ebook img

the aqueous alteration of carbon-bearing phases in cr carbonaceous chondrites a dissertation PDF

181 Pages·2014·26.19 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview the aqueous alteration of carbon-bearing phases in cr carbonaceous chondrites a dissertation

THE AQUEOUS ALTERATION OF CARBON-BEARING PHASES IN CR CARBONACEOUS CHONDRITES A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN GEOLOGY AND GEOPHYSICS DECEMBER 2014 By Patrick J. Gasda Dissertation Committee: G. Jeffrey Taylor, Chairperson Eric Hellebrand Gary Huss Shiv Sharma Michael Mottl Acknowledgements First, I would like to thank my great advisor G. Jeffrey Taylor for being generally amazing, introducing me to geology for the first time, accepting to be my advisor even though he we have different research interests, and then allowing me to pursue this unique project. Jeff also helped me by finding funding from many different sources. His encouragement and enthusiasm for my work also helped to motivate me. I would like to thank Ralf Kaiser, who initially got me into UH and involved UH NASA Astrobiology Institute. Karen Meech, Stephen Freeland, Shiv Sharma, Jeff Taylor, Mike Mottl, Leona Anthony, and Allison Houghton then helped me transition to the Geology and Geophysics department from the Chemistry Department. Thank you to all my funding and equipment sources both for this and side projects: UHNAI, HIGP and Peter Mouginis-Mark (Director), SOEST, Geology and Geophysics Department, IfA, NASA (Cooperative Agreement No. NNA09DA77A (Karen Meech, P.I.), NNX07AM62G (Gary Huss, P.I.)), NASA MIDP and EPSCoR program grants (Shiv Sharma, P.I.), NASA Solar System Exploration Research Virtual Institute (via Jeffrey Gillis-Davis Co-I of the Vortices virtual institute, Ben Bussey, P.I.), and The Meteoritical Society. Thank you to my professors who helped me learn geology so well, especially my qualifying exam and comprehensive exam committee members. My dissertation committee members also helped me make my dissertation perfect. Thank you to the administrative assistants at IfA (Laura Toyama, Diane Tokumura) and HIGP (Rena Lefevre, Vi Nakahara, Grace Furuya) for being very patient and helpful when I requested funding for equipment and travel. Thank you to all of my collaborators and coauthors on projects (in no particular order): Anupam Misra, Tayro Acosta-Maeda, Paul Lucey, Jeffrey Gillis-Davis, David Bates, Barry Lienert, John Sinton (who provided samples), Ryan Ogliore, Kazuhide Nagashima, Patricia Fryer, John Bradley, Mark Wood, Eric Pilger (who wrote the code to run our Raman data on the HIGP Linux cluster), Ethan Kastner (who provided computing support), Aurelien Thomen, The French Institute of Petroleum (provided SIMS standards), JoAnn Sinton (mounted Smithsonian electron probe standards), the SOEST Engineering Support Facility (Mario Williamsen), the Meteorite Curation Facility at Johnson Space Center (loaned and prepared the meteorite samples), and the Smithsonian Institution and the Museum for Natural History (provided electron probe standards). Thank you to everyone (not mentioned previously) who gave me useful comments on papers and proposals: Alexander Krot, Mark Price, Roger Wiens, Robin Turner, the paper editors at Applied Spectroscopy, and my anonymous paper reviewers. Lastly, my family and friends. I would not have made it without your support and encouragement. ii Abstract By studying carbonaceous chondrites, we can understand the processes that occurred in the protoplanetary disk, constrain the conditions in the solar nebula, and determine the composition and evolution of organic chemicals that led up to the origin of life on Earth. The CR chondrites contain ~ 5 wt% carbon, mainly in the form of macromolecular carbon (MMC). There are examples of petrologic type 3 (primitive) and type 1 (extensively aqueously altered) CR chondrites, which makes the CRs particularly interesting for studying the stages of aqueous alteration. The MMC has been studied using in situ electron probe micro analysis (EPMA), Raman spectroscopy, and secondary ion mass spectrometry (SIMS). EPMA mapping of the carbon Kα X-rays reveals that there are three types of carbon materials in these chondrites: high carbon phases (HCPs), matrix carbon (MC), and calcite. By Raman spectroscopy, we determine that the MC is MMC, but its spectra are unchanged by aqueous alteration. EPMA X-ray mapping suggests that the morphology of the HCPs and the spatial distribution of the MMC changes with extent of aqueous alteration. SIMS measurements have revealed that there is an isotopic difference between the HCPs and the MC in the GRO 95577 and QUE 99177 samples. HCPs have δ13C ≈ −25 ‰ and δ15N ≈ 40 ‰, and the MC have δ13C ≈ −35 ‰ and δ15N ≈ 160 ‰, relative to standard terrestrial isotope ratios. In order to produce the MC isotopic values, there must be a mix of the +δ15N and +δ13C soluble organic molecules and MMC (both present in the matrix). Therefore, the ‘true’ values for the MMC must be more enriched in 12C and 15N than the MC values. Results from the calcite measurements show that the production of calcite fractionates the carbon due to a combination