ebook img

The ANTS problem PDF

0.67 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The ANTS problem

The ANTS Problem∗ OferFeinerman AmosKorman WeizmannInstituteofScience CNRSandUniv. ParisDiderot 7 [email protected] [email protected] 1 0 2 n a Abstract J 0 WeintroducetheAntsNearbyTreasureSearch(ANTS)problem,whichmodelsnaturalcooperative 1 foraging behavior such as that performed by ants around their nest. In this problem, k probabilistic ] agents,initiallyplacedatacentrallocation,collectivelysearchforatreasureonthetwo-dimensional C grid. Thetreasureisplacedatatargetlocationbyanadversaryandtheagents’goalistofinditasfastas D possibleasafunctionofbothkandD,whereDisthe(unknown)distancebetweenthecentrallocation . s andthetarget. Weconcentrateonthecaseinwhichagentscannotcommunicatewhilesearching. Itis c [ straightforwardtoseethatthetimeuntilatleastoneagentfindsthetargetisatleastΩ(D+D2/k),even 1 forverysophisticatedagents,withunrestrictedmemory. Ouralgorithmicanalysisaimsatestablishing v connectionsbetweenthetimecomplexityandtheinitialknowledgeheldbyagents(e.g.,regardingtheir 5 5 totalnumberk),astheycommencethesearch. Weprovidearangeofbothupperandlowerboundsforthe 5 initialknowledgerequiredforobtainingfastrunningtime. Forexample,weprovethatloglogk+Θ(1) 2 bitsofinitialinformationarebothnecessaryandsufficienttoobtainasymptoticallyoptimalrunningtime, 0 . i.e.,O(D+D2/k).Wealsoweprovethatforevery0<(cid:15)<1,runningintimeO(log1−(cid:15)k·(D+D2/k)) 1 0 requiresthatagentshavethecapacityforstoringΩ(log(cid:15)k)differentstatesastheyleavethenesttostartthe 7 search. Tothebestofourknowledge,thelowerboundspresentedinthispaperprovidethefirstnon-trivial 1 : lowerboundsonthememorycomplexityofprobabilisticagentsinthecontextofsearchproblems. v i We view this paper as a “proof of concept” for a new type of interdisciplinary methodology. To X fullydemonstratethismethodology,thetheoreticaltradeoffpresentedhere(orasimilarone)shouldbe r a combinedwithmeasurementsofthetimeperformanceofsearchingants. ∗Preliminaryresultsofthispaperappearedintheproceedingsofthe31stAnnualACMSIGACT-SIGOPSSymposiumon PrinciplesofDistributedComputing(PODC),2012, andthe26thinternationalsymposiumonDistributedComputing(DISC) 2012,aspartof[28,29].O.F.,incumbentoftheShlomoandMichlaTomarinCareerDevelopmentChair,waspartiallysupported bytheCloreFoundationandtheIsraelScienceFoundation(grant1694/10). A.K.waspartiallysupportedbytheANRprojects DISPLEXITYandPROSE,andbytheINRIAprojectGANG.ThisprojecthasreceivedfundingfromtheEuropeanResearchCouncil (ERC)undertheEuropeanUnion’sHorizon2020researchandinnovationprogramme(grantagreementNo648032). 1 1 Introduction Theuniversalityofsearchbehaviorisreflectedinmultitudesofstudiesindifferentfieldsincludingcomputer science, robotics, and biology. We use tools from distributed computing to study a biologically inspired scenarioinwhichmultipleagents,initiallylocatedatonecentrallocation,cooperativelysearchforatreasure intheplane. Thegoalofthesearchistolocatenearbytreasuresasfastaspossibleandataratethatscales wellwiththenumberofparticipatingagents. Manyanimalspeciessearchforfoodaroundacentrallocationthatservesasthesearch’sinitialpoint, finaldestinationorboth[58]. Thiscentrallocationcouldbeafoodstoragearea,anestwhereoffspringare rearedorsimply ashelteredorfamiliarenvironment. Centralplace foragingholdsastrong preferenceto locatingnearbyfoodsourcesbeforethosethatarefurtheraway. Possiblereasonsforthatare,forexample: (1)decreasingpredationrisk[54],(2)increasingtherateoffoodcollectiononcealargequantityoffoodis found[58],(3)holdingaterritorywithouttheneedtoreclaimit[38,54],and(4)facilitatingthenavigating backaftercollectingthefoodusingfamiliarlandmarks[18]. Searching in groups can increase foraging efficiency [44, p. 732]. In some extreme cases, food is so scarcethatgroupsearchingisbelievedtoberequiredforsurvival[20,45]. Proximityofthefoodsourceto thecentrallocationisagainimportantinthiscase. Forexample,inthecaseofrecruitment,anearbyfood sourcewouldbebeneficialnotonlytotheindividualthatlocatedthesourcebutalsoincreasethesubsequent retrievalrateformanyothercollaborators[72]. Foragingingroupscanalsofacilitatethedefenseoflarger territories[69]. Eusocial insects (e.g., bees and ants) often live in a single nest or hive, which naturally makes their foraging patterns central. They further engage in highly cooperative foraging, which can be expected as these insects reduce competition between individuals to a minimum and share any food that is found. In manycases,thiscollaborativeeffortisdonewithhardlyanycommunicationbetweensearchers. Forexample, mid-searchcommunicationofdesertantsCataglyphysandhoneybeesApismelliferaishighlylimiteddueto theirdispersionandlackofchemicaltrailmarkings[62]. Conversely,itisimportanttonotethattheseinsects dohaveanopportunitytointeractamongstthemselvesbeforetheyleavetheirnestaswellassomecapacity toassesstheirownnumber[61]. Both desert ants and bees possess many individual navigation skills. These include the capacity to maintain a compass-directed vector flight [15, 42], measure distance using an internal odometer [70, 71], travel to distances taken from a random power law distribution [67], and engage in spiral or quasi-spiral movementpatterns[65,66,75]. Finally,thesearchtrajectoriesofdesertantshavebeenshowntoincludetwo distinguishablesections: alongstraightpathinagivendirectionemanatingfromthenestandasecondmore tortuouspathwithinasmallconfinedarea[42,74]. TheANTSProblem. Inthispaper,wetheoreticallyaddressgeneralquestionsofcollectivecentralplace searching. Moreprecisely,weintroducetheAntsNearbyTreasureSearch(ANTS)problem,ageneralization 1 of the cow-path problem [21, 47, 48], in which k identical (probabilistic) agents, initially placed at some central location, collectively search for a treasure in the two-dimensional grid (modeling the plane). The treasureisplacedbyanadversaryatsometargetlocationatdistanceD fromthecentrallocation,whereD is unknowntotheagents. Traversinganedgeofthegridrequiresoneunitoftime. Thegoaloftheagentsisto findthetreasureasfastaspossible,wherethetimecomplexityisevaluatedasafunctionofbothk andD. Inthisdistributedsetting,weareconcernedwiththespeed-upmeasure(seealso,[6,7,31,32]),which aimstocapturetheimpactofusingk searchersincomparisontousingasingleone. Notethattheobjectives ofquicklyfindingnearbytreasuresandhavingsignificantspeed-upmaybeatconflict. Thatis,inorderto ensurethatnearbytreasuresarequicklyfound,alargeenoughfractionofthesearchforcemustbedeployed nearthecentrallocation. Inturn,thiscrowdingcanpotentiallyleadtooverlappingsearchesthatdecrease individualefficiency. It is a rather straightforward observation that the minimal time required for finding the treasure is Ω(D +D2/k). Indeed, one must spend D time merely to walk up to the treasure, and, intuitively, even if the agents divide the domain perfectly among themselves, it will still require them Ω(D2/k) steps to exploreallpointsatdistanceD. Ourfocusisonthequestionofhowagentscanapproachthisboundiftheir communicationislimitedorevencompletelyabsent. Specifically,weassumethatnocommunicationcanbe employedbetweenagentsduringtheexecutionofthealgorithm,but,ontheotherhand,communicationis almostunlimitedwhenperformedinapreliminarystage, beforetheagentsstarttheirsearch. Theformer assumption is inspired by empirical evidence that desert ants (such as Cataglyphys Niger or Cataglyphis savignyi)rarelycommunicateoutsidetheirnest[42],andthelatterassumptionisveryliberal,aimingtocover manypossiblescenarios. Tosimulatetheinitialstepofinformationsharingwithinthenestweusetheabstractframeworkofadvice. Thatis,wemodelthepreliminaryprocessforgainingknowledgebymeansofanoraclethatassignsadvice toagents. Tomeasuretheamountofinformationaccessibletoagents,weanalyzetheadvicesize,namely,the maximumnumberofbitsusedinanadvice1. Sincewearemainlyinterestedinlowerboundsontheadvice sizerequiredtoachieveagiventimeperformance,weapplyaliberalapproachandassumeahighlypowerful oracle. Morespecifically,eventhoughitissupposedtomodeladistributedprobabilisticprocess,weassume thattheoracleisacentralizedprobabilisticalgorithm(almostunlimitedinitscomputationalpower)thatcan assigndifferentagentswithdifferentadvices. Notethat,inparticular,byconsideringidentifiersaspartof theadvice,ourmodelallowstorelaxtheassumptionthatallagentsareidenticalandtoallowagentstobe ofseveraltypes. Indeed,inthecontextofants,ithasbeenestablishedthatontheirfirstforagingboutsants executedifferentprotocolsthanthoseexecutedbymoreexperiencedants[74]. 1Notethatalowerboundofx≥1bitsontheadvicesizeimpliesalowerboundof2x−1onthenumberofstatesusedbythe agentsalreadywhencommencingthesearch. 2 1.1 OurResults Weusetoolsfromdistributedcomputingtostudyabiologicallyinspiredscenariowhichmodelscooperative foragingbehaviorsuchasthatperformedbyantsaroundtheirnest. Morespecifically,weintroducetheANTS problem,anaturalprobleminspiredbydesertantsforagingaroundtheirnest,andstudyitinasimple,yet relativelyrealistic,model. Technical Contribution. We establish connections between the advice size and the running time2. In particular,tothebestofourknowledge,ourlowerboundsontheadvicesizeconsistofthefirstnon-trivial lowerboundsonthememoryofprobabilisticsearchers. Ontheoneextreme,wehavethecaseofuniformsearchalgorithms,inwhichtheagentsarenotassumed tohaveanya-prioriinformation,thatis,theadvicesizeiszero. Wecompletelycharacterizethespeed-up penalty that must be paid when using uniform algorithms. Specifically, we show that for a function Φ such that P∞ 1/Φ(2j) converges, there exists a uniform search algorithm that is Φ(k)-competitive. On j=1 the other hand, we show that if P∞ 1/Φ(2j) diverges, then there is no uniform search algorithm that is j=1 Φ(k)-competitive. Inparticular,weobtainthefollowingtheorem,implyingthatthepenaltyforusinguniform algorithmsisslightlymorethanlogarithmicinthenumberofagents. Theorem 1.1. For every constant ε > 0, there exists a uniform search algorithm that is O(log1+εk)- competitive,butthereisnouniformsearchalgorithmthatisO(logk)-competitive. Infact,O(logk)-competitivealgorithmsnotonlyrequiresomeadvice,butactuallyrequirelogloglogk+ Θ(1)bitsofadvice. Thatisexpressedinthefollowingtheorem. Theorem1.2. ThereisanO(logk)-competitivesearchalgorithmusingadvicesizeoflogloglogk+O(1) bits. Ontheotherhand,anyO(logk)-competitivealgorithmhasadvicesizeoflogloglogk+Ω(1)bits. Ontheotherextreme,weshowthatadviceofsizeloglogk+Θ(1)bitsisbothnecessaryandsufficientto obtainanasymptoticallyoptimalrunningtime. Theorem1.3. ThereexistsanO(1)-competitivesearchalgorithmusingadviceofsizeloglogk+O(1). This boundistightasanyO(1)-competitivesearchalgorithmmusthaveadvicesizeofloglogk−Ω(1)bits. Wefurtherexhibitlowerandupperboundsfortheadvicesizeforarangeofintermediatecompetitivenesses. Specifically,thefollowinglowerboundontheadvicesizeimpliesthatadviceofsizeΩ(loglogk)isnecessary evenforachievingmuchlargertime-competitivenessthanconstant. Theorem1.4. Fix0 < (cid:15) ≤ 1. AnysearchalgorithmthatisO(log1−(cid:15)k)-competitivemusthaveadvicesize of(cid:15)loglogk−Ω(1)bits. 2Tomeasurethetimecomplexity,weadopttheterminologyofcompetitiveanalysis,andsaythatanalgorithmisc-competitive, if its time complexity is at most c times the straightforward lower bound, that is, at most c(D +D2/k). In particular, an O(1)-competitivealgorithmisanalgorithmthatrunsinO(D+D2/k)time. 3 (cid:16) (cid:17) Theorem 1.5. Fix 0 < (cid:15) ≤ 1. Any O logk -competitive search algorithm requires advice size of 2log(cid:15)logk log(cid:15)logk−O(1). Complementingthisresult,weshowthatthelowerboundontheadvicesizeisasymptoticallyoptimal. (cid:16) (cid:17) Theorem1.6. Fix0 < (cid:15) ≤ 1. ThereexistsanO logk -competitivesearchalgorithmusingadvicesize 2log(cid:15)logk ofO(log(cid:15)logk). TheaforementionedlowerandupperboundsaresummarizedinTable1. Competitiveness Advicesize Upperbound O(log1+(cid:15)k) zero Lowerbound ω(logk) zero Tightbound O(1) loglogk +Θ(1) Lowerbound O(log1−(cid:15)k) 0 < (cid:15) < 1 (cid:15)loglogk −Ω(1) Tightbound O(logk/2log(cid:15)logk) 0 < (cid:15) < 1 Θ(log(cid:15)logk) Tightbound O(logk) logloglogk +Θ(1) Table1: Boundsontheadvicesizeforgivencompetitiveness Apartfromtheirpurelytheoreticalappeal,thealgorithmswesuggestintheaforementionedupperbound resultsareusedmainlytoindicatethetightnessofourlowerbounds. Indeed,theseparticularalgorithmsuse somewhatnon-trivialcomponents,suchasbeingexecutedinrepeatediterations,whichseemtocorrespond less to realistic scenarios. As our final technical result, we propose a uniform search algorithm that is concurrentlyefficientandextremelysimpleand,assuch,itmayimplysomerelevanceforactualbiological scenarios. Conceptual Contribution. This paper may serve as a “proof of concept” for a new bridge connecting computerscienceandbiology. Specifically,weillustratethattheoreticaldistributedcomputingcanpotentially provideanovelandefficientmethodologyforthestudyofhighlycomplex,cooperativebiologicalensembles. Tothisend,wechooseasettingthatis,ontheonehand,sufficientlysimpletobeanalyzedtheoretically,and, ontheotherhand,sufficientlyrealisticsothatthissetting,oravariantofit,canberealizableinanexperiment. Ultimately,ifanexperimentthatcomplieswithoursettingrevealsthattheants’searchistimeefficient,inthe sensedetailedabove,thenourtheoreticallowerboundresultswouldimplylowerboundsonthenumberof statesantshavealreadywhentheyexittheirnesttocommencethesearch. Notethatlowerboundsconsisting ofevenafewstateswouldalreadydemonstratethepowerofthistradeoff-basedmethodology, sincethey wouldbeverydifficulttoobtainusingmoretraditionalmethodologies. 4 1.2 Outline InSection2weformallydescribetheANTSproblemandprovidebasicdefinitions. Tomakethereadermore familiarwiththemodel,westartthetechnicalpartofthepaperinSection3byprovidingarelativelysimple O(1)-competitivesearchalgorithm. Thisalgorithmusesa-prioriknowledgeregardingthetotalnumberof agents. Specifically,thealgorithmassumesthateachagentknowsa2-approximationofk,encodedasadvice of size loglogk. In Section 4 we turn to prove lower bounds on the advice size. We start this section by provingthatthecompetitivenessofanyuniformsearchalgorithmismorethanlogarithmic. Thisresultisa specialcaseofthemainlowerboundtheorem,namely,Theorem4.6,thatweprovejustnext. Thereason we prove this special case separately is because the proof is simpler, and yet, provides some of the main ingredients of the more general lower bound proof. We then describe specific lower bounds that directly followfromTheorem4.6ascorollaries. WeconcludethetechnicalpartofthepaperinSection5wherewe provideseveralconstructionsofsearchalgorithms. Wefirstpresentseveralconstructionswhoseperformances provide tight upper bounds for some of our lower bounds results. We then turn our attention to present a relatively efficient uniform algorithm, called, the harmonic algorithm, whose simplicity may suggest its relevance to actual search by ants. In Section 6 we discuss the conceptual contribution of the paper as a proofofconceptforanewinterdisciplinarymethodologythatcombinesalgorithmicstudieswithbiology experiments. 1.3 RelatedWork Ourworkfallswithintheframeworkofnaturalalgorithms,arecentattempttostudybiologicalphenomena fromanalgorithmicperspective[1,2,14,16,27,29]. Since our preliminary conference publications in [28, 29], the ANTS problem had quickly attracted attentionfromthecommunityofdistributedcomputing,withcontinuationworksbyotherresearchers,study- ing various theoretical aspects of our model [25, 26, 37, 53, 55, 56]. Specifically, [25, 26, 55] studied a variantofourmodelwhereagentsaremodeledasfinitestatemachinesandcancommunicateoutsidethenest throughouttheexecution. Inparticular,undertheseassumptions,Emeketal.,showedthatagentscansolve theANTSprobleminO(D+D2/k)time[25]. Thisimpliesthatinthiscase,noa-prioriknowledgeabout k isrequiredbytheagents. Note,however,thatthisassumptionregardingcommunicationisprobablynot applicableforthecaseofdesertants,wherenocommunicationbysuchsearchingantshasbeenrecorded. The ANTSproblemwasfurtherstudiedbyLenzenetal.,whoinvestigatedtheeffectsofboundingthememoryas wellastherangeofavailableprobabilitiesoftheagents[56]. Fraigniaudetal. consideredthecasewherek non-communicatingagentssearchonlineforanadversariallyplacedtreasure[37]. Theyalsoarguedforthe usefulnessofparallelsearchperformedbynon-communicatingagentsduetotheinherentrobustnessofsuch computation. Acontinuationworkconsideringthecasewherethetreasureisplaceduniformlyatrandomina largedomainwasstudiedin[53]. 5 TheANTSproblemisaspecialcaseofcollaborativesearch–aclassicalfamilyofproblemsthathas beenextensivelystudiedindifferentfieldsofscience. Wenextreviewpreviousworksonsearchproblems, organizingthemaccordingtotheresearchdisciplinesinwhichtheywereinvestigated. Search Problems in Computer Science. In the theory of computer science, the exploration of graphs usingmobileagents(orrobots)isacentralquestion. (Foramoredetailedsurveyrefertoe.g.,[29,30].) When itcomestoprobabilisticsearching,therandomwalkisanaturalcandidate,asitisextremelysimple,usesno memory, andtriviallyself-stabilizes. Unfortunately, however, therandomwalkturnsouttobeinefficient inatwo-dimensionalinfinitegrid. Specifically,inthiscase,theexpectedhittingtimeisinfinite,evenifthe treasureisnearby. Mostgraphexplorationresearchisconcernedwiththecaseofasingledeterministicagentexploringa finitegraph,seeforexample[3,22,39,59,63]. Ingeneral,oneofthemainchallengesinsearchproblemsis theestablishmentofmemorybounds. Forexample,thequestionofwhetherasingleagentcanexploreallfinite undirectedgraphsusinglogarithmicmemorywasopenforalongtime;answeringittotheaffirmative[63] establishedanequalitybetweentheclassesoflanguagesSLandL.Asanotherexample,itwasprovedin[68] thatnofinitesetofconstantmemoryagentscanexploreallgraphs. Tothebestofourknowledge,thecurrent paperisthefirstpaperestablishingnon-trivialmemorylowerboundsinthecontextofrandomizedsearch problems. Ingeneral,themorecomplexsettingofusingmultipleidenticalagentshasreceivedmuchlessattention. Exploration by deterministic multiple agents was studied in, e.g., [31, 32]. To obtain better results when usingseveralidenticaldeterministicagents,onemustassumethattheagentsareeithercentrallycoordinated orthattheyhavesomemeansofcommunication(eitherexplicitly,orimplicitly,bybeingabletodetectthe presenceofnearbyagents). Whenitcomestoprobabilisticagents,analyzingthespeed-upmeasurefork randomwalkershasrecentlygainedattention. Inaseriesofpapers,aspeed-upofΩ(k)isestablishedfor variousfinitegraphfamilies,including,e.g.,expandersandrandomgraphs[4,23,19]. Incontrast,forthe two-dimensionaln-nodegrid,aslongask ispolynomialinn,thespeedupisonlylogarithmicink. The situationwithinfinitegridsisevenworse. Specifically,thoughthek randomwalkersfindthetreasurewith probabilityone,theexpected(hitting)timeisinfinite. EvaluatingtherunningtimeasafunctionofD,thedistancetothetreasure,wasstudiedinthecontextof thecow-pathproblem[9]. Thisproblemconsidersasinglemobileagentplacedonagraph,aimingtofind atreasureplacedbyanadversary. Itwasestablishedin[9]thatthecompetitiveratiofordeterministically findingapointonthereallineisnine,andthatinthetwo-dimensionalgrid,thespiralsearchalgorithmis optimaluptolowerorderterms. Severalothervariantsofthisproblemwerestudiedin[21,47,48,57]. In particular,in[57],thecow-pathproblemwasextendedbyconsideringk agents. However,incontrasttoour setting,theagentstheyconsiderhaveuniqueidentities,andthegoalisachievedby(centrally)specifyinga differentpathforeachofthek agents. Thenotionofadviceiscentralincomputerscience. Inparticular,theconceptofadviceanditsimpacton 6 variouscomputationshasrecentlyfoundvariousapplicationsindistributedcomputing. Inthiscontext,the mainmeasureusedistheadvicesize. Itisforinstanceanalyzedinframeworkssuchasnon-deterministic decision[36,51,52],broadcast[33],localcomputationofMST[35],graphcoloring[34]andgraphsearching byasinglerobot[17]. Veryrecently,ithasalsobeeninvestigatedinthecontextofonlinealgorithms[13,24]. The question of how important it is for individual processors to know their total number has recently beenaddressedinthecontextoflocality. Generallyspeaking,ithasbeenobservedthatforseveralclassical localcomputationtasks,knowingthenumberofprocessorsisnotessential[50]. Ontheotherhand,inthe contextoflocaldistributeddecision,someevidenceexistthatsuchknowledgeiscrucialfornon-deterministic verification[36]. SearchProblemsinBiologyandPhysics. Grouplivingandfoodsourcesthathavetobeactivelysought after make collective foraging a widespread biological phenomenon. Social foraging theory [40] makes use of economic and game theory to optimize food exploitation as a function of the group size and the degreeofcooperationbetweenagentsindifferentenvironmentalsettings. Thistheoryhasbeenextensively comparedtoexperimentaldata(see,e.g.,[8,41])butdoesnottypicallyaccountforthespatialcharacteristics ofresourceabundance. Centralplaceforagingtheory[58]assumesasituationinwhichfoodiscollected fromapatchyresourceandisreturnedtoaparticularlocation,suchasanest. Thistheoryisusedtocalculate optimaldurationsforexploitingfoodpatchesatdifferentdistancesfromthecentrallocationandhasalso been tested against experimental observations [38, 43]. Collective foraging around a central location is particularlyinterestinginthecaseofsocialinsectswherelargegroupsforagecooperativelywith,practically, nocompetitionbetweenindividuals. Actual collective search trajectories of non-communicating agents have been studied in the physics literature (e.g., [64, 12]). Reynolds [64] achieves optimal speed up through overlap reduction which is obtained by sending searchers on near-straight disjoint lines to infinity. This must come at the expense of finding proximal treasures. Harkness and Maroudas [42] combined field experiments with computer simulationsofasemi-randomcollectivesearchandsuggestsubstantialspeedupsasgroupsizeincreases. SearchProblemsinRobotics. Fromanengineeringperspective,thedistributedcooperationofateamof autonomousagents(oftenreferredtoasrobotsorUAVs: UnmannedAerialVehicles)isaproblemthathas beenextensivelystudied. Thesemodelsextendsingleagentsearchesinwhichanagentwithlimitedsensing abilitiesattemptstolocateoneorseveralmobileorimmobiletargets[60]. Thememoryandcomputational capacitiesoftheagentaretypicallylargeandmanyalgorithmsrelyontheconstructionofcognitivemapsof thesearchareathatincludescurrentestimatesthatthetargetresidesineachpoint[76]. Theagentthenplansan optimalpathwithinthismapwiththeintent,forexample,ofoptimizingtherateofuncertaintydecrease[46]. Cooperativesearchestypicallyincludecommunicationbetweentheagentsthatcanbetransmitteduptoa givendistance,orevenwithoutanyrestriction. Modelshavebeensuggestedwhereagentscancommunicate byalteringtheenvironmenttowhichotheragentthenreact[73]. Cooperationwithoutcommunicationhas 7 alsobeenexploredtosomeextent[5]buttheanalysisputsnoemphasisonthespeed-upofthesearchprocess. Inaddition,tothebestofourknowledge,noworksexistinthiscontextthatputemphasisonfindingnearby targets faster than faraway one. It is important to stress that in all those engineering works, the issue of whethertherobotsknowtheirtotalnumberistypicallynotaddressed,asobtainingsuchinformationdoesnot seemtobeproblematic. Furthermore,inmanyworks,robotsarenotidenticalandhaveuniqueidentities. 2 Model and Definitions 2.1 GeneralSetting We introduce the Ants Nearby Treasure Search (ANTS) problem, in which k mobile agents are searching foratreasureonsometopologicaldomain. Here,wefocusonthetwo-dimensionalplane. Theagentsare probabilisticmobilemachines(robots). Theyareidentical,thatis,allagentsexecutethesameprotocolP, andtheirexecutiondifferonlyduetotheoutcomeoftheirrandomcoins. Eachagenthassomelimitedfield ofview,i.e.,eachagentcanseeitssurroundinguptoadistanceofsomeε > 0. Hence,forsimplicity,instead of considering the two-dimensional plane, we assume that the agents are actually walking on the integer two-dimensionalinfinitegridG = Z2 (theycantraverseanedgeofthegridinbothdirections). Thesearchis centralplace,thatis,allk agentsinitiatethesearchfromsomecentralnodes ∈ G,calledthesource. Before thesearchisinitiated,anadversarylocatesthetreasureatsomenodeς ∈ G,referredtoasthetargetnode. Oncethesearchisinitiated,theagentscannotcommunicateamongthemselves. Thedistancebetweentwonodesu,v ∈ G,denotedd(u,v),issimplytheManhattandistancebetween them, i.e., the number of edges on the shortest path connecting u and v in the grid G. For a node u, let d(u) := d(s,u)denotethedistancebetweenuandthesourcenode. WedenotebyDthedistancebetweenthe sourcenodeandthetarget,i.e.,D = d(ς). Itisimportanttonotethattheagentshavenoa-prioriinformation aboutthelocationofς oraboutD. Wesaythattheagentsfindthetreasurewhenoneoftheagentsvisitsthe targetnodeς. ThegoaloftheagentsittofindthetreasureasfastaspossibleasafunctionofbothD andk. Sincewearemainlyinterestedinlowerbounds,weassumeaveryliberalsetting. Inparticular,wedo not restrict either the computational power or the navigation capabilities of agents. Moreover, we put no restrictionsontheinternalstorageusedfornavigation. Ontheotherhand,wenotethatforconstructingupper bounds, the algorithms we consider use simple procedures that can be implemented using relatively few resources. Forexample,withrespecttonavigation,weonlyassumetheabilitytoperformthefollowingbasic procedures: (1)chooseadirectionuniformlyatrandom,(2)walkina“straightline”toaprescribeddistance, (3)performaspiralsearcharoundagivennode3,and(4)returntothesourcenode. 3Thespiralsearchisaparticulardeterministicsearchalgorithmthatstartsatanodevandenablestheagenttovisitallnodesat √ distanceΩ( x)fromvbytraversingxedges,foreveryintegerx(see,e.g.,[9]). Forourpurposes,sinceweareinterestedwith asymptoticresultsonly,wecanreplacethisatomicnavigationprotocolwithanyprocedurethatguaranteessuchaproperty. For simplicity,inwhatfollows,weassumethatforanyintegerx,thespiralsearchoflengthxstartingatanodevvisitsallnodesat √ distanceatmost x/2fromv. 8 2.2 OraclesandAdvice Wewouldliketomodelthesituationinwhichbeforethesearchactuallystarts,someinformationmaybe exchangedbetweentheagentsatthesourcenode. Inthecontextofants,thispreliminarycommunication maybequitelimited. Thismaybebecauseofdifficultiesinthecommunicationthatareinherenttotheants ortheenvironment,e.g.,duetofaultsorlimitedmemory,orbecauseofasynchronyissues,orsimplybecause agentsareidenticalanditmaybedifficultforantstodistinguishoneagentfromtheother. Nevertheless,we consideraveryliberalsettinginwhichthispreliminarycommunicationisalmostunrestricted. Morespecifically,weconsideracentralizedalgorithmcalledoraclethatassignsadvicestoagentsina preliminarystage. Theoracle,denotedbyO,isaprobabilistic4 centralizedalgorithmthatreceivesasinputa setofk agentsandassignsanadvicetoeachofthek agents. Weassumethattheoraclemayuseadifferent protocol for each k; Given k, the randomized algorithm used for assigning the advices to the k agents is denoted by O . Furthermore, the oracle may assign a different advice to each agent5. Observe that this k definitionofanoracleenablesittosimulatealmostanyreasonablepreliminarycommunicationbetweenthe agents6. Itisimportanttostressthateventhoughallagentsexecutethesamesearchingprotocol,theymaystart the search with different advices. Hence, since their searching protocol may rely on the content of this initialadvice,agentswithdifferentadvicesmaybehavedifferently. Anotherimportantremarkconcernsthe fact that some part of the advices may be used for encoding (not necessarily disjoint) identifiers. That is, assumptionsregardingthesettingsinwhichnotallagentsareidenticalandthereareseveraltypesofagents canbecapturedbyoursettingofadvice. Tosummarize,asearchalgorithmisapairhP,OiconsistingofarandomizedsearchingprotocolP and randomizedoracleO = {O } . Givenk agents,therandomizedoracleO assignsaseparateadviceto k k∈N k each of the given agents. Subsequently, all agents initiate the actual search by letting each of the agents executeprotocolP andusingthecorrespondingadviceasinputtoP. Oncethesearchisinitiated,theagents cannotcommunicateamongthemselves. 4Itisnotclearwhetherornotaprobabilisticoracleisstrictlymorepowerfulthanadeterministicone.Indeed,theoracleassigning theadviceisunawareofD,andmaythuspotentiallyusetherandomizationtoreducethesizeoftheadvicesbybalancingbetween theefficiencyofthesearchforsmallvaluesofDandlargervalues. 5Wenotethateventhoughweconsideraveryliberalsetting,andallowaverypowerfuloracle,theoraclesweuseforourupper boundsconstructionsareverysimpleandrelyonmuchweakerassumptions.Indeed,theseoraclesarenotonlydeterministicbutalso assignthesameadvicetoeachofthekagents. 6Forexample,itcansimulatetofollowingveryliberalsetting.Assumethatinthepreprocessingstage,thekagentsareorganized inacliquetopology,andthateachagentcansendaseparatemessagetoeachotheragent.Furthermore,eventhoughtheagentsare identical,inthispreprocessingstage,letusassumethatagentscandistinguishthemessagesreceivedfromdifferentagents,andthat eachofthekagentsmayuseadifferentprobabilisticprotocolforthispreliminarycommunication.Inaddition,norestrictionismade eitheronthememoryandcomputationcapabilitiesofagentsoronthepreprocessingtime,thatis,thepreprocessingstagetakesfinite, yetunlimited,time. 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.