ebook img

The AP Calculus Problem Book - Mater Academy Charter School PDF

216 Pages·2012·2.27 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The AP Calculus Problem Book - Mater Academy Charter School

The AP Calculus Problem Book ￿ Chuck Garner, Ph.D. TheAPCalculusProblemBook Publicationhistory: Firstedition,2002 Secondedition,2003 Thirdedition,2004 ThirdeditionRevisedandCorrected,2005 Fourthedition,2006,EditedbyAmyLanchester FourtheditionRevisedandCorrected,2007 Fourthedition,Corrected,2008 Thisbookwasproduceddirectlyfromtheauthor’sLATEXfiles. FiguresweredrawnbytheauthorusingtheTEXdrawpackage. TI-Calculatorscreen-shotsproducedbyaTI-83PluscalculatorusingaTI-GraphLink. LATEX(pronounced“Lay-Tek”)isadocumenttypesettingprogram(notawordprocessor)thatisavailablefreefromwww.miktex.org, whichalsoincludesTEXnicCenter,afreeandeasy-to-useuser-interface. Contents 1 LIMITS 7 1.1 Graphs of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 The Slippery Slope of Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 The Power of Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Functions Behaving Badly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Take It to the Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 One-Sided Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.7 One-Sided Limits (Again) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.8 Limits Determined by Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.9 Limits Determined by Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.10 The Possibilities Are Limitless... . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.11 Average Rates of Change: Episode I . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.12 Exponential and Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . 18 1.13 Average Rates of Change: Episode II . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.14 Take It To the Limit—One More Time . . . . . . . . . . . . . . . . . . . . . . . . 20 1.15 Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.16 Continuously Considering Continuity . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.17 Have You Reached the Limit? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.18 Multiple Choice Questions on Limits . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.19 Sample A.P. Problems on Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Last Year’s Limits Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 DERIVATIVES 35 2.1 Negative and Fractional Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2 Logically Thinking About Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 The Derivative By Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4 Going Off on a Tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 Six Derivative Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6 Trigonometry: a Refresher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1 2 The AP CALCULUS PROBLEM BOOK 2.7 Continuity and Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.8 The RULES: Power Product Quotient Chain . . . . . . . . . . . . . . . . . . . . 43 2.9 Trigonometric Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.10 Tangents, Normals, and Continuity (Revisited) . . . . . . . . . . . . . . . . . . . 45 2.11 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.12 The Return of Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.13 Meet the Rates (They’re Related) . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.14 Rates Related to the Previous Page . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.15 Excitement with Derivatives! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.16 Derivatives of Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.17 D´eriv´e, Derivado, Ableitung, Derivative . . . . . . . . . . . . . . . . . . . . . . . 52 2.18 Sample A.P. Problems on Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.19 Multiple-Choice Problems on Derivatives . . . . . . . . . . . . . . . . . . . . . . . 56 Last Year’s Derivatives Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3 APPLICATIONS of DERIVATIVES 67 3.1 The Extreme Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2 Rolle to the Extreme with the Mean Value Theorem . . . . . . . . . . . . . . . . 69 3.3 The First and Second Derivative Tests . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4 Derivatives and Their Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 Two Derivative Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6 Sketching Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.7 Problems of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.8 Maximize or Minimize? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.9 More Tangents and Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.10 More Excitement with Derivatives! . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.11 Bodies, Particles, Rockets, Trucks, and Canals . . . . . . . . . . . . . . . . . . . 82 3.12 Even More Excitement with Derivatives! . . . . . . . . . . . . . . . . . . . . . . . 84 3.13 Sample A.P. Problems on Applications of Derivatives . . . . . . . . . . . . . . . . 86 3.14 Multiple-Choice Problems on Applications of Derivatives . . . . . . . . . . . . . . 89 Last Year’s Applications of Derivatives Test . . . . . . . . . . . . . . . . . . . . . . . . 92 4 INTEGRALS 101 4.1 The ANTIderivative! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.2 Derivative Rules Backwards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.3 The Method of Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4 Using Geometry for Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . 105 4.5 Some Riemann Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.6 The MVT and the FTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.7 The FTC, Graphically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.8 Definite and Indefinite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.9 Integrals Involving Logarithms and Exponentials . . . . . . . . . . . . . . . . . . 110 4.10 It Wouldn’t Be Called the Fundamental Theorem If It Wasn’t Fundamental . . . 111 4.11 Definite and Indefinite Integrals Part 2 . . . . . . . . . . . . . . . . . . . . . . . . 113 4.12 Regarding Riemann Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.13 Definitely Exciting Definite Integrals! . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.14 How Do I Find the Area Under Thy Curve? Let Me Count the Ways... . . . . . . 117 4.15 Three Integral Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 CONTENTS 3 4.16 Trapezoid and Simpson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.17 Properties of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.18 Sample A.P. Problems on Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.19 Multiple Choice Problems on Integrals . . . . . . . . . . . . . . . . . . . . . . . . 124 Last Year’s Integrals Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5 APPLICATIONS of INTEGRALS 135 5.1 Volumes of Solids with Defined Cross-Sections . . . . . . . . . . . . . . . . . . . . 136 5.2 Turn Up the Volume! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.3 Volume and Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.4 Differential Equations, Part One . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.5 The Logistic Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.6 Differential Equations, Part Two . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.7 Slope Fields and Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.8 Differential Equations, Part Three . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.9 Sample A.P. Problems on Applications of Integrals . . . . . . . . . . . . . . . . . 144 5.10 Multiple Choice Problems on Application of Integrals . . . . . . . . . . . . . . . 147 Last Year’s Applications of Integrals Test . . . . . . . . . . . . . . . . . . . . . . . . . 150 6 TECHNIQUES of INTEGRATION 159 6.1 A Part, And Yet, Apart... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.2 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.3 Trigonometric Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.4 Four Integral Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.5 L’Hˆopital’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.6 Improper Integrals! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.7 The Art of Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.8 Functions Defined By Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.9 Sample A.P. Problems on Techniques of Integration . . . . . . . . . . . . . . . . 170 6.10 Sample Multiple-Choice Problems on Techniques of Integration . . . . . . . . . . 173 Last Year’s Techniques of Integration Test . . . . . . . . . . . . . . . . . . . . . . . . . 175 7 SERIES, VECTORS, PARAMETRICS and POLAR 183 7.1 Sequences: Bounded and Unbounded . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.2 It is a Question of Convergence... . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.3 Infinite Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 7.4 Tests for Convergence and Divergence . . . . . . . . . . . . . . . . . . . . . . . . 187 7.5 More Questions of Convergence... . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.6 Power Series! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.7 Maclaurin Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.8 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.9 Vector Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 7.10 Calculus with Vectors and Parametrics . . . . . . . . . . . . . . . . . . . . . . . . 193 7.11 Vector-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.12 Motion Problems with Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 7.13 Polar Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 7.14 Differentiation (Slope) and Integration (Area) in Polar . . . . . . . . . . . . . . . 197 7.15 Sample A.P. Problems on Series, Vectors, Parametrics, and Polar . . . . . . . . . 198 4 The AP CALCULUS PROBLEM BOOK 7.16 Sample Multiple-Choice Problems on Series, Vectors, Parametrics, and Polar . . 201 Last Year’s Series, Vectors, Parametrics, and Polar Test . . . . . . . . . . . . . . . . . 203 8 AFTER THE A.P. EXAM 211 8.1 Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 8.2 Surface Area of a Solid of Revolution . . . . . . . . . . . . . . . . . . . . . . . . . 213 8.3 Linear First Order Differential Equations . . . . . . . . . . . . . . . . . . . . . . 214 8.4 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.5 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 9 PRACTICE and REVIEW 217 9.1 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 9.2 Derivative Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 9.3 Can You Stand All These Exciting Derivatives? . . . . . . . . . . . . . . . . . . . 220 9.4 Different Differentiation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9.5 Integrals... Again! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 9.6 Int´egrale, Integrale, Integraal, Integral . . . . . . . . . . . . . . . . . . . . . . . . 