The AP Calculus Problem Book Chuck Garner, Ph.D. TheAPCalculusProblemBook Publicationhistory: Firstedition,2002 Secondedition,2003 Thirdedition,2004 ThirdeditionRevisedandCorrected,2005 Fourthedition,2006,EditedbyAmyLanchester FourtheditionRevisedandCorrected,2007 Fourthedition,Corrected,2008 Thisbookwasproduceddirectlyfromtheauthor’sLATEXfiles. FiguresweredrawnbytheauthorusingtheTEXdrawpackage. TI-Calculatorscreen-shotsproducedbyaTI-83PluscalculatorusingaTI-GraphLink. LATEX(pronounced“Lay-Tek”)isadocumenttypesettingprogram(notawordprocessor)thatisavailablefreefromwww.miktex.org, whichalsoincludesTEXnicCenter,afreeandeasy-to-useuser-interface. Contents 1 LIMITS 7 1.1 Graphs of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 The Slippery Slope of Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 The Power of Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Functions Behaving Badly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Take It to the Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 One-Sided Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.7 One-Sided Limits (Again) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.8 Limits Determined by Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.9 Limits Determined by Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.10 The Possibilities Are Limitless... . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.11 Average Rates of Change: Episode I . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.12 Exponential and Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . 18 1.13 Average Rates of Change: Episode II . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.14 Take It To the Limit—One More Time . . . . . . . . . . . . . . . . . . . . . . . . 20 1.15 Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.16 Continuously Considering Continuity . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.17 Have You Reached the Limit? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.18 Multiple Choice Questions on Limits . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.19 Sample A.P. Problems on Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Last Year’s Limits Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 DERIVATIVES 35 2.1 Negative and Fractional Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2 Logically Thinking About Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 The Derivative By Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4 Going Off on a Tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 Six Derivative Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6 Trigonometry: a Refresher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1 2 The AP CALCULUS PROBLEM BOOK 2.7 Continuity and Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.8 The RULES: Power Product Quotient Chain . . . . . . . . . . . . . . . . . . . . 43 2.9 Trigonometric Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.10 Tangents, Normals, and Continuity (Revisited) . . . . . . . . . . . . . . . . . . . 45 2.11 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.12 The Return of Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.13 Meet the Rates (They’re Related) . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.14 Rates Related to the Previous Page . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.15 Excitement with Derivatives! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.16 Derivatives of Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.17 D´eriv´e, Derivado, Ableitung, Derivative . . . . . . . . . . . . . . . . . . . . . . . 52 2.18 Sample A.P. Problems on Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.19 Multiple-Choice Problems on Derivatives . . . . . . . . . . . . . . . . . . . . . . . 56 Last Year’s Derivatives Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3 APPLICATIONS of DERIVATIVES 67 3.1 The Extreme Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2 Rolle to the Extreme with the Mean Value Theorem . . . . . . . . . . . . . . . . 69 3.3 The First and Second Derivative Tests . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4 Derivatives and Their Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 Two Derivative Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6 Sketching Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.7 Problems of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.8 Maximize or Minimize? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.9 More Tangents and Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.10 More Excitement with Derivatives! . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.11 Bodies, Particles, Rockets, Trucks, and Canals . . . . . . . . . . . . . . . . . . . 82 3.12 Even More Excitement with Derivatives! . . . . . . . . . . . . . . . . . . . . . . . 84 3.13 Sample A.P. Problems on Applications of Derivatives . . . . . . . . . . . . . . . . 86 3.14 Multiple-Choice Problems on Applications of Derivatives . . . . . . . . . . . . . . 89 Last Year’s Applications of Derivatives Test . . . . . . . . . . . . . . . . . . . . . . . . 92 4 INTEGRALS 101 4.1 The ANTIderivative! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.2 Derivative Rules Backwards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.3 The Method of Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4 Using Geometry for Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . 105 4.5 Some Riemann Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.6 The MVT and the FTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.7 The FTC, Graphically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.8 Definite and Indefinite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.9 Integrals Involving Logarithms and Exponentials . . . . . . . . . . . . . . . . . . 110 4.10 It Wouldn’t Be Called the Fundamental Theorem If It Wasn’t Fundamental . . . 111 4.11 Definite and Indefinite Integrals Part 2 . . . . . . . . . . . . . . . . . . . . . . . . 113 4.12 Regarding Riemann Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.13 Definitely Exciting Definite Integrals! . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.14 How Do I Find the Area Under Thy Curve? Let Me Count the Ways... . . . . . . 117 4.15 Three Integral Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 CONTENTS 3 4.16 Trapezoid and Simpson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.17 Properties of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.18 Sample A.P. Problems on Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.19 Multiple Choice Problems on Integrals . . . . . . . . . . . . . . . . . . . . . . . . 124 Last Year’s Integrals Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5 APPLICATIONS of INTEGRALS 135 5.1 Volumes of Solids with Defined Cross-Sections . . . . . . . . . . . . . . . . . . . . 136 5.2 Turn Up the Volume! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.3 Volume and Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.4 Differential Equations, Part One . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.5 The Logistic Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.6 Differential Equations, Part Two . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.7 Slope Fields and Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.8 Differential Equations, Part Three . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.9 Sample A.P. Problems on Applications of Integrals . . . . . . . . . . . . . . . . . 144 5.10 Multiple Choice Problems on Application of Integrals . . . . . . . . . . . . . . . 147 Last Year’s Applications of Integrals Test . . . . . . . . . . . . . . . . . . . . . . . . . 150 6 TECHNIQUES of INTEGRATION 159 6.1 A Part, And Yet, Apart... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.2 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.3 Trigonometric Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.4 Four Integral Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.5 L’Hˆopital’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.6 Improper Integrals! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.7 The Art of Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.8 Functions Defined By Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.9 Sample A.P. Problems on Techniques of Integration . . . . . . . . . . . . . . . . 170 6.10 Sample Multiple-Choice Problems on Techniques of Integration . . . . . . . . . . 173 Last Year’s Techniques of Integration Test . . . . . . . . . . . . . . . . . . . . . . . . . 175 7 SERIES, VECTORS, PARAMETRICS and POLAR 183 7.1 Sequences: Bounded and Unbounded . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.2 It is a Question of Convergence... . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.3 Infinite Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 7.4 Tests for Convergence and Divergence . . . . . . . . . . . . . . . . . . . . . . . . 187 7.5 More Questions of Convergence... . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.6 Power Series! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.7 Maclaurin Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.8 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.9 Vector Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 7.10 Calculus with Vectors and Parametrics . . . . . . . . . . . . . . . . . . . . . . . . 193 7.11 Vector-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.12 Motion Problems with Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 7.13 Polar Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 7.14 Differentiation (Slope) and Integration (Area) in Polar . . . . . . . . . . . . . . . 197 7.15 Sample A.P. Problems on Series, Vectors, Parametrics, and Polar . . . . . . . . . 198 4 The AP CALCULUS PROBLEM BOOK 7.16 Sample Multiple-Choice Problems on Series, Vectors, Parametrics, and Polar . . 201 Last Year’s Series, Vectors, Parametrics, and Polar Test . . . . . . . . . . . . . . . . . 203 8 AFTER THE A.P. EXAM 211 8.1 Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 8.2 Surface Area of a Solid of Revolution . . . . . . . . . . . . . . . . . . . . . . . . . 213 8.3 Linear First Order Differential Equations . . . . . . . . . . . . . . . . . . . . . . 214 8.4 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.5 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 9 PRACTICE and REVIEW 217 9.1 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 9.2 Derivative Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 9.3 Can You Stand All These Exciting Derivatives? . . . . . . . . . . . . . . . . . . . 220 9.4 Different Differentiation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9.5 Integrals... Again! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 9.6 Int´egrale, Integrale, Integraal, Integral . . . . . . . . . . . . . . . . . . . . . . . . 225 9.7 Calculus Is an Integral Part of Your Life . . . . . . . . . . . . . . . . . . . . . . . 226 9.8 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 9.9 Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 9.10 The Deadly Dozen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 9.11 Two Volumes and Two Differential Equations . . . . . . . . . . . . . . . . . . . . 230 9.12 Differential Equations, Part Four . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 9.13 More Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 9.14 Definite Integrals Requiring Definite Thought . . . . . . . . . . . . . . . . . . . . 233 9.15 Just When You Thought Your Problems Were Over... . . . . . . . . . . . . . . . 234 9.16 Interesting Integral Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 9.17 Infinitely Interesting Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . 238 9.18 Getting Serious About Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 9.19 A Series of Series Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 10 GROUP INVESTIGATIONS 241 About the Group Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 10.1 Finding the Most Economical Speed for Trucks . . . . . . . . . . . . . . . . . . . 243 10.2 Minimizing the Area Between a Graph and Its Tangent . . . . . . . . . . . . . . 243 10.3 The Ice Cream Cone Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 10.4 Designer Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 10.5 Inventory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 10.6 Optimal Design of a Steel Drum . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 11 CALCULUS LABS 247 About the Labs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 1: The Intermediate Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 2: Local Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 3: Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 4: A Function and Its Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 5: Riemann Sums and Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 6: Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 CONTENTS 5 7: Indeterminate Limits and l’Hˆopital’s Rule . . . . . . . . . . . . . . . . . . . . . . . 267 8: Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 9: Approximating Functions by Polynomials . . . . . . . . . . . . . . . . . . . . . . . . 272 10: Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 12 TI-CALCULATOR LABS 277 Before You Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 1: Useful Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 2: Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 3: Maxima, Minima, Inflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 4: Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 5: Approximating Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 6: Approximating Integrals II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 7: Applications of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 8: Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 9: Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 13 CHALLENGE PROBLEMS 295 Set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Set B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 Set C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Set D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 Set E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Set F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 A FORMULAS 309 Formulas from Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 Greek Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 B SUCCESS IN MATHEMATICS 315 Calculus BC Syllabus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 C ANSWERS 329 Answers to Last Year’s Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 6 The AP CALCULUS PROBLEM BOOK 1 CHAPTER LIMITS 7 8 The AP CALCULUS PROBLEM BOOK 1.1 Graphs of Functions Describe the graphs of each of the following functions using only one of the following terms: line, parabola, cubic, hyperbola, semicircle. 1. y = x3+5x2 x 1 7. y = −3 − − x 5 1 − 2. y = x 8. y = 9 x2 − 3. y = 3x+2 9. y = 3x3 − 4. y = x3+500x 10. y =34x 52 − − 5. y = √9 x2 11. y =34x2 52 − − 6. y = x2+4 12. y =√1 x2 − Graph the following functions on your calculator on the window 3 x 3, − ≤ ≤ 2 y 2. Sketch what you see. Choose one of the following to describe what − ≤ ≤ happens to the graph at the origin: A) goes vertical; B) forms a cusp; C) goes horizontal; or D) stops at zero. 13. y = x1/3 17. y =x1/4 14. y = x2/3 18. y =x5/4 15. y = x4/3 19. y =x1/5 16. y = x5/3 20. y =x2/5 21. Based on the answers from the problems above, finda pattern for the behavior of functions with exponents of the following forms: xeven/odd, xodd/odd, xodd/even. Graph the following functions on your calculator in the standard window and sketch what you see. At what value(s) of x are the functions equal to zero? 22. y = x 1 25. y = 4+x2 | − | | | 23. y = x2 4 26. y = x3 8 | − | | |− 24. y = x3 8 27. y = x2 4x 5 | − | | − − | Inthecompanyoffriends,writerscandiscusstheirbooks,economiststhestateoftheeconomy,lawyerstheir latest cases, and businessmen their latest acquisitions, butmathematicians cannot discuss theirmathematics at all. Andthemore profound their work, theless understandableit is. —Alfred Adler
Description: