ebook img

The Arithmetic of Dynamical Systems PDF

518 Pages·2007·7.76 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Arithmetic of Dynamical Systems

GraduTaetxet s inM athematics JosephS iHl.v erman of TheA rithmetic DynamicSayls tems €1 Springer 241 GraduTaetxietnM s a thematics EditoBroiaarld S.A xleKr. AR.i bet GraduTaetxietnM s a thematics TAKuEn/ZIANRIGn.t rodtuoc tion 34 SPITPZrEiRn.c oifRp alnedsWo aml k. AxiomSaetTtih ce o2rnyed.d . 2nedd . 2 OxTOMBeYa.s aunrCdea teg2onredyd .. 35A LEXANDEERRMIESWRe.v eCroamlp lex 3 ScHAETFopEoRl.o gViecctaoSlrp aces. VariabalnBedas n aAclhg eb3rraedsd .. 2nedd . 36 KELLEYINeAtaM lIL.Oi KnAe ar 4 HILTOANMM/BSATCAH C.o urisne TopologSipcaacle s. HomoloAgligcea2blnr edad .. 37 MoNMKa.themaLtoigciacl. 5 MAcL ANCEa.t egforort ihWeeos r king 38G RAU/EFRIRTTCZHSES.e veCroamlp lex Mathema2tniedcd i.a n. Variables. 6 HuGHEPsI/PPErRo.j ePcltainvees . 39A RVESAOnIN n.v ittaoCt *i-oAnl gebras. 7 SERRA ECo.u risnAe r ithmetic4.0 KEMYEINSLNLEIKNDAePnPu.m erable J.-P. 8 TAKE/uZnAIRNAGx.i omSaetTtih ce ory. MarkCohva i2nnsd. ed. 9 HuMPHRIEnYtSr.o dtuoc tALiliogene - 41 APOSTOL. FMuondcutalinaodrn s braasnR de persentTahteioorny . DiricShelrieinNte u sm bTehre ory. 10C oHEAN C.o urisnSei mpHloem otopy 2nedd . Theory. 42 J..S- EPRRLEin.e Raerrpe sentoaft ions CoNAWY.F unctoifOo nneCs o mplex FinGirtoeu ps. II VairabIl2.en edd . 43 GILLMAN/RJiEnRogIfsS ON. 12B EALASd.v anMcaetdh ematical ContinFuuonucst ions. Analysis. KENDEIlGe.m enAtlagreyb raic 44 13A NDERSON/RFiUnLagLnsEd R . Geometry. CategoofrM ioedsu l2ensed.d . 45 LoE:vPEr.o babTihleioItr4.yyt e hd . 14G oLUTBSIKGYu/iLLESMtIabNl.e 46 LoE:vPEr.o babTihleioItrI4yy.t e hd . MappianngTdsh eSiirn gulariti4e7s M.m sEG.e omeTtoproilco igny 15B ERBAENLR.eI ctiunrF eusn ctional Dimens2ia onn3ds. AnalaynsOdip se raTthoero ry. 48 SAcHus./GWe neRrealla tfiorv ity 16W INTTEhRSe.t rucotfFu ireel ds. Mathematicians. 17R osENBRLaAnTTd.Po rmo ce2snseded s.. 4 9 GRUEN/BWEERILGRi.n eGaeorm etry. 18H ALMMOeSa.s Tuhreeo ry. 2nedd . 19H ALMAO HSi.l bSepratPc reo blem 50E DWADRSF.e rmaLta'sTsth eorem. Boo2kn.ed d . 51K LIGNENBAE RCGo.u risnDe i efrfential 20 HusEMOFLiLbEBrRue.n d3lreedsd .. Geomye.t r 21H uMPHRLEiYnSeA.al rg ebGrraoiucp s.5 2H ARTSHAOlRgNreEab.Gi eco mye.t r 22 BARNEs/AMnAA clKg.e braic 53M ANIAN C.o urisnMe a themla tica IntrodtuoMc attihoenm aLtoigciacl. Logic. 23 GREULBi.n eAalrg e4btrehad .. 54 GRAVEARTIKWIC NoSm.b inawtiotrhi cs 24 HoLMGEeSo.m eFturnicct ional Emphaosnti hsTe h eoorfGy r aphs. AnalaynsIdit sAs p plications.5 5B RoNw/PEAIRnCtYr.o dtuoc tion 25 HEWI/TTSTRBOEMRRGe.a l Aabnsdt ract OperaTthoeroI rE:yl emeonft s Analysis. Functional Analysis. 26 MANEASl.g ebTrhaeiocr ies. 56 MASSEY. ATlopgoelboArgnay i:c 27 KELLGEeYn.e Tropaolol gy. Introduction. 28Z ARISKUIE/CLSo.Am Mmutative 57C ROWEL.L /IFnotxrotdou cKtniootn AlgeVboria..I . Theory. 29Z ARISKUIEICLSo.Am Mmutative 58K oBZLp.I- TaNduimcb epr-sa,d ic AlgreaVb.oi .II. AnalyasnZides t,a -Fun2cnetdid o.n s. 30J ACOBLSeOcNt.iu nrAe bss tArlagcetb ra5 9L ANCGy.c lotFoimeilcd s. IB.a sCiocn cepts. 60 ARNOLaDt.hMemaMteitchaoildn s 31J ACOBLSeOcNt.iu rAneb ss trAlagcetb ra ClassMieccahlan 2inecdds .. IIL.i neAalgre bra. 61W HITEHEElAeDm.eo nfHt osm otopy 32J ACOBLSeOcNt.iu nAr bess trAlagcetb ra Theory. III. oThfFe ioerlyd Gsa laonids 62 KARPGOALOV/AMKEORVL.Z I Theroy. Fundameonft aTtlhhsee o orfGy r oups. 33 HIRHS.DC iefrfenTtopiooalgly . 63 BoLLO.GB rAaSpThh eory. (contaifntiuenerdd e x) JoseHp.hS ilverman TheA rithmoeft ic DynamiScyaslt ems Wit1h1I llustrations �Springer JoseHpS.hi lverman DepartomfMe antth ematics BroUwnn iversity ProvidReI0n 2c9e1,2 USA [email protected] ro.ewdnu EditoBroiaarld S.A xler K.AR.i bet MathemDaetpiacrnstt m e MathemDaetpiacersnt tm San FrancUinsicvoe rSstiattye UniveorfCs ailtiyf Boernrikae,l ey SaFnr ancCiAs9 c4o1,3 2 BerkeClA9e 4y7,2 0-384 USA USA [email protected] [email protected] eartkehedlue y. MathemSautbijcCeslc ats sif(2i00c)0a1:t10 i-1o1,nG1 991,4 G9397,1- ,30 7lF0 ISBN-91738:- 0-387-69e9-0I3S-B5N9 -7183-:0 -387-69904-2 LibroafCr oyn grCeosnstN ruomlb e2r0:0 7923502 Prinotnae cdi rdep-eaf per. 200S7p riSncgieerBn ucsei+n essL LMCe dia, © Alrli grhetsse rTvheiwdso. rm ka yn obte t ransolrca otpeiiden wd h oolrei np arwti thtohuet writpteernm iosfst ihpoeun b li(sShperriS ncgieerBn ucsei+Mn eedsisLa L,C2 ,3 S3p riSntgreere t, NewY orNkY,1 001U3S,A )ex,c efropb tr ieexfc eirncp tosn necwtiitrhoe nv ioersw csh olarly anyasliUss.ei nc onnecwtiitaohnn yf ro mo fi nofrmatsitoonr aangdre e trlie,el veactronic adaptnac,to imopustoefrt woarbr yse i,m iolrda irs simmeitlhaord noolwko ngoyw onrh ereafter develiofspro ebdi dden. Thues ient hpiusb licoaftt rianodanem etsr,a demsaerrkvmsia,cr eka sn,sd i mitlearrem vse,in f theayrn eo itd entaissf uiciehnsd,o ttob et akaesan n e xpreosfos piionnai sto own h etthheery arseu bjteopc rto prireitgahrtys . 9 8 7 6 5 4 3 2 1 springer.com Preface Thbiosio dske sitpgorn oeavdp i adftroeth h ree aidnetarom aalng oatfmw aot ion venearraoebmfala set hteiDmcyasn,a SmyiscatanelNdm u sm berM aTnohyfe ory. thmeo titvhaetoiarnncedgojm cnest uirtneh ses ujncbeeotwAf r itDhymneiatcmisc mabyev i eawtseh tder p aonssoicftl iaorsnes siiuctnlah ttlehs eo oDfri yo phantine equoanttstoi h see totdfii nsgdc yrneiatcsmeay ls temst,to h ieetst epireoacni ally theoomfra yop nts h pere ocjtliivneoe t ahalengrde v bairreatAiilcet sht.oh uegrhe is nop redciicsteci oonnnaterhctyetw a ioran estg,h r ee awdigelarli f nl aoavtf oh re corresfrpootmnh fdleoel noacwseis nogc iations: DiophaEnqtuiantei ons DynamSiycsatle ms ratainoidnn atle gral ratioinnatle garnadl poionnvtra si eties poiinontr sb its torpsoiioonnnt s perainopddr irecip oedic abevlraiiaent ies poionrfta stm iaopnsa l Thearraeve a roife ttcyoo pviectrshev idos l ibunumi ten ,e vtihcteha obilcye reefctlthaseu t'sth aosrtiensst teMasran.enrd ye laartteehaadasl tfsla uoln dtehre heaodafitr nhigm oeartl igced byarnmaihicacbsv e ee n oomritdtkoeter ete dhp e i n botoaokm anagleeanAbgb ltrehli .ieo sfsft o omtefh eset oopmmiaibcytes t ed fuonidtn h ien ttrioodnu.c OnliRnees ources Three awdifeliraln d dd imtaotnerareelif naeacrlne,eds r raatt a http://www.math.brown.edu/-jhs/ADSHome.html Acknowledgments Thaeu thhacosor n sagu rletaestdo muiarwnncr yei stt hibinosgoE kv.ea rtyt empt habse meandt geoi pvreo aptietbrru ftoairlbo luntt hm eo sstta nrdeasMruudlc ths . otfhp er eseibnsat saoetncdi oo utnra suaegBtshr toU wnni ve2r0sa0in02td 0y 0 4i,n antdhe epx osbietnigeorfnei fratotstml h yce o mmoetfnh tsest udietnn htoss e v vi Preface coeusIr.ans d tdiitohnae,u twhooulrli tdkto eh atnhmkea nsyt uadnemdna ttsh ­ ematwihcroie aandsa nddro/affofterssr uegdg easnctdoi roornneisscn ,tc iluding MaBtatk ReorBb,e nePdaeButllta on,Rc ehCxah reduB,no Dgbe, v aGnreayh,a m EvsetrL,ei angH-sCiRhaaeuJf, no gn DeasnK,ia etSlzh K,ua gwuacMhiic,h elle ManPeast,Mr oircCtkuo Mrnct,M uHlelOeeh nG,,i ovPaannLntuiic S,iz epni ro, ToTmu cCklearVu,id aeTl olWmear tdX,,i nYyuainS ,h WouuZ -haAnneg s.p ecial thaindsku tseMo a Btatk ReoBrbe, n edLeitatnog Ha-snCfidhota urh n hegeii lrnp navitghtraeet aicnhgso hroooapful- ssad dyainmciT chaseu. t hor lwitokoue l d also exrpehsiss ciapatptJorio eoMhnin l fnoaosr rp ellsbuirtnvadoelindykn y a gnm ical sysatUten misCo onl iltneh mgeie1 d 89-0tshp arto vtihidene isdtp ialarelka ding evueantlttolh pyer evsoelnFutim neta.hal eul tyth,ho ahrniw ksies Sf, u sfaohnre, r supapnopdra tt diuerntichmneeag nh yo uorcsc uiwpnri iettdhbi inosgo k. JosHeS.pli hv erman Jan1u,a ry 2007 Contents Preface v Introduction 1 Exercises 7 1 AnI ntrodtuoCc ltaisoDsnyi ncaamli cs 9 1.R1a tMioanpaanstld hP ere ocjtLiivn.ee . . . . 9. . 12. CriPtoiiacnnattdlhRs ei enmna-HuFrowrimtuzl a . 12 13. PerPiooidaninMtcdus l tipliers 18 14. ThJeu Sleaitna d tShee.t . Fa.t.ou.. . . . .2.2 15. ProeposePf re triPiooid.ni tc.s . . . . .2 7. . . . . 16. DynaSmyiscAtaselsm tosetc dAoi l ageGbrroauipcs 28 Exer.ci.s.es. . . . . . .. . . . .3.5 . . . . . . . 2 DynaomvieLcros cF aile lGdosoR:de duction 43 2.T1h Neo narcChhiomreddae.la nM. e tric 43 2.P2e rPiooidaninTtcdhs Pe riorep se. r t.i . 47 2.R3e duocPfto iiaonnnMtd as pM so du.l o 48 p 2.T4h Ree suolafRt aatniMtoa pn. a l. . 53 2.R5a tiMoanpasGl ow oRiedtd hu .c tion 58 2.P6e rPiooidaninGtcdos oR de du.c tion 62 27. P erPiooidaninDtcdys n ami.c al Units 69 Exceirs.e.s . . . ... . . . . . . .74 3 DynamoivceGsrl obFaiell ds 81 3.H1e iFguhntc .ti.o.ns. ... . . . . . 81 32. HeightG eFoumne.ctt..ri y.o n s and 89 3.T3h Uen oirfBmo undCeojdcnenteu.sr se 95 34. CanonicaDly nHaeSmiyigschtatelsm sa nd 97 3.L5o cCaaln onic.al. Heights 120 3.D6i ophAapnpitrmioanxte.i .on.. . . . 140 3.I7n tPeogirinOantrl sb . i.ts. ... . . . . 108 3.I8n teEgsrtailfmroiPa totyiie nOnstr sb. i ts 121 3.P9e rPiooidaninGtcdas lG oriosu ps 122 vii viii Contents 3.E1q0u idiasnPtdrr eipbPeurotiiionodtnis c 126 31.R1a mifiUcnaitDtiyson nai tnao nmdi c Field1s2 9 Exceirs.e.s . ... . . . 135 4 FamiolfDi yensa mical Systems 147 41. DynmaiPtcoo lynomials . . 184 4.Q2u adProaltyinacon Dmdyi naalMtsoo dmuCilucar .rv es 155 4.T3h e SpoaRfca et iFounnaclt. i o.n s. . .1 86. Ratd . 4.T4h Meo dSuplaic oeDf y naSmyisct.ae lm .s . .1 47. . Md 4.P5e rPiooidMniutcpls lt,iia enMrdus l,t Sippelciterra .1 97. . 4.T6h Meo dSuplaMic2 oe Df y naSmyiscotaDfele m gs2r ee 188 4.A7u tpohmoiarsnTmdwis s .t s 195 4.G8e nTehreaoolTfr wi ys .t s. .. .. . . . 199. 4.T9wi sotRfsa tional Maps . . . 20.3 . . . . . . 41.0Fi eolDfde sfi nainttdhiF eoi noeM flo dd uli 206 4.1M 1iniRmeasulal ntMdai nntiMsmo adle ls 218 Exceirs.e s. . . . . . . . 2.2 4 . . . . . . . 5 DynamoivceLsro cFaile lBdaRsde: d uction 239 5.A1b soVllauuatenCesdo mpl.et.i.on.s 240 52. A Proinm eNro naArncyahslii.mse. d.ea..n . . .2.42 5.N3e wPtoolny agntodhMn eas x iMmoudmuP lruisn. c ipl2e48 54. The NonaJrucalhniFidaam tSeoedute sa n 254 2 5.T5h Dey mniaoc(fsz- z)jp. . . . . 257 5.A6N onarcMhoinmTtehedeleo. ar ne m 263 5.P7e rPiooidaninttcdhJs eu Slei.ta . . 268 5.N8o narcWhaidnmeerDdioenmagan i ns 276 5.G9r eFeunn catnLidoo cHnaesli ghts 287 5.D1y0mn iaocnBs e vrkiSocpha ce 294 Exceirs.e.s . . . ... . . . . . . 321 6 Dynamics AAslsgoecbiGraratoieucdp st o 325 61. PowMearp st hMaeun ldta itGpirvloeiu cp 325 6.C2h ebPyoslhyenvo mials . . . .3 2.8 . 6.3P riAom nEe lprlt Ciiucr ves . . . 336 6.G4e nPerroaeplose Lf ra ttMitaepss 350 6.F5l eLxaitbMtlaeeps s . . . . . . 3.5 5 6.R6i LgaitdMt aep.ss . . . . . . . 3.6 4 67. U noirfBmo ufnoLdras t Mtaep.ss 368 6.A8ffi nep hMioasrnCmdos m muFtaimni.gl ies 375 Exer.ci.s.es. . . . ... . . . . .38.0. . . Conentts ix 7 DynamiinDc ism enGsrieoanTt hearn One 387 7.D1y mniaocRfsa tMioanpoasnPl r e ocjtSipva.ec e 388 7.P2r iomAnel rg ebraic Geometry .4 0.2 . . . . . . . . 7.T3h Weei Hle iMgahcth. i.ne. . . .. . . . .4.0.7 7.D4y naomnSiu acrcswfe isNt ohn comImnluvutoti.in ogn s 410 Exceirs.e..s. . . . . . . . .. . . .42.7. . . . . . . . NotoenEs x ercises 441 LiosfNto tation 445 Reefrences 451 Index 473

Description:
This book provides an introduction to the relatively new discipline of arithmetic dynamics. Whereas classical discrete dynamics is the study of iteration of self-maps of the complex plane or real line, arithmetic dynamics is the study of the number-theoretic properties of rational and algebraic poin
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.