ACCEPTEDFORPUBLICATIONINTHEASTROPHYSICALJOURNAL,MAY18,2012 PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 THEARDUOUSJOURNEYTOBLACK-HOLEFORMATIONINPOTENTIALGAMMA-RAYBURSTPROGENITORS LUCDESSART,1,2 EVANO’CONNOR,2 ANDCHRISTIAND.OTT2,3,* AcceptedforpublicationinTheAstrophysicalJournal,May18,2012 ABSTRACT We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low- metallicity,objectsthatareproposedaslikelyprogenitorsoflong-durationγ-raybursts(LGRBs). Weperform 3 1D+rotation stellar-collapse simulations on the progenitor models of Woosley & Heger (2006) and critically 1 assess their potential for the formation of a black hole and a Keplerian disk (namely a collapsar) or a proto- 0 magnetar. Wenotethattheoreticaluncertaintiesinthetreatmentofmagneticfieldsandtheapproximatehan- 2 dlingofrotationcompromisestheaccuracyofstellar-evolutionmodels. Wefindthatonlythefastestrotating n progenitors achieve sufficient compactness for black-hole formation while the bulk of models possess a core a densitystructuretypicalofgarden-varietycore-collapsesupernova(SN)progenitorsevolvedwithoutrotation J andatsolarmetallicity. Ofthemodelsthatdohavesufficientcompactnessforblack-holeformation, mostof 0 themalsoretainalargeamountofangularmomentuminthecore,makingthempronetoamagneto-rotational 3 explosion, therefore preferentially leaving behind a proto-magnetar. A large progenitor angular-momentum budget is often the sole criterion invoked in the community today to assess the suitability for producing a ] collapsar. This simplification ignores equally important considerations such as the core compactness, which E conditionsblack-holeformation,thecoreangularmomentum,whichmayfosteramagneto-rotationalexplosion H preventingblack-holeformation,orthemetallicityandtheresidualenvelopemasswhichmustbecompatible . with inferences from observed LGRB/SNe. Our study suggests that black-hole formation is non trivial, that h thereisroomforaccommodatingbothcollapsarsandproto-magnetarsasLGRBprogenitors,althoughproto- p magnetarsseemmuchmoreeasilyproducedbycurrentstellar-evolutionarymodels. - o Subjectheadings: Hydrodynamics—Stars:Evolution—Stars:MassLoss—Stars:Rotation—gammarays: r t bursts—Stars: Supernovae: General s a [ 1. INTRODUCTION/CONTEXT thesourceofmuchdebate(Bethe1990;Woosley1993;Her- 2 ant et al. 1994; Burrows et al. 1995; Janka & Müller 1996; v All stars with masses initially between ∼8 and ∼150M(cid:12) Wheeler et al. 2000; Kitaura et al. 2006; Buras et al. 2006b; 6 eventually form a degenerate core that inevitably collapses Burrows et al. 2006; Murphy & Burrows 2008; Nordhaus 2 to form a proto-neutron star. Much less certain is its subse- et al. 2010; Pejcha & Thompson 2011; Hanke et al. 2011; 9 quent evolution, the potential formation of a black hole, and Takiwaki&Kotake2011). 1 thepoweringofasupernova(SN)explosion,sometimesasso- . ciatedwithalong-durationγ-rayburst(LGRB).Thesituation 3 Thermal MeV neutrinos are abundantly radiated from the isdeceptivelysimpleandtheoutcomerestsfundamentallyon 0 optically-thick, dense, and hot proto-neutron star, allowing the solution to an energy problem. An explosion or a fizzle 2 its internal energy to be released on a diffusion timescale. depends on the efficiency with which the system can extract 1 In the neutrino mechanism for core-collapse SN explosions : the prodigious gravitational energy released during collapse. v Therearetwoprincipalformsofenergyatdisposal. Thefirst (Bethe&Wilson1985),theabsorptionintheinfallingmantle Xi one is the gravitational-binding energy liberated by the col- of∼10%ofthisneutrinofluxmayaloneleadtotherevivalof the stalled shock and the ejection of the progenitor envelope lapsingstarandinparticularitsdegeneratecore. Thesecond r withanasymptotickineticenergyofupto1B(1051erg)(Ki- a isitsrotationalenergy(actuallydrawnfromgravitationalen- tauraetal.2006;Burasetal.2006a,b).Butthisgenericmech- ergy), which is a function of the angular-momentum distri- anismshouldnot,however,betheoriginofthelargerexplo- butionandbudgetintheprogenitorstar. Understandinghow sionenergiesof∼10Binferredforasmallfractionofcore- thesetwoenergysourcescanbechanneledtopowerrelativis- collapseSNe. Instead,theirscarcitycallsforexceptionalcir- ticandnon-relativisticejectaincore-collapseSNeandleave cumstances,whichseemintricatelyrelatedtofastprogenitor- behind a neutron star, a fast-rotating pulsar, a magnetar, or corerotation(Burrowsetal.2007;Takiwaki&Kotake2011). a black hole, has been the subject of numerous studies and Itisprobablethatmoststarscontainsomeangularmomentum 1Laboratoire d’Astrophysique de Marseille, Université Aix-Marseille atthe timeofdeath, either becausetheydid notloseit com- & CNRS, UMR7326, 38 rue Frédéric Joliot-Curie, 13388 Marseille, pletelythroughthecombinedeffectsofmagnetictorquesand France,[email protected] stellar-wind mass loss (Maeder & Meynet 2000; Meynet & 2TAPIR, Mailcode 350-17, California Institute of Technol- Maeder2000;Hegeretal.2000;Hirschietal.2004;Meynet ogy, Pasadena, CA 91125, USA, [email protected], &Maeder2005;Hirschietal.2005;Hegeretal.2005),orbe- [email protected] 3Institute for the Physics and Mathematics of the Universe (IPMU), causetheygaineditfromacompanionstarinabinarysystem TheUniversityofTokyo,Kashiwa,Japan (Wellstein&Langer1999;Petrovicetal.2005;Cantielloetal. *AlfredP.SloanResearchFellow 2007). As the envelope collapses, the rotational energy in- 2 creases. Duringthisprocess,theinnercore((cid:46) 0.5M )spins lapsar model (Woosley 1993; MacFadyen & Woosley 1999; (cid:12) up by about three orders of magnitude and remains in solid MacFadyenetal.2001):Afast-rotatingprogenitorfailstoex- body rotation, while the outer core develops a differentially- plodeinitsearlypost-bouncephaseandinsteadformsablack rotatingprofile(Ottetal.2006). Theenergyassociatedwith hole,whilethein-fallingenvelopeeventuallyformsaKeple- rotationcanbelarge(O(10B))andtappedbyinstabilitiesde- rian disk feeding the hole on an accretion/viscous timescale veloping at the surface of the proto-neutron star, in particu- comparable to that of the LGRB. It is within this disk that lar the magneto-rotational instability (MRI; Balbus & Haw- the SN explosion is triggered and the 56Ni synthesized. The ley 1991; Akiyama et al. 2003; Obergaulinger et al. 2009). othermodelinvolvesaproto-magnetar(Wheeleretal.2000; Numerical simulations for fast-rotating progenitor stars sug- Bucciantini et al. 2008; Metzger 2010; Metzger et al. 2011) gest that the magneto-rotational mechanism of explosion is in which the LGRB is born after a successful SN explosion promisingandoffersaveryattractiveexplanationfortheex- (eitherbytheneutrinoorthemagneto-rotationalmechanism, istence of highly-energetic SNe (LeBlanc & Wilson 1970; althoughthelatterseemsmorelikelygiventherapidrotation Bisnovatyi-Kogan et al. 1976; Wheeler et al. 2000; Yamada required for the magnetar) and the ejection of the overlying & Sawai 2004; Moiseenko et al. 2006; Burrows et al. 2007; envelope(oratleasttheonsetoftheejectionoftheinnerenve- Dessart et al. 2008; Takiwaki & Kotake 2011). However, lopelayersthatcleartheproto-neutronstarsurface). Fastro- this mechanism relies fundamentally on the assumption that tationintheproto-neutronstarpermitsthehugeenhancement the MRI can increase the magnetic field to the required val- ofthemagnetic-fieldenergyandstresses,whichstrengthenas ues. Anassumptionthathasnotyetbeenshownnumerically the proto-neutron star cools and contracts, eventually giving inthefullcore-collapsecontext, althoughpreliminaryinves- rise to relativistic ejecta (∼10s after the onset of collapse, tigations in this sector are promising (Obergaulinger et al. once the neutrino driven wind decays away). In both mod- 2009). Hence, combined with the diversity of progenitor- els, rotation is key to control the dynamics in a unique way. coreproperties,thesetwomechanismsalone,theneutrinoand It is also key to allow the simultaneous ejection of baryon- themagneto-rotationalmechanism,mayexplainthediversity deficientmaterialatrelativisticspeedsoverasmallsolidangle ofcore-collapseSNe,potentiallyencompassingtwoordersof andthequasi-sphericalejectionoftheprogenitorenvelope. magnitudeinexplosionenergy,fromthelow-luminositySNe II-Plateau (Pastorello et al. 2004) to highly energetic SNe Ic A critical difference between the collapsar model and the (Mazzalietal.2002). proto-magnetarmodelisthatthecollapsarhastoformablack hole. Being so central to the model, it is legitimate to in- A great puzzle is then to understand the necessary depar- vestigatewhatconditionsblack-holeformationinthiscontext tures from this general core collapse scenario to produce an (Woosley 2011). Surprisingly, little has been done on this LGRB in addition to a SN explosion, as spectroscopically problem. Numerous simulations so far have focused on the confirmedin,todate,sixLGRB/SNepairs,(forarecentcom- earlycollapsephaseandtherevivaloftheSNshock,stopping pilation, see Berger et al. 2011). This requires that ∼0.1- too early to make any statement concerning black-hole for- 1B be injected into a low-mass, baryon-deficient collimated mation. In1D,severalstudieshaveinvestigatedtheneutrino region (at the origin of γ-rays) and that at the same time signalandprogenitordependenceofnon-rotatingfailedSNe ∼10B be injected quasi-isotropically to eject the progenitor (Liebendörferetal.2004;Sumiyoshietal.2007;Fischeretal. envelope (at the origin of the SN thermal emission observed 2009; O’Connor & Ott 2011). Sekiguchi & Shibata (2011) in the optical). The very low occurrence rate of LGRB/SN have performed 2D simulations of black-hole formation and per core-collapse SN of (cid:46)1% (Guetta & Della Valle 2007) thesubsequentformationofanaccretiondisk,althoughwith calls for progenitor properties that are rarely encountered in initialconditionsthatareincommensuratewithcurrentlysug- star formation/evolution. Interestingly, an unambiguous di- gestedLGRBprogenitors. In3D,Ottetal.(2011)performed versity emerges among LGRB/SN observations, necessarily fullygeneral-relativisticsimulationsofblack-holeformation, translatingintoasignificantrangefortheinferredproperties howeverusingasimplifiedsoftequationofstatethatfavored of the SN ejecta, with proposed masses and kinetic energies it. Finally,othersimulationshavestartedfromapre-existing possibly varying by a factor of 5–10 for both (Berger et al. blackholeandinvestigatedthepoweringofthejetattheori- 2011). Unfortunately, a significant uncertainty is associated ginoftheLGRB(Aloyetal.2000;Progaetal.2003;Zhang with such inferences. For example, Iwamoto et al. (1998) et al. 2004; Lindner et al. 2010), or the longer-term synthe- propose an ejecta mass of 11M with a total energy of 20– (cid:12) sisof56Niinthisunusualcontext(Milosavljevic´ etal.2012). 50B for GRB980425/SN1998bw, but Woosley et al. (1999) Nosimulationhaseverdemonstratedfromfirstprinciples,and reproducethelightcurvewithanejectaof∼5M andatotal (cid:12) thusconvincingly,thevalidityofthecollapsarmodel,i.e.,that energyof22B.Suchdifferencesarenotsurprisingsinceboth theprogenitorsproposedforthismodelwouldindeedproceed spectraandlightcurvesmustbemodeledsimultaneouslyand through each and every necessary step: Collapse, formation withallowanceforthecomplicatednon-LTEnon-thermaland of a proto-neutron star, failure of the shock revival, forma- time-dependenteffectscontrollingtheradiativetransfer. The tion of a black hole followed by that of a Keplerian disk, exceptionallyfastejectaexpansionofhypernovaeisexpected and finally the powering of both the LGRB and the SN, in- to strengthen the time-dependent effects seen in “standard" cluding the synthesis of a generally large amount of 56Ni by core-collapse SNe (Dessart & Hillier 2008) while the large core-collapse SN standards. This is an obvious shortcoming productionof56Niandsignificantmixingmaysizablyaffect ofalltheoreticalinvestigationsonthecollapsarmodelandits line-profile shapes from which the expansion rate is inferred proposedprogenitors. Similargapsinthemodelingofproto- (Dessartetal.2012). magnetardriven LGRBsexist: The earlymagneto-rotational Two LGRB central-engine models are currently favored. core-collapseSNevolutionhasbeenmodeledin2D(Burrows TheysuggestthekeycomponentsforasuccessfulLGRB/SN etal.2007;Takiwaki&Kotake2011)andsohasthephasein are a compact progenitor with a short light-crossing time of whichrelativisticoutflowsaredriven(Bucciantinietal.2007, ∼1sandfastrotationatthetimeofcollapse. Oneisthecol- 2008, 2009; Komissarov & Barkov 2007), but the evolution 3 connectingthetwophaseshasnotbeenmodeled. Therobust- 2007). Whilethegeneraloutcomeofthesesimulationsisthat ness of the magneto-rotational explosion mechanism largely itispossibletoproducemassivestarswitharapidlyspinning restsontheefficiencyofangular-momentumtransport,andin core/envelopeatdeath,itisdifficulttocomparethefinalprop- particulartheextractionofthefree-energystored(andreplen- ertiesofpublishedmodels. Indeed,modelsarerarelyevolved ishedthroughaccretion)indifferentialrotationatthesurface all the way to an iron core. The treatments of mixing, mass of the proto-neutron star. The failure to extract this energy loss,andangular-momentumloss/transportdiffer. Magnetic- on short time scales may, however, facilitate black-hole for- fieldsmayormaynotbeincludedandwhentheyarethepre- mation, although it may also compromise energy extraction scriptionmaydiffer(Spruit2002;Zahnetal.2007). inthecollapsarmodel. Thesecomplicatedissuesrequirede- Furthermore,allthesestudiesremainspeculativeaboutthe tailedmodelingtobuilduponthepromisingresultsofThomp- outcome of collapse for such progenitors. They argue for sonetal.(2005)andObergaulingeretal.(2009). Tothisday, black hole formation and the formation of a disk based on the collapsar model has been studied more extensively than order of magnitude estimates, rather than detailed numerical the proto-magnetar model for LGRBs, so the later may look simulations. For a start, of all the LGRB progenitor simu- more promising in some ways in part because of the lesser lations, only those of Woosley & Heger (2006) are evolved scrutinyithasreceived. all the way to the onset of collapse. In simulations halted Inthispaper,wefocusononeimportantaspectofthecol- wellbefore,theiron-coremassisestimatedfromtheCO-core lapsarmodeltovalidate, orinvalidate, theassumption, often mass (Hirschi et al. 2005) or is simply not considered in the made but so far never checked, that the LGRB progenitor discussion (Yoon & Langer 2005). Most studies consider a models available in the literature indeed collapse to form a model viable for producing a collapsar based exclusively on blackhole. Wedothisbyperforminghydrodynamicalsimu- the angular-momentum budget of the inner 3M , and per- (cid:12) lationsoftheLGRBprogenitormodelsofWoosley&Heger formnochecksonthelikelihoodofformingablackhole: its (2006) using the code GR1D (O’Connor & Ott 2010). This formationisdeemedsoobviousthatthediscussionofanyal- issue is critical for testing the potential of progenitor stars ternatescenarioisgenerallyomitted. forproducingLGRBsviathecollapsarmechanism, butmay Differingintheircriteriaandapproachesforselectingcol- alsoservetodiagnoseanattractivechannelfortheformation lapsar candidates, some studies may yield progenitor-mass of proto-magnetars. Such “failed” collapsars (because they rangesthatdonotevenoverlap:Usinganangular-momentum explode before forming a black hole) represent a serious al- criterion, Yoon & Langer (2005); Woosley & Heger (2006); ternative for the production of LGRBs, although they have Yoonetal.(2006)favorprogenitorstarswithamain-sequence theirowncaveats(Metzgeretal.2011). Admittedly,thephe- massbelow∼30M . Incontrast,Hirschietal.(2005),argu- nomenonofcorecollapse,bounce,andtheeventsthatfollow (cid:12) ing for the need for both a large angular momentum, a large are fundamentally multi-D. We believe, however, that much iron core, and a WO stellar type at death, favor progenitors can be learned from 1D simulations of the kind presented withamain-sequencemassesabove∼35M (magneticfields here. For example, the mass-accretion rate onto the proto- (cid:12) arenottreatedinthiswork,though). neutron star is largely determined by the angular-averaged densityprofileoftheprogenitorstar,whichwecaptureaccu- Recent studies suggest that selecting collapsar progenitors rately.Our1Dexplorationrevealsthelandscapeofcoreprop- basedexclusivelyonalargeangular-momentumbudgetmay erties at bounce and quantifies fundamental differences be- betoosimplistic. Forexample,themagneto-rotationalexplo- tweenprogenitors. Inthenextsection,westartbyreviewing sion invoked to explain hypernovae derives its energy from results from stellar-evolution models for LGRB progenitors. this same large core angular momentum (via the MRI and WethendescribeourmethodologyfortheGR1Dsimulations thestronglydifferentially-rotatinglayersinthepost-shockre- of LGRB progenitors available in the literature. We make a gion). Thismechanismdoesnotobviouslyaccommodatethe shortdigressioninSection4todiscusstherotationalproper- formation of a black hole, as demonstrated by Dessart et al. tiesofthecollapsedcoresofmassivestars. InSection5,we (2008). They simulated the collapse of the core and the de- presentourresultsbeforeconcludinginSection6. velopmentofamagneto-rotationalexplosioninmodel35OC ofWoosley&Heger(2006)andfoundthatrotationalenergy 2. STELLAR-EVOLUTIONMODELSOFLGRBPROGENITORS of order 10B is readily available to launch a SN ejecta on a timescale of a few 100ms. They furthermore found that Stellar-evolution calculations have been performed to in- accretion is easily shut off by the developing explosion and vestigate the mass, rotation, and metallicity requirements thattheproto-neutronstarmassfailstogrowtotheinstability for producing fast-rotating pre-collapse stars. Both single- thresholdforblack-holeformation. However,thesimulations (Hirschietal.2005;Yoon&Langer2005;Woosley&Heger of Dessart et al. (2008) did not resolve the MRI but instead 2006; Georgy et al. 2009) and binary-star (Petrovic et al. usedanequipartitionansatztoestimatethemagnitudeofthe 2005;Cantielloetal.2007)evolutionaryscenarioshavebeen MRI-amplifiedmagnetic fields. Inreality, magnetic-field re- investigated. Fast rotation of the proto-stellar core is clearly connectionmay,forexample,compromisethedynamicalpo- critical to procure a large angular momentum to the star ini- tentialofmagneticstresses,channelingmagneticenergyinto tially. If the rotation rate attained is sufficiently large, the heattoberadiatedawaybyneutrinos. Thisandotheralterna- star may even evolve chemically homogeneously and avoid tiveshavebeenstudiedbyThompsonetal.(2005)underthe a supergiant phase, which is known to sap the core of its general form of viscous dissipation. They find that the extra rotation through the effects of magnetic torques. Such fast- energy deposition can, in some cases, considerably alter the rotating chemically-homogeneous stars also naturally die as post-bouncedynamicsandgenerateavigorousexplosion. H-deficient He-poor Wolf-Rayet (WR) stars. Low metallic- ity quenches the stellar-wind mass loss rate, a condition that O’Connor&Ott(2011)studiedblack-holeformationbased may be more important for a single-star scenario than for on a variety of progenitor models characterized by differ- the binary-star scenario (Yoon et al. 2006; Cantiello et al. entmain-sequencemass, metallicity, androtationrate. They 4 10000 findthattheoutcomeofcollapsecanbeanticipatedfromthe bounce compactness of the progenitor core structure and in preSN 12TJ particularthatoftheregioninside2.5M ,whichcorresponds 1000 bounce 16SN (cid:12) 16OG approximatelytothemaximummassthataproto-neutronstar 16TI can have and remain in hydrostatic equilibrium. They find 100 that higher mass progenitors published in the literature do 1] 35OC not always have larger iron cores and therefore that they are - s 10 d not necessarily more prone to black-hole formation. They a alsorevealconsiderablediversityinprogenitorcorestructure, [r 1 even for the same main-sequence mass. Some stellar evo- r) ( lution studies obtain a monotonic increase of the iron-core Ω 0.1 mass(orbouncecompactness;seeFig.9ofO’Connor&Ott 2011)versusmain-sequencemass(Limongi&Chieffi2006; seealsoHirschietal.2004,2005),whilesomeshowananti- 0.01 correlation beyond ∼40M (Woosley & Heger 2007). The (cid:12) primaryreasonforthisaredifferingprescriptionsforrateand 0.001 1 10 100 1000 10000 time of mass loss, one of the major uncertainties in massive Radius [105 cm] starevolution(seealsothediscussionsinHirschietal.2005 andO’Connor&Ott2011). Figure1. AngularvelocityΩ(r)versusradiusr atboththepre-SNstage (dashedlines)andatcorebounce(solidlines)forselectedmodelsofWoosley 3. METHODS&INITIALMODELSET &Heger(2006).Theinnerhomologouslycollapsingcoremaintainsitsinitial uniformrotationthroughoutcollapse. Inthiswork,weusetheopen-source,sphericallysymmet- mass,followedbyaletterdenotingtheenvironmentalmetal- ric, general relativistic, Eulerian hydrodynamics code GR1D licity(‘S’forsolar,‘O’for10%solar,and‘T’for1%solar). (O’Connor & Ott 2010). Rotation is included through a An additional letter is appended to individualize the models centrifugal-acceleration term in the momentum equation — done with different WR mass-loss rate prescriptions, allow- this is the most important dynamical feature of rotation rel- ingornotformagneticeffects,andthetotalangularmomen- evant to core collapse. However, GR1D cannot account for tumofthestar. 16-M heliummodelsaredenotedby‘HE16’ the associated deviations from spherical symmetry nor any (cid:12) followedbyanindividualizingcapitalletter. angular-momentumredistribution. Weselecttheequationof state(EOS)fromLattimer&Swesty(1991)characterizedby Inthiswork,wesimulatethecollapseandpost-bounceevo- anuclearincompressibilityof220MeV(hereafterreferredto lutionwithGR1Dforalltheseprogenitormodels,withapri- astheLS220EOS).ThisEOSprovidesthebestmatchtoboth mary focus on determining their ability to produce the key mass and mass-radius constraints from observations and nu- featuresofthecollapsarmodel: Ablackholetogetherwitha clear theory (Demorest et al. 2010; Özel et al. 2010; Steiner Kepleriandisk.Aswediscussinthefollowingsection,black- etal.2010;Hebeleretal.2010). GR1Dusesanefficientneu- hole formation is not obviously guaranteed in any of these trinoleakage/heatingschemethatqualitativelyreproducesthe dyingstars. salient features of neutrino transport. We refer the reader to O’Connor&Ott(2010,2011)foradditionaldetailsonGR1D 4. NOTESONROTATINGCORECOLLAPSE andourmethodology. SinceLGRBsseemfundamentallyrelatedtorapidrotation, As described above, the only stellar-evolutionary models it is useful to summarize a few facts and concepts related to forLGRBprogenitorsthatareevolveduntiltheonsetofcol- the gravitational collapse of rotating iron cores in massive lapse are those proposed by Woosley & Heger (2006). We stars. First,itisreasonabletoassume(whichisborneoutby thusfocusontheirmodeldatasetforourinvestigationonthe simulations, e.g., Heger et al. 2005) that the iron core, in its dynamics of the core-collapse SN engine and the potential pre-collapse state, will be approximately uniformly rotating. formation of a black hole in the collapsar context. Using KEPLER,Woosley&Heger(2006)investigatedarathernar- Such a solid-body rotation corresponds to the lowest energy stateatfixedtotalangularmomentumandwillbeassumedon rowrangeofprogenitormasses,butvariedtheinitialrotation aseculartimescalebyanyrotatingfluidthathassomemeans rate (solid-body rotation is assumed initially) and environ- toredistributeangularmomentum. mentalmetallicityfromsolarto1%solar(withanadditional tunablefactoraslowas0.1forthemetallicity-dependentmass Rotatingcorecollapse,evenforthehighpre-collapserota- lossrate,equivalenttoareductioninmetallicitybyafactorof tionratesofsomeofthepotentialLGRBprogenitorsthatwe 100intheirmass-lossprescription). Arguingthattheinferred consider in this study, proceeds qualitatively in a very simi- mass of LGRB/SN ejecta known in 2006 is on the order of larfashiontonon-rotatingcollapseaslongastheratioofthe 10M(cid:12),andsincehigher-massstarsmaylosetoomuchangu- centrifugalaccelerationacent tothegravitationalacceleration larmomentumthroughstellarwinds(evenatlowmetallicity), a ,issmall, grav theyfocusedprimarilyonlower-massprogenitors,withmain- sequencemassesof12and16M ,5withtheexceptionofone a Ω2(r)r Ω2(r)r3 (cid:12) cent = = (cid:28)1. (1) 35M(cid:12)modelset. agrav GM(r)r−2 GM(r) We adopt the same nomenclature as for their 12-, 16- and Duetoangular-momentumconservation,theangularvelocity 35-M models. It comprises the model’s main-sequence (cid:12) behaves as Ω(r)∝r−2. M(r) stays constant for a collapsing 5Theyalsoperformsimulationsfor16-M(cid:12)heliumcoresandfindcompa- massshell,and,thus,theaboveratioincreasesduringcollapse rableoutcomes. asr−1andmaypotentiallybecomelargeforsmallradii. 5 Table1 ProgenitorModelProperties Modela ξ2.5 Ωcb tBHc Mb,maxd Mg,maxe MbD,FBHf a(cid:63)BH,DFg tDFh MpreSN−MbD,FBHi η¯hcreiatt Prefj Ik Fr1o0t0ms l (s−1) (s) (M(cid:12)) (M(cid:12)) (M(cid:12)) (s) (M(cid:12)) (ms) (1045gcm2) (B) 12SA 0.003 0.000 ··· (1.56) (1.47) (10.9) ··· ··· ··· 0.167 ··· ··· ··· 12SG 0.239 0.198 2.728 2.33 2.12 (7.57) ··· ··· ··· 0.124 18.1 3.37 0.034 12SH 0.141 0.144 ··· (2.08) (1.91) (5.43) ··· ··· ··· 0.148 25.5 3.35 0.008 12SI 0.075 0.208 ··· (1.75) (1.64) (6.95) ··· ··· ··· 0.153 24.7 3.17 0.010 12SJ 0.121 0.751 ··· (2.05) (1.90) 6.77 0.470 91.6 2.27 0.166 4.10 3.53 0.305 12OA 0.011 0.000 ··· (1.52) (1.44) (11.9) ··· ··· ··· 0.104 ··· ··· ··· 12OG 0.029 0.149 ··· (1.88) (1.75) 4.50 0.217 4.42×106 7.32 0.179 22.5 3.17 0.006 12OH 0.090 0.285 ··· (1.84) (1.71) 7.62 0.210 710. 0.07 0.135 17.1 3.30 0.020 12OI 0.095 1.061 ··· (1.86) (1.73) 5.91 0.535 68.8 3.81 0.181 4.49 3.27 0.270 12OL 0.076 0.299 ··· (1.75) (1.64) 6.99 0.259 554. 0.36 0.136 19.7 3.61 0.017 12ON 0.170 1.709 ··· (2.21) (2.02) 2.67 0.496 8.51 8.26 0.145 2.38 3.27 1.013 12TA 0.008 0.000 ··· (1.59) (1.49) (12.0) ··· ··· ··· 0.117 ··· ··· ··· 12TG 0.034 0.148 ··· (1.91) (1.77) 4.59 0.228 3.73×106 7.35 0.182 24.9 3.43 0.007 12TH 0.107 1.042 ··· (1.93) (1.79) 6.67 0.495 85.2 2.56 0.138 5.06 3.59 0.313 12TI 0.145 1.323 ··· (2.02) (1.86) 3.33 0.507 15.3 7.46 0.144 3.26 3.48 0.610 12TJ 0.517 1.281 0.853 2.51 2.37 2.97 0.640 2.64 8.58 0.191 1.10 4.31 3.286 16SA 0.101 0.000 ··· (1.88) (1.74) (14.6) ··· ··· ··· 0.138 ··· ··· ··· 16SG 0.109 0.203 ··· (1.91) (1.77) 9.79 0.404 2.71×107 2.16 0.141 20.8 3.27 0.010 16SH 0.081 0.341 ··· (1.76) (1.64) (7.70) ··· ··· ··· 0.182 16.8 2.68 0.019 16SI 0.380 0.189 1.132 2.38 2.20 (9.85) ··· ··· ··· 0.158 11.9 3.82 0.062 16SL 0.075 0.207 ··· (1.73) (1.62) (6.30) ··· ··· ··· 0.130 28.4 3.31 0.007 16SM 0.121 0.229 ··· (2.02) (1.85) (8.31) ··· ··· ··· 0.145 20.0 3.51 0.016 16SN 0.496 0.455 0.777 2.42 2.27 9.45 0.508 40.6 1.77 0.187 3.25 3.69 0.451 16OA 0.144 0.000 ··· (2.15) (1.96) (15.8) ··· ··· ··· 0.133 ··· ··· ··· 16OG 0.193 0.176 3.437 2.33 2.11 7.16 0.230 4.37×106 8.49 0.168 17.6 3.82 0.018 16OH 0.185 0.248 ··· (2.21) (2.00) 9.18 0.133 810. 7.9×10−5 0.150 20.5 3.59 0.023 16OI 0.344 0.733 1.449 2.37 2.19 7.10 0.553 18.2 5.11 0.152 3.21 4.06 0.700 16OL 0.124 0.316 ··· (2.02) (1.86) 8.63 0.200 593. 0.05 0.138 14.1 3.41 0.030 16OM 0.172 1.059 ··· (2.17) (1.98) 5.64 0.590 24.5 6.31 0.177 2.60 3.02 0.480 16ON 0.357 1.382 1.458 2.40 2.22 3.36 0.582 4.70 10.8 0.162 1.40 3.59 2.082 16TA 0.070 0.000 ··· (1.76) (1.64) (16.0) ··· ··· ··· 0.148 ··· ··· ··· 16TG 0.288 0.242 1.738 2.35 2.16 13.3 0.366 3.44×104 2.41 0.174 10.4 4.02 0.083 16TH 0.434 0.598 0.958 2.41 2.25 8.01 0.511 23.7 3.44 0.151 2.57 3.80 0.599 16TI 0.242 1.367 2.791 2.41 2.21 3.51 0.554 10.6 10.4 0.150 2.17 3.77 1.341 35OA 0.178 0.289 ··· (2.26) (2.05) (12.9) ··· ··· ··· 0.153 14.6 3.53 0.044 35OB 0.537 1.545 0.776 2.42 2.25 16.4 0.545 31.5 4.80 0.198 1.44 3.48 3.617 35OC 0.458 1.980 0.972 2.43 2.29 4.44 0.622 4.84 23.6 0.162 1.10 4.49 7.521 HE16C 0.137 0.133 ··· (2.06) (1.90) (5.15) ··· ··· ··· 0.134 25.5 3.11 0.007 HE16D 0.283 0.440 1.706 2.35 2.16 8.65 0.367 117. 0.88 0.171 4.74 3.65 0.206 HE16E 0.129 1.428 ··· (2.00) (1.85) 6.82 0.594 43.1 6.05 0.153 3.77 3.27 0.447 HE16F 0.496 1.096 0.837 2.48 2.33 4.29 0.567 8.97 10.5 0.202 1.46 4.28 2.323 HE16H 0.610 1.196 0.641 2.52 2.38 4.12 0.597 5.95 11.6 0.204 1.26 4.23 3.335 HE16K 0.132 0.134 ··· (2.04) (1.88) (5.16) ··· ··· ··· 0.140 26.6 3.11 0.007 HE16L 0.316 0.315 1.497 2.36 2.17 9.34 0.286 195. 0.24 0.165 6.73 3.73 0.116 HE16M 0.111 1.206 ··· (1.91) (1.77) 10.4 0.532 94.0 2.61 0.134 4.42 3.23 0.348 HE16N 0.198 1.203 3.424 2.36 2.15 7.81 0.604 35.9 7.15 0.154 2.59 3.84 0.970 HE16O 0.298 1.209 1.891 2.39 2.20 6.77 0.594 25.0 8.86 0.127 1.98 3.61 1.414 HE16P 0.573 1.038 0.672 2.49 2.35 6.42 0.584 14.2 9.46 0.235 1.58 4.16 2.523 aModeldesignationfromWoosley&Heger(2006).Seetextfordetails. bInitialcentralangularvelocity. cTimeelapsedbetweenbounceandblackholeformation,···indicatesthatnoblackholeformedwithin3.5sofbounce. dBaryonicmassoftheproto-neutronstaratthetimeofblackholeformation.Ifnoblackholeformsin3.5s,wegivetheproto-neutronstarbaryonicmassat3.5s. eGravitationalmassoftheproto-neutronstaratthetimeofblackholeformation.Ifnoblackholeformsin3.5s,wegivetheproto-neutronstargravitationalmassat3.5s. fBaryonicmassinteriortotheinnermoststablecircularorbitatthetimeofdiskformation.Iftheangularmomentumistoolowtofosterdiskformation,wegivetheprogenitormass inparenthesesinstead. gDimensionlessspinoftheblackholewhenthediskforms.···indicatesnodiskforms. hTwicethefree-falltimeofthemasselementattheinnermoststablecircularorbit.···indicatesnodiskforms. iBaryonicmassoutsideoftheblackholeatdiskformation.···indicatesnodiskforms. jRotationalperiodPref=2π/ω¯computedbyappoximatingω¯astheratioofthetotalangularmomentumtothemomentofinertiaoftheproto-neutronstar,Eq.7.···indicatesa non-rotatingmodel. kProto-neutronstarmomentofinertia,notethiscanbeuptotwotimesthevalueforanon-rotatingcoldneutronstar.Thisistheoriginofthediscrepancywiththevaluespresented byWoosley&Heger(2006),whoconsideracoldnon-rotating1.4M(cid:12)neutronstarwithamomentofinertiaI=1.4×1045gcm2.···indicatesanon-rotatingmodel. lFreeenergystoredindifferentialrotation.Thisamountstotheenergydifferencebetweentheproto-neutronstarweobtainwithGR1Dandthecorrespondingproto-neutronstarwith thesametotalangularmomentumandmomentofinertiabutassumingsolid-bodyrotation.···indicatesanon-rotatingmodel. 6 In the case of a /a (cid:28)1, the collapsing rotating iron energy of the proto-neutron star model in GR1D and the ro- cent grav core will behave like a non-rotating core and separate into a tationalenergyofauniformlyspinningproto-neutronstarof subsonically collapsing inner core (|v (r)|<c (r)) and a su- thesameangularmomentumandmomentofinertia, r s personically collapsing outer core (|v (r)|>c (r)). The in- r s Iω¯2 nercoreexhibitsaself-similar(homologous)velocityprofile, F =T− , (4) v(r)∝r, until core bounce and shock formation (Goldreich rot 2 & Weber 1980). After core bounce, the inner core material wherefromO’Connor&Ott(2010),forGR1D, forms the core of the proto-neutron star and outer core ma- terial accumulates at its edge. The mass of the inner core at 4π(cid:90) RPNS T= ρhXW2v2r2dr, (5) bounceistypically∼0.5M(cid:12)fornon-rotatingcores,setbythe 3 0 ϕ EOSofrelativisticelectrons,thetrappedleptonnumber,core 8π(cid:90) RPNS entropy,andgravity(Burrows&Lattimer1983). Itincreases I= ρhXW2r4dr, (6) monotonically, though slowly, with increasing pre-collapse 3 0 rotationrate. Forcoresthatreachacent/agrav≈1,themassof (cid:90) RPNS (cid:30)(cid:90) RPNS the inner core will be increased to (cid:38)0.7M (Dimmelmeier ω¯= ρhXW2rv r2dr ρhXW2r4dr (7) (cid:12) ϕ etal.2008). 0 0 andT istherotationalenergy,I isthemomentofinertia,and Since the inner core is collapsing homologously, we can ω¯ istheuniformrotationfrequency,histhespecificenthalpy, introduceahomologyparameterα(t),sothat X2istheg componentofthemetric,W istheLorentzfactor, rr r(t)=α(t)r , (2) andv istheangularvelocity. WetakeR tobetheradius 0 ϕ PNS wherethematterdensity,ρ=1010gcm−3. wherer(t)istheradiusofacollapsingfluidelementattimet andr isitsinitialradius. Thismustholdforanymassshell 0 5. RESULTS within the inner core. Two collapsing fluid elements located initiallyatr1andr2,androtatingwithafrequencyΩ1= j1/r12 We have performed simulations for the entire set of andΩ = j /r2conserveangularmomentum,Ω(cid:48)r(cid:48)2= j(cid:48) = j = KEPLERmodelspublishedinWoosley&Heger(2006)6. We 2 2 2 1 1 1 1 Ω r2.Homologyimpliesr(cid:48) =α(t)r ,andr(cid:48) =α(t)r ,therefore first consider the rapidly spinning progenitors evolved with- 1 1 1 1 2 2 out magnetic fields. All these models have a dimensionless Ω(cid:48)1(r1(cid:48)) = j1/r1(cid:48)2 = j1α(t)2r22 = Ω1 . (3) Ktheerrexscpeipnti(oan(cid:63)o=fJmco/dGeMlH2)Ea1t6J3,Mw(cid:12)hicghrehaatsera(cid:63)th=an0.9u1n)ityan(dwaitrhe Ω(cid:48)2(r2(cid:48)) j2/r2(cid:48)2 j2α(t)2r12 Ω2 thusconsideredaspromisingcollapsarcandidatesbyWoosley Sincethispropertyholdsforanymassshellwithintheinner & Heger (2006). Unfortunately, when evolved with GR1D, core, the rotational profile must be preserved under homol- the collapsing iron core of all such models halts its collapse ogous collapse. In practice, because the pre-collapse cores andexpands—thesemodelsdonotexperiencecorebounce ofmassivestarsarealwaysinsolid-bodyrotation, soarethe withinafewsecondsofevolutioninGR1D.Weassociatethis inner cores of the proto-neutron star at bounce. Outside of problemwiththeneglectofthecentrifugalaccelerationinthe the homologously collapsing core the self similar relation of momentumequationinKEPLER,anapproximationthatfails Eq. 2 does not hold. Most generally, gradients in the rota- inthefastestrotatingmodels. ThistermisincludedinGR1D. tion rate develop due to the underlying density gradients in The mismatch suggests that their fastest models may be sig- the hot postshock region and in the supersonically infalling nificantly affected by the addition of this term. Even if they regionaheadoftheaccretionshock. did collapse, it is not clear that such extremely fast rotating coreswouldavoidacentrifugalbounce. Basedonthesearguments,weexpectanearlypost-bounce Intheremainderofthispaper,wethuslimitourdiscussion rotationalprofilethatisapproximatelyuniformwithinthein- tomodelsevolvedwithmagneticfieldsandthereforesubject ner 0.5−0.7M (out to ∼10−15km in radius) and strongly (cid:12) to magnetic torques during their evolution. Of the 46 mod- differentialatlargerradii. ThisisconfirmedbyFig.1which els that fulfill this criterion, we identify 4 additional models showsΩ(r)atbounceasobtainedwithGR1Dforavarietyof (12OM,16TJ,35OD,andHE16G)thatdonotcollapsebutin- modelsconsideredinthisstudy. Wealsoshowtherotational steadexpandwhenrestartedwithGR1D.Weexcludetheseas profileattheonsetofcollapse. Thisresultisnotentirelynew, wellfromourstudy. Finally,forreferenceandcompleteness, buthaspreviouslybeenpointedoutbyOttetal.(2006)inthe we include the non-rotating models associated with each se- contextof1Dand2Drotatingcorecollapsesimulations. ries(12SA,12OA,12TA,16SA,16OA,16TA),makingatotal Sinceuniformrotationisthelowestenergystate,theshear of48models. Eachsimulationiscontinuedaftercorebounce energyofdifferentialrotationistobeinterpretedasafreeen- until a black hole forms or until a time of 3.5s has passed, ergythatwillbetappedbyanyprocess(e. g.,nonaxisymmet- whichever comes first. We present the results for these 48 ricrotationalshearinstabilities,viscosity,ortheMRI)capable modelsevolvedwithmagneticfieldsinTable1(forthetable of redistributing angular momentum. Viscosity would lead layout, we group models in bundles first of increasing mass, to additional heating in the postshock region to enhance the then of decreasing metallicity, and finally in alphabetical or- neutrino mechanism (Thompson et al. 2005) while the MRI der which generally corresponds to an increased initial rota- action could strengthen the magnetic fields, driving bipolar tionrate). outflowsinthemagneto-rotationalmechanism(Burrowsetal. AsadvocatedbyO’Connor&Ott(2011),thebouncecom- 2007). pactnessisarobustquantityfordiagnosingthepropensityto Inoursimulations,weestimatetheavailablefreeenergyof differentialrotationbycomputingthedifferenceinrotational 6Modelsareavailablefromhttp://homepages.spa.umn.edu/~alex/GRB2/ 7 0.3 black-holeformation,whichislargelydeterminedbythespa- tial extent encompassed by the 2.5M Lagrangian mass co- (cid:12) LS220 - sWH07 ordinate at core bounce in the progenitor core. To avoid in- LS220 - WH06 troducing biases associated with the non-uniform conditions 0.25 in the progenitor simulations (KEPLER models are not all evolved to the same central density on their collapse trajec- HE16P tory)thiscompactnessisunambiguouslyevaluatedatthetime ofbounce. Theformaldefinitionofthiscorecompactnessis critheat0.2 HE16F 35OB HE16H M/M (cid:12) _η 16SN 12TJ ξ = (cid:12) (cid:12) , (8) M R(Mbary=M)/1000km(cid:12)t=tbounce 35OC 0.15 where we take M =2.5M(cid:12). R(Mbary =2.5M(cid:12)) is the radial 16TH coordinate that encloses 2.5M of baryonic material at the (cid:12) timeofcorebounce(O’Connor&Ott2011). 