ebook img

The Apprentices' Tower of Hanoi PDF

65 Pages·2015·3.37 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Apprentices' Tower of Hanoi

East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2015 The Apprentices' Tower of Hanoi Cory BH Ball East Tennessee State University Follow this and additional works at:https://dc.etsu.edu/etd Part of theDiscrete Mathematics and Combinatorics Commons,Other Mathematics Commons, and theTheory and Algorithms Commons Recommended Citation Ball, Cory BH, "The Apprentices' Tower of Hanoi" (2015).Electronic Theses and Dissertations.Paper 2512. https://dc.etsu.edu/etd/ 2512 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please [email protected]. The Apprentices’ Tower of Hanoi A thesis presented to the faculty of the Department of Mathematics East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Mathematical Sciences by Cory Braden Howell Ball May 2015 Robert A. Beeler, Ph.D., Chair Anant P. Godbole, Ph.D. Teresa W. Haynes, Ph.D. Jeff R. Knisley, Ph.D. Keywords: graph theory, combinatorics, Tower of Hanoi, Hanoi variant, puzzle ABSTRACT The Apprentices’ Tower of Hanoi by Cory Braden Howell Ball TheApprentices’TowerofHanoiisintroducedinthisthesis. Severalboundsarefound in regards to optimal algorithms which solve the puzzle. Graph theoretic properties of the associated state graphs are explored. A brief summary of other Tower of Hanoi variants is also presented. 2 Copyright by Cory Braden Howell Ball 2015 3 DEDICATION I dedicate this thesis to my late grandfather Brady Stevenson, who taught me from a very young age how to read, how to write, and how to do arithmetic, and also guided me in the development my faith, my character, and my morality. 4 ACKNOWLEDGMENTS I would like to acknowledge Dr. Robert A. Beeler for his continued support as my thesisadvisor. Withouthisknowledgeandexpertisecompletingthethesiswouldhave been impossible. I would like to thank Dr. Anant Godbole, Dr. Jeff Knisley, and Dr. Teresa Haynes for their valuable time and effort as my committee members. I would like to express my gratitude to Dr. Robert Gardner without whom the opportunity to further my education would not have been possible. Thank you to Dr. Rick Norwood for sharing an intellectually stimulating teaching method with his students. To my mother, Ronda, and my dad, Greg, thank you for providing for me for so many years. I would like to thank my brother Adam for never staying angry with me, despite the number of fights we’ve had. Thank you to my grandparents for always helping me. I am eternally grateful to the Lord and Saviour Jesus Christ. A special thanks is expressed to the good friends I have met during my time in the ETSU Department of Mathematics and Statistics, Whitney Forbes, Tony “T- Rod” Rodriguez, Ricky Blevins, Derek Bryant, and “President” Dustin Chandler. Lastly, thank you to my cronies Joel Shelton, Derek Kiser, Brett Shields, and Samuel Kakraba. 5 TABLE OF CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 CLASSICAL TOWER OF HANOI . . . . . . . . . . . . . . . . . . . 10 1.1 The Legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 An Optimal Algorithm . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Hanoi Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 TOWER OF HANOI VARIANTS . . . . . . . . . . . . . . . . . . . . 18 2.1 The Reve’s Puzzle . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Frame-Stewart . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Bottle-Neck Tower . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Sinner’s Tower and Santa Claus’ Tower . . . . . . . . . . . . . 23 3 THE APPRENTICES’ TOWER OF HANOI . . . . . . . . . . . . . . 24 3.1 The Legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 The Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 QUEST FOR AN OPTIMAL ALGORITHM . . . . . . . . . . . . . . 27 5 AH GRAPH PROPERTIES . . . . . . . . . . . . . . . . . . . . . . 38 n 5.1 The Number of Vertices . . . . . . . . . . . . . . . . . . . . . 38 6 5.2 Figures of AH for n ≤ 3 . . . . . . . . . . . . . . . . . . . . . 46 n 5.3 Graph Invariants . . . . . . . . . . . . . . . . . . . . . . . . . 48 6 GENERALIZING THE APPRENTICES’ TOWER OF HANOI . . . 52 6.1 s sins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 i 6.2 p pegs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3 General Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7 FURTHER QUESTIONS . . . . . . . . . . . . . . . . . . . . . . . . 59 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7 LIST OF TABLES 1 The Minimum Number of Moves for n ∈ [31] for the Reve’s Puzzle [15] 21 2 Allowed Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 2S +3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 n−2 4 2S (1,1,1)+2S (1,1,0)+1 . . . . . . . . . . . . . . . . . . . . 31 n−k k−1 5 n(AH ) for small n. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 n 8 LIST OF FIGURES 1 H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 2 The Sierpin´ski Triangle[5] . . . . . . . . . . . . . . . . . . . . . . . . 17 3 The Reve’s Puzzle[7] . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 16|34|52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ∼ 5 AH = Trivial Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 0 ∼ 6 AH = K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1 3 ∼ 7 AH = SD(1) = Star of David Graph [20] . . . . . . . . . . . . . . . 47 2 8 The graph AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 9 The graph AH with selected vertices. . . . . . . . . . . . . . . . . . 50 3 9

Description:
The Apprentices' Tower of Hanoi is introduced in this thesis. Several bounds are found in regards to .. draught of the best that our good host can provide.” To solve this puzzle in the fewest . However, the apprentices are under the watchful eyes of the vigilant priests whose sworn duty is to ens
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.