of calcite crystallization and outgassing of CO on 2 the CR parent body. iii Table of Contents Acknowledgments............................................................................................................... ii Abstract .............................................................................................................................. iii List of Tables ................................................................................................................... viii List of Figures .................................................................................................................... ix List of Symbols, Abbreviations, and Acronyms ............................................................... xii Chapter 1: Introduction ........................................................................................................1 1.1 Raman Fitting Techniques .................................................................................6 Chapter 2: Modeling the Raman Spectrum of Graphitic Material in Rock Samples with Fluorescence Backgrounds: Accuracy of Fitting and Uncertainty Estimation ....................8 2.1 Abstract ..............................................................................................................9 2.2 Introduction ........................................................................................................9 2.2.1 Goodness of Fit and Uncertainty Estimation ....................................12 2.2.2 The Raman Spectrum of Graphitic Materials ...................................14 2.3 Methodology ....................................................................................................16 2.3.1 Second-Derivative Fit to Remove Background Fluorescence ..........16 2.3.2 Monte Carlo Uncertainty Estimation ................................................17 2.3.3 Explanation of the Matlab Code .......................................................17 2.3.4 Raman Spectroscopic Experiments ...................................................18 2.4 Background Subtraction Techniques ...............................................................19 2.4.1 Background Fitting with an Assumed Function ...............................20 2.4.2 Background Fitting without an Assumed Function ..........................22 2.5 Results and Discussion ....................................................................................27 iv 2.5.1 Comparison of Data Analyzed by the Standard Method and SGSD Method ............................................................................................27 2.5.2 Simulation of Real Spectra ...............................................................29 2.6 Conclusions ......................................................................................................34 Chapter 3: Chemical Properties of Carbon Materials in CR Carbonaceous Chondrites: the Effects of Aqueous Alteration ........................................................................................................37 3.1 Abstract ............................................................................................................38 3.2 Introduction ......................................................................................................38 3.2.1 Raman Spectroscopy of Graphitic Materials ....................................41 3.2.2 Modeling the Raman Spectrum of MMC .........................................43 3.2.3 Comparison with Previous Literature Results ..................................45 3.3 Analytical Methods ..........................................................................................47 3.3.1 Sample Preparation ...........................................................................47 3.3.2 Raman Spectroscopy .........................................................................47 3.3.3 Raman Data Reduction .....................................................................48 3.3.4 EPMA Mapping and Quantitative Analysis .....................................48 3.4 Results and Discussion ....................................................................................49 3.4.1 Description of Samples and Regions Studied ...................................49 3.4.2 Raman Measurements .......................................................................59 3.4.3 Combined Raman and EPMA Carbon X-Ray Imaging ....................62 3.4.4 Quantitative Measurements of the Matrix using EPMA ...................68 3.4.5 Organic Carbon Modeling ................................................................70 3.4.6 Checking the Model ..........................................................................72 v 3.4.7 EPMA Results ...................................................................................74 3.4.8 Significance of the Atomic H/C Ratios ............................................78 3.5 Aqueous Alteration of the MMC .....................................................................81 3.6 Summary and Conclusions ..............................................................................84 Chapter 4: Isotopic Investigation of Carbon Phases in CR