0.1 Our simulations first demonstrate that most of the mod- 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 els have a small core compactness ξ . O’Connor & Ott ξ 2.5 2.5 (2011)arguesthatacompactnessof0.45representsathresh- oldvalue,fortheneutrinomechanism,sinceaboveitanunre- Figure2. Illustrationofthecriticalheatingefficiencyη¯hcreiatt versusbounce alisticneutrino-heatingefficiencyisrequiredtopreventblack- compactnessξ2.5forourGR1DsimulationsoftheWoosley&Heger(2006) models,whosepropertiesaresummarizedinTable1(bluediamonds). For hole formation. We further confirm this by determining the comparison,weoverplotthesamequantityforthestandardnon-rotatingcore- critical heating efficiency for the models in Table 1 via the collapseSNprogenitormodelsofWoosley&Heger(2007)evolvedatsolar same procedure as in O’Connor & Ott (2011), to which we metallicity(redsquares). Forthemostpart, thetwodistributionsoverlap, suggestingthatthepropensitytoblack-holeformationandexplosioniscom- refer the reader for full details. We note that this criterion parableforboth.Onlymodelswiththefastestrotationratesachievealarger is for explosions via the neutrino mechanism and therefore compactnessinexcessof0.4–0.5,butthesemaythenbedivertedfromblack- neglectsanymagneto-rotationalcontributiontothepowering holeformationthroughanearlymagneto-rotationalexplosion. of an explosion (Dessart et al. 2008), so this threshold value theproto-magnetarmechanism,becausetheycontaintoolittle is probably a lower limit. We also stress that this criterion angular momentum. Optimistically assuming a failed core- is based on spherically symmetric simulations with an effi- collapse SN, which is unlikely given the modest values of cient,butcrude,approximationtoneutrinotransport. There- ξ , models 12SG (ξ =0.239), 16OG (ξ =0.193), 16SI 2.5 2.5 2.5 forewesuggestcautionwhenattemptingtointerprettheout- (ξ =0.380), and 16TG (ξ =0.288) possess too little an- 2.5 2.5 come of a model based solely on the bounce compactness, gular momentum in the remainder of the star to form a disk sincetheadoptedthresholdvalueforBHformationisasemi- about the central black hole within 106s of collapse. This quantitativeestimatebasedonwheretheslopeoftherequired behavior is reflected by the stellar type at the time of death, heating efficiency begins to clearly increase (see the discus- i.e. a BSG star for model 12SG and a RSG star for models sion in O’Connor & Ott 2011). When plotting the critical 16OGand16TG,only16SIisaWRstaratthetimeofdeath. heating efficiency of the non-rotating solar metallicity stars Quantitatively,thiscanbefurtherinspectedinTable1where from Woosley & Heger (2007) determined in O’Connor & weincludethediskformationtime, theblackholemassand Ott (2011), together with the generally fast-rotating progen- spinatthattime,andthemassexteriortothedisk. Wedefine itors of Woosley & Heger (2006), we find that both datasets diskformationtobewhentheaccretingmaterialwillfirstbe in fact overlap for the most part (Fig. 2). In other words, in supportedattheinnermoststablecircularorbitaboutablack terms of compactness, most of these progenitors are similar holewiththeenclosedmassandangularmomentumusingthe togardenvariety,low-mass,non-rotating,progenitorsanddo formulaeofBardeenetal.(1972). Weestimatethediskfor- notseemtohaveanymorereasontoformablackholethan, mationtimeastwicethefreefalltimeoftheinnermostmass e.g.,theRSGprogenitorsexpectedtoproduceSNeII-Plateau. element that reaches a Keplerian velocity (O’Connor & Ott AsshowninTable1,providednoexplosionislaunched,half 2011;Burrows1986). ofthesemodelshavenotformedablackholeafter3.5s,and (cid:115) only∼15%dowithin∼1s. Wenotethatthisresultisnotso [r (M )]3 surprisinggiventhesmalliron-coremass(∼1.4M )ofmost t =2×π pre-SN disk (9) (cid:12) DF 8GM Woosley & Heger (2006) models (see their Tables 1 and 2). disk The first conclusion from our work is therefore that most of where r (M ) is the radius of the disk-forming La- themodelspresentedhereareratherunlikelytoformablack pre-SN disk grangianmasselementinthepre-SNmodel. Ifnosuchmass holeandthusmayfailinaveryfundamentalwaytoproduce element exists, no disk will form. In this case we include, acollapsar,irrespectiveoftheirangular-momentumbudget. insteadoftheenclosedblack-holemass,thetotalpre-SNstel- WithineachsequencepresentedinTable1,themodelsthat larmassinparentheses. Inthefourmodelsmentionedabove, formablackholewithin3.5sofcorebounce,andthusatleast eithernodiskformsorthediskformationtimeis(cid:38)106s. inprinciplesusceptibletoformacollapsar, arethefasterro- Additionally,wecandiscussthepotentialforthesemodels tatingonescharacterizedbyveryweakmass-lossrates.These toformaLGRBviatheproto-magnetarmodel.UsingEqs.4- propertiesconspiretoproducelargerCOcores,moretypical 7, we calculate the free energy available in differential rota- ofmoremassivestarsthatdonotrotate. Inthefollowingdis- tionat100msafterbounce.Wealsocalculateareferencespin cussion,wegroupthesemodelsintoseveralcategories. period (P =2π/ω¯), measured at the onset of the neutrino ref Thefirstcategoryaremodelswhichobviouslydonotgive drivenexplosion,byassumingsolid-bodyrotationfortheen- rise to a LGRB, either by the standard Type-I collapsar or tireproto-neutronstarwiththesametotalangularmomentum 8 andmomentofinertia. Thecorrespondingvaluesaregivenin typical low-mass massive stars, the free energy available in Table 1. In Fig. 3, we show the free energy available in dif- rotationisO(1B).Thisenergymaybeconvertedtoexplosion ferential rotation at 100ms and the spin period of the proto- energy via the magneto-rotational mechanism. The spin pe- neutron star at the onset of explosion. The total rotational riod of these proto-neutron stars is in the range 1-6ms, thus energyoftheproto-neutronstar,estimatedasIω¯2/2,willin- ontheorderofwhatisneededfortheproto-magnetarmodel creaseastheproto-neutronstarcoolsandcontracts. Inmod- ofLGRBs(Metzgeretal.2011). els12SG,16OG,16SI,and16TG,whicharecontainedwithin thegreen(lightestshade)boxofFig.3,(cid:46)0.1Boffreeenergy Eventually, the fastest rotating progenitor models evolved couldbeextractedfromdifferentialrotationviatheMRIand with a strongly inhibited stellar-wind mass loss represent converted to explosion energy, much less than is needed for moresuitablecollapsarcandidates, althougheachmodelhas a magneto-rotational explosion. Also, the proto-neutron star caveats. This set is contained in the purple (darkest shade) spinperiodsare(cid:38)10ms,7significantlylargerthanthe(cid:46)2ms boxofFig.3andincludesmodels12TJ(ξ2.5=0.517),16SN periods required for the proto-magnetar model to reproduce (ξ2.5=0.496),35OB(ξ2.5=0.537),and35OC(ξ2.5=0.458). classicalLGRBenergies(Metzgeretal.2011). Model 12TJ will form a 2.37M(cid:12) (gravitational mass) black hole 0.85s after core bounce, followed by a Keplerian disk 8 after 2.64s, with a potential ejecta mass of 8.57M(cid:12). How- 1 ★ FPrr1oe0ft0ms 35OC★ 12TJ H 7 e1lev2aeTdrJ,tmohauasc∼hm3aligkBneeottfoh-efrroemteaotedionenelsragliynexatvhpaeloilspairboelnveioeinaurslryoc-taoattneig,oonprryteh,vametnmotidnaeygl P [ms]ref10 HE1166ONG16TIH12ES1G6D1H6ET1G6OH1E61O6N1L6O★I16SI 16TH HE16F★16★S3N5O★B ★HE16P★E16H 23456F100ms [B]rot clabet0iiotolle.cyes7llinmlo8toHaytwfsp,oEts0dwoat1a.ehf0ir6atlta1eFhfnt1ro,soa2robHomnbTvolsEaeJaauerr.1tdn,rai6vdocMliHletinetd.o.hie,odvaTfanBseoonhalleradiluis1LntmlHim6ogoGawSEnosReNe1dsvaBr-6eotllPf/aolSo1vinssrNhe0sgmdea−urv4vsaslaoaeitstterlaeov-sasmslie2.anmcdor.a2Wiemlalm7ifatnfeerMe1egntfic%cat(cid:12)othunliflvamdsieorb0catill.bht1acmayuartc,,eedtkmertgmmqiaseehluuttoltoiiaicvdcclalhes----t death and is thus more likely to avoid a magneto-rotational ★ ★ ★★ 1 explosion. However, it forms a Keplerian disk only 40.6s 100 ★★ ★★★★★★★★★★★★★★★★★★★★★ ★ ★★★★ ★ ★ ★ 0 aefjetecrtac.oSreucbhoucnhcaera,cwteirtihstiocnslymi1g.h7t7iMn(cid:12)facltefbteomveorrefoarmtheneaSbNle 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 toreproducerecentobservationsofLGRB/SNecharacterized ξ 2.5 by a very early and narrow light-curve peak, as witnessed Figure3. Referenceproto-neutronstarspinperiod,Pref,takenattheonset for example for GRB100316D/SN 2010bh (Chornock et al. ofexplosion(leftaxis,bluedots;Eq.7)andthefreeenergystoredindiffer- 2010). They may even explain why no SN is found in as- entialrotation100msafterbounceFr1o0t0ms(rightaxis,redstars;Eq.4)versus sociation with some nearby LGRBs (Fynbo et al. 2006). Fi- bouncecompactnessξ2.5 forallrotatingmodelsinTable1. Whilemodels nally,models35OBand35OCformablackholewithin0.78 with a low bounce compactness show a diversity in core-rotation proper- ties, thosewithahighbouncecompactnesssystematicallyhaveshortspin and0.97sofbounce,respectively. Model35OBwillaccrete periodsandalargebudgetoffreeenergystoredinthedifferentialrotation. ∼16.4M before a Keplerian disk forms ∼31.5s after the (cid:12) Shadedboxesrefertospecificgroupingsofmodelsdiscussedinthetext.Us- onsetofcollapse,4.8M isthenavailablefortheSNejecta. ingξ2.5>0.45asablack-holeformationcriterionfornon-rotatingprogen- With the 35OC model,(cid:12)a disk forms very quickly after col- itors,wecanqualitativelycomparethereferencespinperiodsofthisfigure toMetzgeretal.(2011),whosketchestheoutcomeofcollapseasafunction lapse,in4.8s,andasignificantamountofmassisexteriorto ofprogenitorspinandmass. Fromthis,onewouldpredictthatnoneofthe the disk, 23.6M , and thus much too large to accommodate (cid:12) LGRBprogenitormodelsstudiedhereformedblackholes. inferred LGRB/SN ejecta masses. However, the propensity tocollapsarformationofthe35OBand35OCmodelmaybe The second category are models with a larger angular- ill-founded if the MRI is successful at powering a magneto- momentumbudgetbutunfavorablebouncecompactness. Al- rotational explosion. The free energy available in rotation is though compact enough to lead to black-hole formation huge,i.e.ontheorderof4-7.5B.Infact,inthe2Dmagneto- within 3.5s of core bounce, we find that the predicted crit- hydrodynamic simulations of Dessart et al. (2008) based on ical heating efficiencies are similar to that expected for a the35OCmodel,itwasfoundthat,despitethelargeprogeni- standard15M non-rotatingRSGprogenitorstar(O’Connor (cid:12) torcompactness,amagneto-rotationalexplosionwasinitiated & Ott 2011). These properties make them unlikely collap- ∼200ms after core bounce and that the proto-neutron star sar progenitors, but in contrast, make them ideal candidates mass decreased thereafter, never reaching the mass thresh- for proto-magnetar formation, and perhaps LGRBs through old for black-hole formation. In our models, the protoneu- that channel. These models include 16OI (ξ = 0.344), 2.5 tronstarsinmodels35OBand35OChave∼30−70Bofto- 16ON(ξ =0.357),16TH(ξ =0.434),16TI(ξ =0.242), 2.5 2.5 2.5 talrotationalenergyattheonsetofexplosion, amplymatch- HE16D (ξ =0.283), HE16L (ξ =0.316), HE16N (ξ = 2.5 2.5 2.5 ing the inferred energies of observed hypernovae. These in- 0.198),andHE16O(ξ =0.298)andarecontainedintheor- 2.5 ferences are based on the assumption that energy extraction ange(mediumshade)boxofFig.3.Inadditiontohavingcrit- fromthedifferentially-rotatinglayersattheproto-neutronstar icalheatingefficienciessimilartowhatisneededtoexplode surface is efficient and can power an explosion. Failing to doso, black-holeformationwouldresult, althoughtheques- 7EventakingintoaccountthespinupduetothePNScoolingandcontrac- tion,whichwilldecreasethemomentofinertiafromthevalueinTable1to tion of energy extraction from the disk for the powering of ∼0.4MPNSR2PNS∼1.6×1045(M/1.4M(cid:12))(R/12km)2(Metzgeretal.2011), a GRB would then arise. Detailed multi-dimensional core- orroughlyafactorof2,thespinperiodsare(cid:38)5ms. collapsesimulationsneedtobecarriedouttoinvestigatethe 9 efficiencies of magnetic/rotational/hydrodynamical instabili- Ourquantitativestudythusspellsoutthevariousshortcom- tiesforthetransportofangularmomentumandtheextraction ingsoftheseprogenitorstarsforproducingcollapsars. Even ofrotationalenergy. in those models that have the right compactness for black- holeformationandsufficientangularmomentumfordiskfor- 6. DISCUSSION mation, it is still unresolved today how they would avoid the magneto-rotational mechanism of explosion that is used Inthispaper,wehaveperformed1Dgeneral-relativistichy- toexplainhypernovae(LeBlanc&Wilson1970;Bisnovatyi- drodynamicalsimulationswithGR1Dofthecollapse,bounce, Kogan et al. 1976; Wheeler et al. 2000; Yamada & Sawai andpost-bouncephasesoftheLGRBcandidatesofWoosley 2004; Moiseenko et al. 2006; Burrows et al. 2007; Dessart & Heger (2006) to investigate their propensity to black-hole etal.2008;Takiwaki&Kotake2011)Thedifficultyofform- anddiskformation. Wefindthattheseprogenitorsareatodds ingablackholeandavoidingamagneto-rotationalexplosion with the proposed criteria for a collapsar progenitor or with in fast-rotating cores, at least in the models of Woosley & theinferredpropertiesofobservedLGRB/SNe, namelyaH- Heger(2006),lendscredencetotheproto-magnetarmodelof deficientHe-poorWRstarwithamassiveironcore(equiva- LGRB/SNe. lent to a large compactness), a large angular momentum to form a Keplerian disk soon after black-hole formation, an Uncertaintiesinmasslossatlowmetallicity,andinpartic- ejectaof∼10M ,andanevolutionatabout0.1solarmetal- ular during transient phases of dynamical mass loss as ob- (cid:12) licity. A critical aspect that we focus on in this study is the served in some Luminous Blue Variable stars, is an issue, compactnessoftheprogenitorcoresatbounce,aquantitythat sinceitmaycompletelydominatethemasslostintheformof helpsdiagnosethelikelihoodofblack-holeformation. aweaker,butsecular,steady-statewind(Owockietal.2004). Thisuncertainmass-lossrateplaguesmoreseverelytheevo- WegrouptheWoosley&Heger(2006)modelsindifferent lutionofhigher-massstars,since15-20M starsstayfurther categoriesaccordingtotheirsuitabilityforproducingcollap- (cid:12) away from the Eddington limit, and overall lose little mass, sars: even at solar metallicity. By what mechanism, at what rate, and during what phases a 100M star loses mass (and an- (cid:12) 1. Models with a dimensionless Kerr spin parameter gular momentum) is much less well known and this directly greater than unity at an enclosed mass of 3M , i.e. (cid:12) conditionsthefinalmassandironcoremassatcollapse. the models identified by Woosley & Heger (2006) as having the best potential for collapsar formation, fail Overall, this suggests that studies of collapsar progenitors to collapse when evolved with GR1D. Their cores are wouldbenefitfromasecondlook. Angularmomentumiskey sofastspinningthattheassociatedcentrifugalacceler- inthecurrentcollapsarandproto-magnetarmodels,butthere ation leads them into expansion. All these models are isastiffrequirementontheprogenitorcompactnesstospec- evolveduntildeathinKEPLERwithoutmagneticfields ulateonitspropensityforformingablackhole,andthusfor andcentrifugalforces,whichseemsquestionablegiven producingaLGRBthroughoneortheotherchannel. Ama- theunrealisticallyshortspinperiodsatcollapse. jor step forward in resolving those issues would be to con- duct massive-star evolution with rotation, centrifugal force, 2. Models evolved with magnetic fields produce much and magnetic fields always all the way to the formation of a lowerrotationratesandmostcollapsewithGR1D. degenerate neutronized core on the verge of collapse. This wouldallowastraightforwardcomparisonofresultsbetween 3. Of those evolved with magnetic fields, models with groups, and an easy determination of the compactness using moderate rotation produce progenitors with a small GR1Dtotestthesuitabilityofthecoreforblack-holeforma- compactnesscomparabletothatcharacterizingthelow- tion. mass massive-star models proposed as progenitors of garden-variety core-collapse SNe. A small fraction of The ultimate check on the collapsar model requires multi- theseisendowedwithsufficientangularmomentumto dimensional simulations covering the whole evolution from makeaproto-magnetar,andthusapotentialchannelfor progenitor collapse, bounce, failed explosion during the producingLGRBs. proto-neutronstarphase, formationofablackholefollowed by the formation of a Keplerian disk, and the powering of a 4. A few models (12TJ, 16SN) with the fastest rotation ∼10B SN ejecta. As we emphasize, black-hole formation possess a large compactness favorable for black-hole is perhaps one of the most difficult steps in this sequence formationandsufficientangularmomentumforthefor- of events, and in that respect, renders the proto-magnetar mationofaKepleriandisk,buttheyrequireevolutionat channelquiteattractivefortheproductionofhypernovaeand metallicitiesintherange0.0001-0.01Zsol,significantly LGRBs. The diversity of LGRB/SNe, the existence of SN- lowerthanthemetallicityofafewtenthssolaroreven less LGRBs and of LGRB-less hypernovae, may in fact call higher at which these LGRB/SNe are found (Modjaz for a variety of formation channels for these rare events, in- etal.2008;Levesqueetal.2010b,a).Althoughinmany cludingbothcollapsarsandproto-magnetars. respects very attractive for forming a collapsar (if we ignoreitshugecoreangularmomentum),model35OC ACKNOWLEDGEMENTS is characterized by a large envelope mass of ∼23M , (cid:12) which is a factor 2-10 times larger than the inferred We acknowledge fruitful discussions with R. Hirschi, ejectamassofLGRB/SNediscoveredsofar(forasum- A.Beloborodov,andT.Piro. WealsothankStanWoosleyfor mary,seeBergeretal.2011).Wenotethatthesemodels his comments on a draft version of this paper. This research have a large angular momentum in the core, as mod- issupportedinpartbytheNationalScienceFoundationunder elsinthepreviouscategory,andmaythusexperiencea grandNos.AST-0855535andOCI-0905046andbytheSher- magneto-rotational explosion preventing collapsar for- manFairchildFoundation.E.O.issupportedinpartbyapost- mation. graduatefellowshipfromtheNaturalSciencesandEngineer- 10 ingResearchCouncilofCanada(NSERC).Thecomputations Komissarov,S.S.,&Barkov,M.V.2007,MNRAS,382,1029 wereperformedatCaltech’sCenterforAdvancedComputing Lattimer,J.M.,&Swesty,F.D.1991,Nucl.Phys.A,535,331 Researchonthecluster“Zwicky”fundedthroughNSFgrant LeBlanc,J.M.,&Wilson,J.R.1970,ApJ,161,541 Levesque,E.M.,Kewley,L.J.,Berger,E.,&Zahid,H.J.2010a,AJ,140, no.PHY-0960291andtheShermanFairchildFoundation. 1557 Levesque,E.M.,Soderberg,A.M.,Foley,R.J.,etal.2010b,ApJ,709,L26 REFERENCES Liebendörfer,M.,Messer,O.E.B.,Mezzacappa,A.,etal.2004,ApJS,150, 263 Limongi,M.,&Chieffi,A.2006,ApJ,647,483 Akiyama,S.,Wheeler,J.C.,Meier,D.L.,&Lichtenstadt,I.2003,ApJ, Lindner,C.C.,Milosavljevic´,M.,Couch,S.M.,&Kumar,P.2010,ApJ, 584,954 713,800 Aloy,M.A.,Müller,E.,Ibáñez,J.M.,Martí,J.M.,&MacFadyen,A.2000, MacFadyen,A.I.,&Woosley,S.E.1999,ApJ,524,262 ApJ,531,L119 MacFadyen,A.I.,Woosley,S.E.,&Heger,A.2001,ApJ,550,410 Balbus,S.A.,&Hawley,J.F.1991,ApJ,376,214 Maeder,A.,&Meynet,G.2000,ARA&A,38,143 Bardeen,J.M.,Press,W.H.,&Teukolsky,S.A.1972,ApJ,178,347 Mazzali,P.A.,Deng,J.,Maeda,K.,etal.2002,ApJ,572,L61 Berger,E.,Chornock,R.,Holmes,T.R.,etal.2011,ApJ,743,204 Metzger,B.D.2010,inAstronomicalSocietyofthePacificConference Bethe,H.A.1990,Rev.Mod.Phys.,62,801 Series,Vol.432,NewHorizonsinAstronomy:FrankN.BashSymposium Bethe,H.A.,&Wilson,J.R.1985,ApJ,295,14 2009,ed.L.M.Stanford,J.D.Green,L.Hao,&Y.Mao,81 Bisnovatyi-Kogan,G.S.,Popov,I.P.,&Samokhin,A.A.1976,Ap&SS,41, Metzger,B.D.,Giannios,D.,Thompson,T.A.,Bucciantini,N.,&Quataert, 287 E.2011,MNRAS,413,2031 Bucciantini,N.,Quataert,E.,Arons,J.,Metzger,B.D.,&Thompson,T.A. Meynet,G.,&Maeder,A.2000,A&A,361,101 2007,MNRAS,380,1541 —.2005,A&A,429,581 —.2008,MNRAS,383,L25 Milosavljevic´,M.,Lindner,C.C.,Shen,R.,&Kumar,P.2012,ApJ,744, Bucciantini,N.,Quataert,E.,Metzger,B.D.,etal.2009,MNRAS,396, 103 2038 Modjaz,M.,Kewley,L.,Kirshner,R.P.,etal.2008,AJ,135,1136 Buras,R.,Janka,H.-T.,Rampp,M.,&Kifonidis,K.2006a,A&A,457,281 Moiseenko,S.G.,Bisnovatyi-Kogan,G.S.,&Ardeljan,N.V.2006, Buras,R.,Rampp,M.,Janka,H.-T.,&Kifonidis,K.2006b,Astron. MNRAS,370,501 Astrophys.,447,1049 Murphy,J.W.,&Burrows,A.2008,ApJ,688,1159 Burrows,A.1986,ApJ,300,488 Nordhaus,J.,Burrows,A.,Almgren,A.,&Bell,J.2010,ApJ,720,694 Burrows,A.,Dessart,L.,Livne,E.,Ott,C.D.,&Murphy,J.2007,ApJ, Obergaulinger,M.,Cerdá-Durán,P.,Müller,E.,&Aloy,M.A.2009,A&A, 664,416 498,241 Burrows,A.,Hayes,J.,&Fryxell,B.A.1995,ApJ,450,830 O’Connor,E.,&Ott,C.D.2010,Class.QuantumGrav.,27,114103 Burrows,A.,&Lattimer,J.M.1983,ApJ,270,735 —.2011,ApJ,730,70 Burrows,A.,Livne,E.,Dessart,L.,Ott,C.D.,&Murphy,J.2006, Ott,C.D.,Burrows,A.,Thompson,T.A.,Livne,E.,&Walder,R.2006, Astrophys.J.,640,878 Astrophys.J.Suppl.Ser.,164,130 Cantiello,M.,Yoon,S.,Langer,N.,&Livio,M.2007,A&A,465,L29 Ott,C.D.,Reisswig,C.,Schnetter,E.,etal.2011,Phys.Rev.Lett.,106, Chornock,R.,Berger,E.,Levesque,E.M.,etal.2010,ArXiv:1004.2262 161103 Demorest,P.B.,Pennucci,T.,Ransom,S.M.,Roberts,M.S.E.,&Hessels, Owocki,S.P.,Gayley,K.G.,&Shaviv,N.J.2004,ApJ,616,525 J.W.T.2010,Nature,467,1081 Özel,F.,Baym,G.,&Güver,T.2010,Phys.Rev.D,82,101301 Dessart,L.,Burrows,A.,Livne,E.,&Ott,C.D.2008,ApJ,673,L43 Pastorello,A.,Zampieri,L.,Turatto,M.,etal.2004,MNRAS,347,74 Dessart,L.,&Hillier,D.J.2008,MNRAS,383,57 Pejcha,O.,&Thompson,T.A.2011,SubmittedtoApJ.arXiv:1103.4865 Dessart,L.,Hillier,D.J.,Li,C.,&Woosley,S.2012,submittedtoMNRAS Petrovic,J.,Langer,N.,Yoon,S.-C.,&Heger,A.2005,A&A,435,247 Dimmelmeier,H.,Ott,C.D.,Marek,A.,&Janka,H.-T.2008,Phys.Rev.D, Proga,D.,MacFadyen,A.I.,Armitage,P.J.,&Begelman,M.C.2003,ApJ, 78,064056 599,L5 Fischer,T.,Whitehouse,S.C.,Mezzacappa,A.,Thielemann,F.-K.,& Sekiguchi,Y.,&Shibata,M.2011,ApJ,737,6 Liebendörfer,M.2009,A&A,499,1 Spruit,H.C.2002,A&A,381,923 Fynbo,J.P.U.,Watson,D.,Thöne,C.C.,etal.2006,Nature,444,1047 Steiner,A.W.,Lattimer,J.M.,&Brown,E.F.2010,ApJ,722,33 Georgy,C.,Meynet,G.,Walder,R.,Folini,D.,&Maeder,A.2009,A&A, Sumiyoshi,K.,Yamada,S.,&Suzuki,H.2007,ApJ,667,382 502,611 Takiwaki,T.,&Kotake,K.2011,ApJ,743,30 Goldreich,P.,&Weber,S.V.1980,ApJ,238,991 Thompson,T.A.,Quataert,E.,&Burrows,A.2005,ApJ,620,861 Guetta,D.,&DellaValle,M.2007,ApJ,657,L73 Wellstein,S.,&Langer,N.1999,A&A,350,148 Hanke,F.,Marek,A.,Müller,B.,&Janka,H.-T.2011,Submittedtothe Wheeler,J.C.,Yi,I.,Höflich,P.,&Wang,L.2000,ApJ,537,810 Astrophys.J.,arXiv:1108.4355 Woosley,S.E.1993,ApJ,405,273 Hebeler,K.,Lattimer,J.M.,Pethick,C.J.,&Schwenk,A.2010,Phys.Rev. —.2011,ArXiv:1105.4193 Lett.,105,161102 Woosley,S.E.,Eastman,R.G.,&Schmidt,B.P.1999,ApJ,516,788 Heger,A.,Langer,N.,&Woosley,S.E.2000,ApJ,528,368 Woosley,S.E.,&Heger,A.2006,Astrophys.J.,637,914 Heger,A.,Woosley,S.E.,&Spruit,H.C.2005,ApJ,626,350 —.2007,Phys.Rep.,442,269 Herant,M.,Benz,W.,Hix,W.R.,Fryer,C.L.,&Colgate,S.A.1994,ApJ, Yamada,S.,&Sawai,H.2004,ApJ,608,907 435,339 Yoon,S.-C.,&Langer,N.2005,A&A,443,643 Hirschi,R.,Meynet,G.,&Maeder,A.2004,A&A,425,649 Yoon,S.-C.,Langer,N.,&Norman,C.2006,A&A,460,199 —.2005,A&A,443,581 Zahn,J.-P.,Brun,A.S.,&Mathis,S.2007,A&A,474,145 Iwamoto,K.,Mazzali,P.A.,Nomoto,K.,etal.1998,Nature,395,672 Zhang,W.,Woosley,S.E.,&Heger,A.2004,ApJ,608,365 Janka,H.-T.,&Müller,E.1996,A&A,306,167 Kitaura,F.S.,Janka,H.-T.,&Hillebrandt,W.2006,A&A,450,345