong– FrederickmodelwithCosserateffectsandthenewsolutionconcept.
Description: