ebook img

The arithmetic of quaternion algebras - Dartmouth College PDF

304 Pages·2014·1.88 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The arithmetic of quaternion algebras - Dartmouth College

The arithmetic of quaternion algebras JohnVoight [email protected] April21,2014 Preface Goal Intheresponsetoreceivingthe1996SteelePrizeforLifetimeAchievement[Ste96], ShimuradescribesalecturegivenbyEichler: [T]he fact that Eichler started with quaternion algebras determined his course thereafter, which was vastly successful. In a lecture he gave in Tokyohedrewahexagonontheblackboardandcalleditsverticesclock- wise as follows: automorphic forms, modular forms, quadratic forms, quaternionalgebras,Riemannsurfaces,andalgebraicfunctions. This book is an attempt to fill in the hexagon sketched by Eichler and to augment it further with the vertices and edges that represent the work of many algebraists, geometers,andnumbertheoristsinthelast50years. Quaternion algebras sit prominently at the intersection of many mathematical subjects. Theycaptureessentialfeaturesofnoncommutativeringtheory,numberthe- ory, K-theory, group theory, geometrictopology, Lietheory, functionsofacomplex variable, spectral theoryofRiemannian manifolds, arithmeticgeometry, representa- tion theory, the Langlands program—and the list goes on. Quaternion algebras are especially fruitful to study because they often reflect some of the general aspects of thesesubjects,whileatthesametimetheyremainamenabletoconcreteargumenta- tion. With this in mind, we have two goals in writing this text. First, we hope to in- troduce a large subset of the above topics to graduate students interested in algebra, geometry, and number theory. We assume that students have been exposed to some algebraic number theory (e.g., quadratic fields), commutative algebra (e.g., module theory, localization, and tensor products), as well as the basics of linear algebra, topology,andcomplexanalysis. Forcertainsections,furtherexperiencewithobjects in arithmetic geometry, such as elliptic curves, is useful; however, we have endeav- oredtopresentthematerialinawaythatismotivatedandfullofrichinterconnections i ii andexamples,sothatthereaderwillbeencouragedtoreviewanyprerequisiteswith theseexamplesinmindandsolidifytheirunderstandinginthisway. Atthemoment, one can find introductions for aspects of quaternion algebras taken individually, but thereisnotextthatbringsthemtogetherinoneplaceandthatdrawstheconnections between them; we have tried to fill this gap. Second, we have written this text for researchers in these areas: we have collected results otherwise scattered in the liter- ature, provide some clarifications and corrections and complete proofs in the hopes thatthistextwillprovideaconvenientreferenceinthefuture. In order to combine these features, we have opted for an organizational pattern thatis“horizontal”ratherthan“vertical”: thetexthasmanychapters,eachrepresent- ing a different slice of the theory. Each chapter could be used in a (long) seminar afternoon or could fill a few hours of a semester course. To the extent possible, we have tried to make the chapters stand on their own (with explicit references to results used from previous chapters) so that they can be read based on the reader’s interests—hopefullytheinterdependenceofthematerialwilldrawthereaderinmore deeply! Theintroductorysectionofeachchaptercontainsmotivationandasummary oftheresultscontainedtherein,andweoftenrestrictthelevelofgeneralityandmake simplifying hypotheses so that the main ideas are made plain. Hopefully the reader whoisnewtothesubjectwillfindthesehelpfulaswaytodivein. This book has three other features. First, as is becoming more common these days, paragraphs are numbered when they contain results that are referenced later on;wehaveoptednottoputthesealwaysinalabelledenvironment(definition,theo- rem,proof,etc.)tofacilitatetheexpositionalflowofideas,whileatthesametimewe wishedtoremainpreciseaboutwhereandhowresultsareused. Second,wehavein- cludedineachchapterasectionon“extensionsandfurtherreading”,wherewehave indicated some of the ways in which the author’s (personal) choice of presentation of the material naturally connects with the rest of the mathematical landscape. Our general rule (except the historical expository in Chapter 1) has been to cite specific results and proofs in the text where they occur, but to otherwise exercise restraint until this final section where we give tangential remarks, more general results, ad- ditional references, etc. Finally, in many chapters we have also included a section on algorithmic aspects, for those who want to pursue the computational side of the theory. And as usual, each section also contains a number of exercises at the end, ranging from checking basic facts used in a proof to more difficult problems that stretchthereader. Formanyoftheseexercises,therearehintsattheendofthebook; foranyresultthatisusedlater,acompleteargumentisgiven. iii Acknowledgements This book began as notes from a course offered at McGill University in the Winter 2010semester,entitledComputationalAspectsofQuaternionAlgebrasandShimura Curves. IwouldliketothankthemembersofmyMath727classfortheirinvaluable discussions and corrections: Dylan Attwell-Duval, Xander Faber, Luis Finotti, An- drewFiori,CameronFranc,AdamLogan,MarcMasdeu,JungbaeNam,AurelPage, Jim Parks, Victoria de Quehen, Rishikesh, Shahab Shahabi, and Luiz Takei. This coursewaspartofthespecialthematicsemesterNumberTheoryasAppliedandEx- perimentalScienceorganizedbyHenriDarmon,EyalGoren,AndrewGranville,and Mike Rubinstein at the Centre de Recherche Mathe´matiques (CRM) in Montre´al, Que´bec, and the extended visit was made possible by the generosity of Dominico Grasso, dean of the College of Engineering and Mathematical Sciences, and Jim Burgmeier, chairoftheDepartmentofMathematicsandStatistics, attheUniversity ofVermont. Withgratitude,Iacknowledgetheirsupport. ThewritingcontinuedwhiletheauthorwasonsabbaticalattheUniversityofCal- ifornia, Berkeley, sponsored by Ken Ribet. Several students attended these lectures and gave helpful feedback: Watson Ladd, Andrew Niles, Shelly Manber, Eugenia Rosu, EmmanuelTsukerman, VictoriaWood,andAlexYoucis. Mysabbaticalfrom DartmouthCollegefortheFall2013andWinter2014quarterswasmadepossibleby the efforts of Associate Dean David Kotz, and I thank him for his support. Further progressonthetextwasmadeinpreparationforaminicourseonBrandtmodulesas partofMinicoursesonAlgebraicandExplicitMethodsinNumberTheory,organized by Ce´cile Armana and Christophe Delaunay at the Laboratoire de Mathe´matiques de Besanc¸on in Salins-les-Bains, France. Finally, I would like to thank the partici- pants in my Math 125 Quaternion algebras class at Dartmouth in Spring 2014 for their helpful feedback: Daryl Deford, Tim Dwyer, Zeb Engberg, Michael Firrisa, Jeff Hein, Nathan McNew, Jacob Richey, Tom Shemanske, Scott Smedinghoff, and DavidWebb. Many thanks go to the others who offered helpful comments and corrections: France Dacar, Ariyan Javanpeykar, BoGwang Jeon, Chan-Ho Kim, Chao Li, Ben- jaminLinowitz,NicoleSutherland,JoeQuinn,andJiangweiXue. I am profoundly grateful to those who offered their encouragement at various timesduringthewritingofthisbook: SrinathBaba,ChantalDavid,MatthewGreen- berg and Kristina Loeschner, David Michaels, and my mother Connie Voight. Fi- nally, Iwouldlike tooffermy deepestgratitude tomy partnerBrianKennedy—this bookwouldnothavebeenpossiblewithouthispatienceandenduringsupport. Thank youall! iv To do [[Sections that are incomplete, or comments that need to be followed up on, are in red.]] Contents Contents v I Algebra 1 1 Introduction 3 1.1 Hamilton’squaternions . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Algebraafterthequaternions . . . . . . . . . . . . . . . . . . . . . 8 1.3 Moderntheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Beginnings 15 2.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Quaternionalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 22 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Involutions 27 3.1 Conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Reducedtraceandreducednorm . . . . . . . . . . . . . . . . . . . 30 3.4 Uniquenessanddegree . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5 Quaternionalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.6 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 34 3.7 Algorithmicaspects . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 Quadraticforms 41 v vi CONTENTS 4.1 Normform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Nonsingularstandardinvolutions . . . . . . . . . . . . . . . . . . . 46 4.4 Isomorphismclassesofquaternionalgebras . . . . . . . . . . . . . 47 4.5 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.7 Hilbertsymbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.8 Orthogonalgroups . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.9 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 56 4.10 Algorithmicaspects . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 Quaternionalgebrasincharacteristic2 61 5.1 Separabilityandanothersymbol . . . . . . . . . . . . . . . . . . . 61 5.2 Characteristic2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3 Quadraticformsandcharacteristic2 . . . . . . . . . . . . . . . . . 63 5.4 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 67 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 Simplealgebras 69 6.1 The“simplest”algebras . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Simplemodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3 SemisimplemodulesandtheWedderburn–Artintheorem . . . . . . 74 6.4 Centralsimplealgebras . . . . . . . . . . . . . . . . . . . . . . . . 77 6.5 Quaternionalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.6 Skolem–Noether . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.7 Reducedtraceandnorm . . . . . . . . . . . . . . . . . . . . . . . 82 6.8 Separablealgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.9 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 84 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7 Simplealgebrasandinvolutions 89 7.1 TheBrauergroupandinvolutions . . . . . . . . . . . . . . . . . . 89 7.2 Biquaternionalgebras . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.3 Brauergroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.4 Positiveinvolutions . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.5 Endomorphismalgebrasofabelianvarieties . . . . . . . . . . . . . 93 7.6 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 95 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 CONTENTS vii 8 Orders 97 8.1 Integralstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.3 Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.4 Separableorders. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.5 Ordersinamatrixring . . . . . . . . . . . . . . . . . . . . . . . . 101 8.6 Quadraticforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.7 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 103 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 II Algebraicnumbertheory 105 9 TheHurwitzorder 107 9.1 TheHurwitzorder. . . . . . . . . . . . . . . . . . . . . . . . . . . 107 9.2 HurwitzunitsandfinitesubgroupsoftheHamiltonians . . . . . . . 108 9.3 Euclideanalgorithm,sumsoffoursquares . . . . . . . . . . . . . . 110 9.4 Sumsofthreesquares . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.5 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 113 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 10 Quaternionalgebrasoverlocalfields 115 10.1 Localquaternionalgebras . . . . . . . . . . . . . . . . . . . . . . . 115 10.2 Localfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 10.3 Uniquedivisionring,firstproof . . . . . . . . . . . . . . . . . . . 121 10.4 LocalHilbertsymbol . . . . . . . . . . . . . . . . . . . . . . . . . 123 10.5 Uniquedivisionring,secondproof . . . . . . . . . . . . . . . . . . 123 10.6 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 10.7 Splittingfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10.8 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 130 10.9 Algorithmicaspects . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 11 Latticesandlocalization 133 11.1 Localizationofintegrallattices . . . . . . . . . . . . . . . . . . . . 133 11.2 Localizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 11.3 BitsofcommutativealgebraandDedekinddomains . . . . . . . . . 135 11.4 Latticesandlocalization . . . . . . . . . . . . . . . . . . . . . . . 136 11.5 Adeliccompletions . . . . . . . . . . . . . . . . . . . . . . . . . . 137 11.6 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 137 viii CONTENTS 11.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 12 Discriminants 139 12.1 Discriminantalnotions . . . . . . . . . . . . . . . . . . . . . . . . 139 12.2 Discriminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 12.3 Reduceddiscriminant . . . . . . . . . . . . . . . . . . . . . . . . . 143 12.4 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 144 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 13 Quaternionalgebrasoverglobalfields 147 13.1 Ramification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 13.2 Hilbertreciprocityovertherationals . . . . . . . . . . . . . . . . . 149 13.3 Hasse–Minkowskitheoremovertherationals . . . . . . . . . . . . 152 13.4 Globalfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 13.5 Ramificationanddiscriminant . . . . . . . . . . . . . . . . . . . . 157 13.6 Quaternionalgebrasoverglobalfields . . . . . . . . . . . . . . . . 159 13.7 Hasse–Minkowskitheorem . . . . . . . . . . . . . . . . . . . . . . 160 13.8 Representativequaternionalgebras . . . . . . . . . . . . . . . . . . 160 13.9 Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 161 13.10Algorithmicaspects . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 14 QuaternionidealsoverDedekinddomains 163 14.1 Compositionlawsandidealmultiplication . . . . . . . . . . . . . . 163 14.2 Locallyprincipallattices . . . . . . . . . . . . . . . . . . . . . . . 167 14.3 Compatibleandinvertiblelattices . . . . . . . . . . . . . . . . . . 169 14.4 Projective(andproper)modules . . . . . . . . . . . . . . . . . . . 171 14.5 Invertibilitywithastandardinvolution . . . . . . . . . . . . . . . . 173 14.6 Euclideanquaternionorders . . . . . . . . . . . . . . . . . . . . . 176 14.7 Two-sidedideals . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 14.8 One-sidedideals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 14.9 Minkowskitheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 14.10Hermitianforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 14.11Extensionsandfurtherreading . . . . . . . . . . . . . . . . . . . . 182 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 15 QuaternionordersoverDedekinddomains 185 15.1 Classifyingorders . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 15.2 Quadraticmodulesoverrings . . . . . . . . . . . . . . . . . . . . . 189 15.3 Connectionwithternaryquadraticforms . . . . . . . . . . . . . . . 191

Description:
Apr 21, 2014 Quaternion algebras sit prominently at the intersection of many mathematical variable, spectral theory of Riemannian manifolds, arithmetic
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.