Chondrites GRO 95577 and QUE 99177..................................................................................................................................85 4.1 Abstract ............................................................................................................86 4.2 Introduction ......................................................................................................86 4.2.1 Carbon and Nitrogen Isotopes and Fractionation Trends .................88 4.3 Methods............................................................................................................93 4.4 Results and Discussion ....................................................................................95 4.4.1 Description of the Sample Areas ......................................................95 4.4.2 Isotopic Analyses ..............................................................................97 4.4.3 Calcite Carbon Isotopic Ratios .......................................................103 4.4.4 Implications.....................................................................................108 4.5 Summary and Conclusions ............................................................................110 Chapter 5: Conclusions ....................................................................................................113 5.1 Aqueous Alteration of Macromolecular Organic Compounds in CR Chondrites ............................................................................................................114 5.2 Future Directions ...........................................................................................116 5.3 Implications for the Origin of Life .................................................................118 Appendix: Supplementary Materials for Chapter 3 .........................................................119 A.1 Aluminum Coating ........................................................................................120 vi A.2 Standards .......................................................................................................121 A.3 EPMA Procedure ..........................................................................................123 A.4 Corrections to the Carbon Concentration (ZAF, phi-rho-z, and MACs) ......130 A.5 Oxide Weight Percent Calculation ................................................................137 A.5.1 Iron Partitioning .............................................................................138 A.5.2 Organic Carbon Modeling .............................................................138 A.6 Significance of the Atomic H/C ratios ..........................................................142 Bibliography ....................................................................................................................150 vii List of Tables Table 2.1: The comparison of results between the linear background subtraction and SGSD methods ......................................................................................................26 Table 3.1: Literature, endmember, and model values of atomic H/C, O/C, and N/C ratios in CR Chondrites ............................................................................................73 Table 4.1: The summary of δ13C and δ15N measurements in QUE 99177 and GRO 95577 with 2σ errors ...........................................................................................105 Table A.1: EPMA Measurement settings ..................................................................122 Table A.2: Details for the EPMA standards ..............................................................122 Table A.3: C Kα Intensity (cps) measured during WDS spectra on the different standards and unknowns .................................................................................................125 Table A.4: Appendix C from EPMA for Windows Manual showing the variation between MAC values for carbon ............................................................................134 Table A.5: Endmember 1 atomic H/C, O/C, and N/C ratios .....................................139 Table A.6: Model atomic H/C, O/C, and N/C ratios ..................................................140 Table A.7: Revised model atomic H/C, O/C, and N/C ratios ....................................141 Table A.8: Two examples of the weight percent oxide calculation using the revised model ratios in Table A.7....................................................................................143 Table A.9: The summary of results of the weight percent oxide calculation using the revised model ratios in Table A.7 .........................................................................145 viii List of Figures Figure 2.1: The idealized Raman spectrum of macromolecular carbon .......................14 Figure 2.2: A comparison of various background subtraction techniques using a spectrum from the EET 92161 chondrite ..................................................................24 Figure 2.3: Four example spectra are used to compare fits of raw Raman spectra using the linear background subtraction method with the fits of the Savitzky-Golay smoothed second-derivative spectra ..........................................................25 Figure 2.4: The effect of increasing the break point (S in Equation 7) on the Raman fit parameters and uncertainties when using different background subtraction (linear, cubic, and the small window moving average algorithm), the float line, and the SGSD methods ...........................................................................................31 Figure 2.5: Examples of simulated spectra used for the simulation of real spectra .....32 Figure 3.1: A typical raw Raman spectrum of the MMC from the CR chondrites and its SGSD modeled spectrum ...........................................................................44 Figure 3.2: An EPMA BSE image, a false-color (RGB) C-Si-Mg X-ray map, a false-color (RGB) Mg-Si-Al X-ray map, and a C X-ray map of the QUE 99177 grain mount ....................................................................................................................51 Figure 3.3: High resolution BSE images of a high carbon phase and calcite grains in the QUE 99177 grain mount .....................................................................................52 Figure 3.4: An EPMA BSE image, a false-color (RGB) C-Si-Mg X-ray map, a false-color (RGB) Mg-Si-Al X-ray map, and a C X-ray map of the polished side of EET 92161..........................................................................................................53 Figure 3.5: An EPMA BSE image, a false-color (RGB) C-Si-Mg X-ray map, a false-color (RGB) Mg-Si-Al X-ray map, and a C X-ray map of the polished side of GRO 95577..........................................................................................................57 Figure 3.6: High resolution BSE images of a calcite-magnetite assemblages with diffuse high carbon phases and a BSE image, a false-color (RGB) C-Si-Mg X-ray map, and a C X-ray map of a matrix area between a chondrule and a calcite-magnetite assemblage GRO 95577 .............................................................................58 ix Figure 3.7: A two-dimensional histogram of Raman fit parameter (I /I vs. D-band full width D G at half maximum) map data for GRO 95577 and EET 92161 superimposed on Raman spot data from the polished and unpolished sides of GRO 95577, EET 92161, and QUE 99177..............................................................................61 Figure 3.8: An array of BSE and false-color (RGB) X-ray map images from GRO 95577 and EET 92161 regions of interest with overlays of Raman maps ...................64 Figure 3.9: Typical Raman spectra of macromolecular carbon (matrix measurements, high carbon phases, and diffuse high carbon phases) in GRO 95577 ................65 Figure 3.10: Geochemical plots (Oxide weight percent) summarizing the results of EPMA quantitative measurements the ‘revised model’ to calculate abundance of organics of the matrices of the samples ....................................................................76 Figure 3.11: Ternary diagrams (mole fraction) summarizing the results of EPMA quantitative analysis and the ‘revised model’ to calculate abundance of organics in the matrices of the samples ..............................................................................77 Figure 3.12: The hypothetical macromolecule that could exist using the revised model atomic H/C, N/C, and O/C ratios for QUE 99177 .................................................80 Figure 4.1: A compilation of literature δ13C vs. δ15N data for the different meteorite groups, plus IDPs, CR amino acids, CM and CI individual organics, the Solar Nebula, and different bodies in the Solar System ..........................................................89 Figure 4.2: Backscatter electron images of QUE 99177 showing the locations of the ion probe measurements .............................................................................................99 Figure 4.3: Backscatter electron images of GRO 95577 showing the locations of the ion probe measurements ...........................................................................................100 Figure 4.4: The δ15N and δ13C SIMS results for the matrix and high carbon phases in the QUE 99177 and GRO 95577 chondrites .................................................101 Figure 4.5: Data from Figure 3.4 superimposed onto data from Figure 3.1 to show the isotopic results from our study in context of literature data ....................106 Figure 4.6: The δ13C data for all of the sample spots measurements superimposed on a plot with carbonate literature data for some meteorite groups ........................107 Figure 4.7: An illustration depicting the source of the MMC and HCPs, showing the alteration steps in the solar nebula and the meteorite parent body ..........111 x

Description:
Table A.4: Appendix C from EPMA for Windows Manual showing the variation between locally linear or nth-order polynomial fluorescence backgrounds, SGSD produces .. Since our experimental setup cannot measure the anti- (labeled as 'dHCP' in the Figure) with major phases labeled.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.