225 9.7 Calculus Is an Integral Part of Your Life . . . . . . . . . . . . . . . . . . . . . . . 226 9.8 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 9.9 Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 9.10 The Deadly Dozen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 9.11 Two Volumes and Two Differential Equations . . . . . . . . . . . . . . . . . . . . 230 9.12 Differential Equations, Part Four . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 9.13 More Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 9.14 Definite Integrals Requiring Definite Thought . . . . . . . . . . . . . . . . . . . . 233 9.15 Just When You Thought Your Problems Were Over... . . . . . . . . . . . . . . . 234 9.16 Interesting Integral Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 9.17 Infinitely Interesting Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . 238 9.18 Getting Serious About Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 9.19 A Series of Series Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 10 GROUP INVESTIGATIONS 241 About the Group Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 10.1 Finding the Most Economical Speed for Trucks . . . . . . . . . . . . . . . . . . . 243 10.2 Minimizing the Area Between a Graph and Its Tangent . . . . . . . . . . . . . . 243 10.3 The Ice Cream Cone Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 10.4 Designer Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 10.5 Inventory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 10.6 Optimal Design of a Steel Drum . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 11 CALCULUS LABS 247 About the Labs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 1: The Intermediate Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 2: Local Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 3: Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 4: A Function and Its Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 5: Riemann Sums and Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 6: Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 CONTENTS 5 7: Indeterminate Limits and l’Hˆopital’s Rule . . . . . . . . . . . . . . . . . . . . . . . 267 8: Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 9: Approximating Functions by Polynomials . . . . . . . . . . . . . . . . . . . . . . . . 272 10: Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 12 TI-CALCULATOR LABS 277 Before You Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 1: Useful Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 2: Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 3: Maxima, Minima, Inflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 4: Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 5: Approximating Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 6: Approximating Integrals II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 7: Applications of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 8: Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 9: Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 13 CHALLENGE PROBLEMS 295 Set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Set B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 Set C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Set D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 Set E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Set F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 A FORMULAS 309 Formulas from Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 Greek Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 B SUCCESS IN MATHEMATICS 315 Calculus BC Syllabus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 C ANSWERS 329 Answers to Last Year’s Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 6 The AP CALCULUS PROBLEM BOOK 1 CHAPTER LIMITS 7 8 The AP CALCULUS PROBLEM BOOK 1.1 Graphs of Functions Describe the graphs of each of the following functions using only one of the following terms: line, parabola, cubic, hyperbola, semicircle. 1. y = x3+5x2 x 1 7. y = −3 − − x 5 1 − 2. y = x 8. y = 9 x2 − 3. y = 3x+2 9. y = 3x3 − 4. y = x3+500x 10. y =34x 52 − − 5. y = √9 x2 11. y =34x2 52 − − 6. y = x2+4 12. y =√1 x2 − Graph the following functions on your calculator on the window 3 x 3, − ≤ ≤ 2 y 2. Sketch what you see. Choose one of the following to describe what − ≤ ≤ happens to the graph at the origin: A) goes vertical; B) forms a cusp; C) goes horizontal; or D) stops at zero. 13. y = x1/3 17. y =x1/4 14. y = x2/3 18. y =x5/4 15. y = x4/3 19. y =x1/5 16. y = x5/3 20. y =x2/5 21. Based on the answers from the problems above, finda pattern for the behavior of functions with exponents of the following forms: xeven/odd, xodd/odd, xodd/even. Graph the following functions on your calculator in the standard window and sketch what you see. At what value(s) of x are the functions equal to zero? 22. y = x 1 25. y = 4+x2 | − | | | 23. y = x2 4 26. y = x3 8 | − | | |− 24. y = x3 8 27. y = x2 4x 5 | − | | − − | Inthecompanyoffriends,writerscandiscusstheirbooks,economiststhestateoftheeconomy,lawyerstheir latest cases, and businessmen their latest acquisitions, butmathematicians cannot discuss theirmathematics at all. Andthemore profound their work, theless understandableit is. —Alfred Adler

Description:
The AP Calculus Problem Book Publication history: First edition, 2002 Second edition, 2003 Third edition, 2004 Third edition Revised and Corrected, 2005
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.