ebook img

The Antifungal Drug Itraconazole Inhibits Vascular Endothelial Growth Factor Receptor 2 PDF

13 Pages·2011·2.14 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Antifungal Drug Itraconazole Inhibits Vascular Endothelial Growth Factor Receptor 2

THEJOURNALOFBIOLOGICALCHEMISTRYVOL.286,NO.51,pp.44045–44056,December23,2011 ©2011byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. The Antifungal Drug Itraconazole Inhibits Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Glycosylation, Trafficking, and Signaling in Endothelial Cells*□S Receivedforpublication,July1,2011,andinrevisedform,October19,2011Published,JBCPapersinPress,October24,2011,DOI10.1074/jbc.M111.278754 BenjaminA.Nacev‡§,PaolaGrassi¶,AnneDell¶,StuartM.Haslam¶,andJunO.Liu‡(cid:1)1 Fromthe‡DepartmentofPharmacologyandMolecularSciences,§MedicalScientistTrainingProgram,and(cid:1)Departmentof Oncology,JohnsHopkinsUniversitySchoolofMedicine,Baltimore,Maryland21205andthe¶DivisionofMolecularBiosciences, FacultyofNaturalSciences,ImperialCollegeLondon,LondonSW72AZ,UnitedKingdom Background:Itraconazoleisawidelyusedantifungaldrugthatwasrecentlyfoundtopossesspotentantiangiogenicactivity. Results:WereportherethatitraconazolecausedaccumulationofimmatureN-glycansonVEGFR2andinhibitedVEGFR2 traffickingandsignaling. Conclusion:TheseresultssuggestthatitraconazoleinterfereswithVEGFR2trafficking,glycosylation,andsignalingactivity. Significance:Itraconazolepossessesuniqueantiangiogenicpotentialthroughtargetingmultiplepathwaysthatareessentialfor angiogenesis. Itraconazoleisasafeandwidelyusedantifungaldrugthatwas tetra-antennary complex N-glycans in endothelial cells and recently found to possess potent antiangiogenic activity. Cur- induced hypoglycosylation of the epidermal growth factor rently,therearefouractiveclinicaltrialsevaluatingitracona- receptorinarenalcellcarcinomaline,suggestingthatitracona- zole as a cancer therapeutic. Tumor growth is dependent on zole’seffectsextendbeyondVEGFR2. angiogenesis,whichisdrivenbythesecretionofgrowthfactors fromthetumoritself.Wereportherethatitraconazolesignifi- cantlyinhibitedthebindingofvascularendothelialgrowthfac- ItraconazoleisaFoodandDrugAdministration-approvedanti- tor (VEGF) to VEGF receptor 2 (VEGFR2) and that both fungaldrug,whichwepreviouslyidentifiedashavingantiangio- VEGFR2 and an immediate downstream substrate, phospho- genicactivitybothinvitroandinmousemodels(1).Itraconazole’s lipaseC(cid:1)1,failedtobecomeactivatedafterVEGFstimulation. longhistoryofsafeuseinhumansasanantifungalagentandits TheseeffectswereduetoadefectinVEGFR2trafficking,lead- relativelyhighplasmaconcentrationshavespurreditsadvanceasa ingtoadecreaseincellsurfaceexpression,andwereassociated viablecandidateforrepurposingasanantiangiogenicdrug.Itis with the accumulation of immature N-glycans on VEGFR2. currentlyundergoingfourclinicaltrialsasananticancerthera- Smallmoleculeinducersoflysosomalcholesterolaccumulation peutic (NCT00769600, NCT00887458, NCT00798135, and and mammalian target of rapamycin (mTOR) inhibition, two NCT01108094)andhasrecentlybeenshowntohaveefficacyin previouslyreporteditraconazoleactivities,failedtorecapitulate preclinicalmodelsfornon-smallcelllungcancer(2). itraconazole’s effects on VEGFR2 glycosylation and signaling. Angiogenesis,theelaborationofnewbloodvesselsfromexist- Likewise,glycosylationinhibitorsdidnotaltercholesteroltraf- ingvasculature,isanessentialprocessinanumberofpathological fickingorinhibitmTOR.Repletionofcellularcholesterollevels, states,notablycancerandmaculardegeneration.Sincetheangio- whichwasknowntorescuetheeffectsofitraconazoleonmTOR genichypothesiswasfirstputforwardbyJudahFolkmaninthe andcholesteroltrafficking,wasalsoabletorestoreVEGFR2gly- 1970s,anumberofantiangiogenicdrugshaveenteredtheclinic cosylationandsignaling.Thissuggeststhattheneweffectsof (3).However,thesedrugshavenotbeenassuccessfulasantici- itraconazoleoccurinparalleltothosepreviouslyreportedbut pated. For instance, bevacizumab, an anti-vascular endothelial aredownstreamofacommontarget.Wealsodemonstratedthat growthfactor(VEGF)antibodyandthefirsttobeapproved,only itraconazole globally reduced poly-N-acetyllactosamine and marginallyextendssurvivalandcarriessignificantriskofadverse events(4–7).Forthisreason,itraconazoleandotherdrugcandi- datesarebeingactivelypursuedasnewandpotentiallymoresafe *Thisworkwassupported,inwholeorinpart,byNationalInstitutesofHealth andmoreeffectiveantiangiogenicleads. (NIH)MedicalScientistTrainingProgramGrantT32GM07309(toB.A.N.); Itraconazole, like other members of the azole antifungal by NIH, NCI Grant CA122814 (to J.O.L.); National Center for Research Resources(NCRR),NIH,GrantUL1RR025005;andtheNIHRoadmapforMed- class,inhibitsthefungalenzymelanosterol14-(cid:1)-demethylase icalResearch.ThisworkwasalsosupportedbytheFlightAttendantMedical (14DM),2whichgeneratesakeyintermediateinergosterolsyn- ResearchInstituteandtheCommonwealthFoundation(toJ.O.L.).Additional supportwasprovidedbyBiotechnologyandBiologicalSciencesResearch CouncilGrantBBF0083091andtheMarieCurieInitialTrainingNetwork,Euro- 2Theabbreviationsusedare:14DM,Ianosterol14-(cid:1)-demethylase;HUVEC, glycoArraysProject,partoftheFP7PeopleProgramme. humanumbilicalveinendothelialcell(s);VEGFR2,VEGFreceptor2;PLC(cid:2)1, □S Theon-lineversionofthisarticle(availableathttp://www.jbc.org)contains phospholipaseC(cid:2)1;EGFR,epidermalgrowthfactorreceptor;mTOR,mam- supplementalFig.1. malian target of rapamycin; RTK, receptor tyrosine kinase; endo H, 1Towhomcorrespondenceshouldbeaddressed:JunO.Liu,725N.WolfeSt., endoglycosidaseH;PNGaseF,peptide:N-glycosidaseF;dMM,deoxyman- Hunterian 516, Baltimore, MD 21205. Tel.: 410-955-4619; Fax: 410-955- nojirimycin;LacNAc,N-acetyllactosamine;ER,endoplasmicreticulum;Sws, 4620;E-mail:[email protected]. swainsonine;PDI,proteindisulfideisomerase. This is an Open Access article under the CC BY license. DECEMBER23,2011•VOLUME286•NUMBER51 JOURNALOFBIOLOGICALCHEMISTRY 44045 ItraconazoleInhibitsVEGFR2GlycosylationandSignaling thesis. Conflicting reports on the potency of itraconazole CellCulture—HUVEC(Lonza)weregrowninEGM-2bullet againsthuman14DM,whichisinvolvedincholesterolsynthe- kitmedium(Lonza)andusedforexperimentsatpassageeight sis,callintoquestionwhether14DMinhibitionistherelevant or lower. ACHN cells (a gift of Prof. Hans Hammers, Johns mechanism for itraconazole’s antiangiogenic effects. In addi- Hopkins) were grown in minimum Eagle’s medium (Invitro- tion,wehaveshownthatotherazoleantifungalsarenotpotent gen)supplementedwith10%FBS(Invitrogen)and1%penicil- inhibitorsofendothelialcellproliferation,aninvitroassayfor lin/streptomycin(Invitrogen).Bothcelllinesweremaintained antiangiogenicpotential,andthatinacompleteseriesofitra- inahumidifiedincubatorat37°Cwith5%CO . 2 conazole stereoisomers, antifungal activity did not track with Drug Treatment and Western Blotting—Unless otherwise activity against endothelial cell proliferation (1, 8). This evi- noted,HUVECwereseededin6-welldishesatadensityof5(cid:1) dence strongly suggests that itraconazole’s antiangiogenic 104cells/wellin3mlofmediumandallowedtorecoverover- propertiesareelaboratedthroughanasyetunidentifiedmech- night.Themediumwasthenchangedto2mloffreshmedium, anism. Previous attempts to explore itraconazole’s cellular anddrugswereimmediatelyaddedfrom200(cid:1)DMSO(Fisher) effectsrevealedthatinhumanumbilicalveinendothelialcells stocksalongwithvehiclecontrols.InexperimentswithACHN (HUVEC),itraconazoleinducesanaccumulationofcholesterol cells,cellswereseededatadensityof2(cid:1)105cells/well.Aftera inlateendsomes/lysosomesandinhibitsthemammaliantarget 24-h treatment, the cells were lysed by the addition of SDS ofrapamycin(mTOR)(9).Itraconazolealsoinhibitshedgehog samplebufferandincubatedonicefor10minfollowedbyboil- signalinginNIH-3T3cellsandinmedulloblastomaxenografts ingfor10min.Forphospho-VEGFR2(CellSignaling,catalog andhasbeenshowntoinhibitN-glycosylationinmacrophages no.2478),VEGFR2(CellSignaling,catalogno.2479),VEGFR1 (10,11).Howcloselytheseeffectsaretiedtothedirectmecha- (CellSignaling,catalogno.2893),PLC(cid:2)1(CellSignaling,cata- nismofitraconazoleandtowhatdegreetheydrivetheinvivo logno.2822),andphospho-PLC(cid:2)1(CellSignaling,catalogno. antiangiogeniceffectsofthedrugisnotknown. 2821) blotting, lysates were subjected to 6 or 8% SDS-PAGE. Angiogenesisispromotedbytumor-elaboratedgrowthfac- For pS6K (Cell Signaling, catalog no. 9205), S6K (Santa Cruz tors,suchasVEGFandfibroblastgrowthfactor(FGF).These Biotechnology, Inc., catalog no. sc-8418), phospho-ERK1/2 ligandsbindtoreceptortyrosinekinases(RTKs)expressedon (CellSignaling,catalogno.9101),ERK1/2(SantaCruzBiotech- endothelialcellsandinduceactivationofdownstreamsignaling nologies,Inc.,catalogno.sc-94),andepidermalgrowthfactor after receptor autophosphorylation. Phospholipase C, phos- receptor(EGFR)(CellSignaling,catalogno.2232)blotting,pro- phatidylinositol-3kinase,andproteinkinaseCareamongthe teinswereseparatedby10%SDS-PAGE.Proteinsweretrans- keysignalingintermediatesthatrelaytheVEGFbindingsignal ferredtoPVDF(Bio-Rad)ornitrocellulose(Bio-Rad)inthecase toeffectorsthatultimatelydriveendothelialcellproliferation, of phospho-S6K blots. Membranes were blocked with 5% migration,andsurvival(12,13).ForbothFGFandVEGF,there bovineserumalbumin(BSA)(Sigma)inTBS-T(0.5%Tween20 aremultipleRTKsthatbindeachligand,andtherearemultiple (Sigma))andthenincubatedwithprimaryantibodyin1%BSA isoformsandsplicevariantsofeachgrowthfactor.Inthecaseof in TBS-T, followed by incubation with HRP-conjugated anti- VEGF-A,thepredominantVEGFfamilymembertoparticipate rabbit or anti-mouse IgG (GE Healthcare) also in 1% BSA in inpathologicalangiogenesis,thereareseveralRTKsthatactas bindingpartners.TheseincludeVEGFR1,VEGFR2,PDGFR(cid:1), TBS-T.Inthecaseofphospho-S6Kblots,blockingandallincu- andPDGF(cid:3)aswellasthenon-RTKco-receptors,neuropilin1 bationstepswerecarriedoutin5%blotto(SantaCruzBiotech- nology, Inc.) in TBS-T. Membranes were washed three times and2(13–15).OfthefamilyofVEGFreceptors,VEGFR2plays with TBS-T before and after the secondary antibody incuba- theprimaryroleinpathologicalangiogenesis(12,16–18). tions. HRP substrate (Immobilon Western, Milipore) was Inourcontinuingeffortstobetterunderstandhowitracona- addedfor1–5min,andbandswerevisualizedwithanEastman zole influences endothelial cell function, we serendipitously KodakCo.ImageStation440CF.Quantitationofbandinten- observed that treatment of HUVEC with itraconazole signifi- sitywascarriedoutwithImageJusingthebackgroundsubtrac- cantly altered the migration pattern of VEGFR2 during SDS- tionmodule(version1.43u,NationalInstitutesofHealth).All PAGE.Inthiswork,wehaveidentifiedthecauseofthemigra- tion shift, explored the functional consequences of the Westernblotsshownarerepresentativeofthreeindependent itraconazole-induced VEGFR2 changes, and sought to deter- experiments with the exception of the 125I-VEGF165 experi- minetherelationshipbetweenthepreviouslyknownactivities ments,whichwereperformedinduplicate. of itraconazole and the effects we observed on VEGFR2. We VEGFStimulationExperiments—1.5(cid:1)105HUVECin4ml havealsoassessedthedegreetowhichotherRTKfamilymem- ofmediumwereseededina6-cmdishandallowedtorecover bersandothercelltypesweresimilarlyaffectedbyitraconazole. overnight. The medium was then changed to 2 ml of basal EGM-2 medium with 0.1% FBS, and cells were treated with EXPERIMENTALPROCEDURES drugs from 200(cid:1) DMSO stocks or vehicle alone for 24 h. Chemicals and Reagents—Itraconazole and ketoconazole RecombinanthumanVEGF wasthenaddedtoafinalcon- 165 werepurchasedfromSigma.Otherazoleswereobtainedfrom centrationof25ng/mlfroma100(cid:1)stockinbasalEGM-2with theJohnsHopkinsDrugLibrary(1).Rapamycinandsunitinib 0.1%FBSfreshlypreparedfromfrozen100(cid:4)g/mlstocksin0.1% werefromLCLaboratories.Swainsonineandcastanospermine BSAinPBS.Thecellswerestimulatedfor2–60minandtrans- were from Tocris, and deoxymannojirimycin was from Enzo ferredtoicealongwithanunstimulatedcontrol.Themedium Life Sciences. Recombinant human VEGF was purchased was aspirated, and the cells were immediately lysed with the 165 fromR&Dsystems. addition of 240 (cid:4)l of 2(cid:1) SDS sample buffer. After a 10-min 44046 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER51•DECEMBER23,2011 ItraconazoleInhibitsVEGFR2GlycosylationandSignaling incubationonice,thelysateswereboiledfor10minandthen P-40inPBS.Thebeadswerethenresuspendedin100(cid:4)lofPBS subjectedtoSDS-PAGE. andtransferredtoanewtube.Thesupernatantwasremoved, FilipinStaining—Theseexperimentswerebasedonprevious andthebeadswereboiledin90(cid:4)lof1(cid:1)SDSsamplebuffer. work (9). HUVEC were seeded at 3 (cid:1) 104 cells/well of an The samples were split into two equal volumes, and the pro- 8-chamberglassslide(Lab-Tek)in400(cid:4)lofmedium.Afteran teinsweresubjectedto6%SDS-PAGE.Onesetofsampleswas overnightrecovery,drugswereaddedfrom200(cid:1)DMSOstocks transferredtoaPVDFmembrane,andVEGFR2wasanalyzed along with vehicle controls. Following a 24-h treatment, the byWesternblot.Theotherwasfixedinthegelbyincubation cellswerefixedin4%paraformaldehydeinPBS(pH7.4)for20 with10%aceticacidand30%MeOHfor0.5handthendriedfor minandthenwashedthreetimeswith400(cid:4)lofPBS.200(cid:4)lof 2hat80°C.Thedriedgelwasexposedtofilmfor3–4weeksat filipin staining solution (50 (cid:4)g/ml filipin (Sigma, catalog no. (cid:2)70°Cpriortodeveloping. F9765)dilutedfroma100(cid:1)stockinDSMOstoredinthedark GlobalN-GlycanAnalysis—9.2(cid:1)105HUVECwereseeded and made from powder stored under argon) and slides were in15-cmdishesandallowedtorecoverovernightin20mlof incubated in the dark for 2 h atroom temperature. The cells medium. The medium was then changed to 36.5 ml of fresh werethenwashedthreetimeswith400(cid:4)lofPBS,mountedwith medium, and the cells were treated with 800 nM itraconazole Immu-mount(Thermo),andstoredinthedarkpriortoimag- (froma200(cid:1)DMSOstock)orvehiclealonefor24h.Theplates ingwithaZeissAxioExaminerwith710NLO-Metamultipho- werewashedthreetimeswith15mlofice-coldPBSandthen tonandconfocalmodule.Theseexperimentswereperformed scrapedinto5mlofice-coldPBS,collectedbycentrifugation induplicate. (500(cid:1)g),andfrozeninliquidN .Approximately9(cid:1)106cells 2 Proliferation Assays—These assays were performed as from each treatment condition were processed as described reported previously (19). ACHN cells were seeded at 8,000 previously (22, 23). Briefly, all samples were subjected to cells/well. homogenizationusinga130-wattVibra-Cellultrasonicproces- 125I-VEGFReceptorCross-linking—Theseexperimentswere sor (VC 130 PB, Sonics & Materials) within a sound-abating adaptedfromthemethodsofNeufeldandco-workers(20,21). enclosureinextractionbuffer(25mMTris,150mMNaCl,5mM 3(cid:1)105HUVECwereseededon6-cmdishesin4mlofmedium EDTA, and 1% CHAPS at pH 7.4) and subsequently dialyzed andallowedtorecoverovernight.Themediumwaschangedto against4(cid:1)4.5litersof50mMammoniumbicarbonate,pH8.5, 2mlofbasalEGM-2with0.1%FBS,andeithervehicleoritra- at4°Cfor48h. conazole (800 nM final concentration) from a 200(cid:1) DSMO Afterdialysis,thesampleswerelyophilizedandsubjectedto stockwasadded.Aftera24-hincubation,theplatewastrans- reduction, carboxymethylation, and tryptic digestion. Reduc- ferredto4°Candwashedtwicewith5mlofice-coldPBS.An tionwascarriedoutin1mlof50mMTris-HClbuffer,pH8.5, aliquot of 1.4 ml of serum-free EGM-2 with 5 ng/ml 125I- containing2mg/mldithiothreitol,at37°Cinawaterbathfor VEGF (PerkinElmer Life Sciences) (diluted from a 100(cid:1) 1h.Thesampleswerethencarboxymethylatedbytheaddition 165 stock) was added. For one of two vehicle-treated plates, 100 ofiodoaceticacid(5-foldmolarexcessoverdithiothreitol),and ng/ml cold VEGF was also added to the medium prior to thereactionwasallowedtoproceedatroomtemperatureinthe 165 transfer to the cells (competition sample). The cold VEGF darkfor1.5h.Carboxymethylationwasterminatedbydialysis 165 wasdilutedfroma100(cid:4)g/mlstockin0.1%BSAinPBS.Aftera against4(cid:1)4.5litersof50mmammoniumbicarbonate,pH8.5, 2-hincubationwithrockingat4°C,thecellswerewashedonce at4°Cfor48h.Afterdialysis,thesampleswerelyophilized.The with4.5mlofice-coldPBSandmovedtoroomtemperature. reduced carboxymethylated proteins were then digested with Analiquotof2.5mlof0.15mMdisuccinimidylsuberate(Sigma) N-p-tosyl-L-phenylalanine chloromethyl ketone-pretreated inPBS(dilutedfromafreshlymade20mMstockinDMSO)was bovinepancreastrypsin(EC3.4.21.4;Sigma)for16hat37°Cin added,andtheincubationwascontinuedfor15minpriortothe 50 mM ammonium bicarbonate buffer, pH 8.4. The products addition of 200 (cid:4)l of quenching buffer (10 mM Tris-HCl (pH were purified by C18 Sep-Pak(cid:2) (Waters) as described previ- 7.5),200mMglycine,2mMEDTA).Aftera1-minincubation, ously(24). theplateswerereturnedto4°Candwashedoncewith4.5mlof Peptide N-glycosidase F digestion of the tryptic glycopep- PBS.Analiquotof200(cid:4)lofice-coldlysisbuffer(50mMTris- tideswascarriedoutin50mMammoniumbicarbonatebuffer, HCl(pH7.5),150mMNaCl,1%NonidetP-40,10mMEDTA, pH8.5,for20hat37°Cwith5unitsofenzyme(RocheApplied 10%glycerol,proteaseinhibitors(CompleteEDTA-free;Roche Science).ThereleasedN-glycanswerepurifiedfromO-glyco- AppliedScience))wasthenadded,andthecellswerescraped peptides and peptides by chromatography on a Sep-Pak C18 fromtheplatesandcollectedina1.5-mltube,whichwasthen cartridge(WatersCorp.,Milford,MA)andsubsequentlymeth- restedat4°Cfor15min.Thetubeswerethenspunat10,000(cid:1) ylatedusingthesodiumhydroxidepermethylationprocedure gat4°Cfor10min,andthesupernatantwastransferredtoa asdescribedpreviously(22). newtube.Analiquotof200(cid:4)lofthesupernatantwascombined MALDI-TOFdatawereacquiredonaVoyager-DESTRmass ina0.5-mltubewith1.5(cid:4)gofanti-VEGR2antibody(CellSig- spectrometer (Applied Biosystems, Foster City, CA) in the naling,catalogno.2479)froma1mg/mlstockinPBSandincu- reflectronmodewithdelayedextraction.Permethylatedsam- batedfor2hat4°Conarotatingwheel.Themixturewasthen plesweredissolvedin10(cid:4)lof70%(v/v)aqueousmethanol,and addedto30(cid:4)lofproteinADynabeads(Invitrogen),whichwere 1(cid:4)lofthedissolvedsamplewaspremixedwith1(cid:4)lofmatrix prewashedwith1mlofPBSina0.5-mltubeandrotatedfor20 (20 mg/ml 2,5-dihydroxybenzoic acid in 70% (v/v) aqueous minat4°C,afterwhichtimethemixturewastransferredtoa methanol), spotted onto a target plate, and dried under 1.5-mltubeandwashedthreetimeswith500(cid:4)lof0.1%Nonidet vacuum. DECEMBER23,2011•VOLUME286•NUMBER51 JOURNALOFBIOLOGICALCHEMISTRY 44047 ItraconazoleInhibitsVEGFR2GlycosylationandSignaling The MS data were processed using Data Explorer 4.9 soft- withrotationat4°C,thebeadswerewashedthreetimesin1ml ware (Applied Biosystems). The mass spectra were base line- of lysis buffer (5 min of rotation per wash) and subsequently corrected (default settings) and noise-filtered (with a correc- boiledin60(cid:4)lof2(cid:1)SDSsamplebufferfor10min.Thesuper- tion factor of 0.7) and then converted to ASCII format. The natantwasthenrunonSDS-PAGEalongwiththeinputfrac- processed spectra were then subjected to manual assignment tionsandanalyzedbyWesternblot. and annotation with the aid of the glycobioinformatics tool Sterol Rescue Experiments—These experiments were based GlycoWorkBench(25). onworkbyChristianetal.(26)thatwaspreviouslyappliedto N-Glycan Digestions—HUVEC were seeded at 4 (cid:1) 105 the rescue of itraconazole-induced effects in HUVEC (9). cells/10 ml of medium in a 10-cm dish. After an overnight HUVECwereseededat5(cid:1)104cells/wellina6-welldishin3ml recovery, the medium was changed to 8 ml of fresh medium, of medium. After an overnight recovery, the medium was andthecellsweretreatedwithitraconazolefroma200(cid:1)stock changed to 2 ml of fresh medium, and the free sterols, free inDMSOorvehiclealone.Thecellswerewashedtwicewith10 methyl-(cid:3)-cyclodextrin,andsterol(cid:3)methyl-(cid:3)-cyclodextrincom- mlofice-coldPBSandlysedbytheadditionof500(cid:4)loflysis plexeswereaddedfrom100(cid:1)stocksfollowedbydrugaddition buffer (50 mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% from200(cid:1)stocksinDMSOorvehiclealone.Topreparethe Triton-X-100, protease inhibitors (Complete EDTA-free, sterol(cid:3)methyl-(cid:3)-cyclodextrin complexes, cholesterol (Sigma) RocheAppliedScience))withrockingat4°Cfor20min.The or(cid:3)-estradiol (Sigma) from 20 mg/ml stocks in ethanol were lysateswerecollectedbyscrapingthedishandthencentrifuged combined with filter-sterilized 10% methyl-(cid:3)-cyclodextrin for10min,10,000(cid:1)gat4°C.Theproteinconcentrationinthe (Sigma)inPBStogiveafinal0.4mg/mlsterolconcentration. supernatant was measured using a D protein assay kit (Bio- Aliquotsof0.4mg/mlsterolinPBSonly,10%methyl-(cid:3)-cyclo- c Rad)andnormalizedbytheadditionoflysisbufferasneeded. dextrinwithethanolvehicle,andethanolinPBSonlywerealso Equalamountsofprotein(19–34(cid:4)g)weredigestedat37°Cin prepared.Allsamplesweresolubilizedbythreecyclesofvor- 300-(cid:4)lreactionswithsialidase(specificityfor(cid:1)2–3,(cid:1)2–6,and texing followed by (cid:3)5-min incubations at 42°C prior to the (cid:1)2–8N-acetyl-neuraminicacidresidues),endoH,andPNGase addition to cells to give 4 (cid:4)g/ml sterol and 0.1% methyl-(cid:3)- FpurchasedfromNewEnglandBiolabsaccordingtotheman- cyclodextrinfinalconcentrations.Allsolutionswereprepared ufacturer’sinstructions.Thesialidasereactionwascarriedout fresh.Attheendofa24-hincubation,thesampleswerepro- for5min,andtheendoHandPNGaseFreactionswerecarried cessedforWesternblottingasdescribedabove. outfor40min.Attheendofthereaction,thesamples,along Immunofluorescence—HUVECwereseededat2(cid:1)104cells/ withundigestedcontrols,wereboiledinSDSsamplebufferand wellofa12-welldishin1mlofmediumonanEtOH-sterilized analyzedbyWesternblot.InthecaseofACHNcells,thepro- 18-mmglasscoverslip(Fisher).Afteranovernightrecovery,the cedurewasmodifiedasfollows.1.5(cid:1)106cellswereseededon medium was changed to 1 ml of fresh medium, and the cells 10-cmdishesin10mlofmediumwith10%FBSandallowedto weretreatedwithdrugsfrom200(cid:1)stocksinDMSOorvehicle recoverovernight.Themediumwaschangedto10mloffresh alonefor24h.Themediumwasthenaspirated,andthecells mediumwith2%serum,andthecellsweretreatedwithdrugs werefixedin0.7mlof4%paraformaldehydeinPBSfor20min. for 24 h. A sample of 100 (cid:4)g of protein was used for each Followingthreewasheswith0.7mlofPBS,thecellswereper- digestion. miabilizedwith0.7mlof0.1%TritonX-100inPBSfor2min Surface Protein Biotinylation—HUVEC were seeded and andthenblockedwith0.7mlof2%filteredgoatserum(Sigma) treatedwithdrugsasintheVEGFbindingexperiments,except inPBSfor1hatroomtemperature.Theblockingsolutionwas thatthedrugincubationsweredonein4mlofmedium.Fol- removed,andthecoverslipswereincubatedovernightat4°C lowingthetreatmentperiod,thecellswerewashedtwicewith5 with 25 (cid:4)l of primary antibody solution (1:50 anti-VEGFR2 mlofice-coldPBSandthenincubatedwith2.5mlofice-cold (CellSignaling,catalogno.2479)and1:50anti-PDI(Enzo,cat- 0.5mg/mlSulfo-NHS-LC-Biotin(Thermo)inPBSfor30min alogno.ADI-SPA-891)or1:1000anti-GM130(BDBiosciences, withrockingat4°C.Afterwashingoncewith5mlofice-cold catalogno.610823)in1.25%BSAinPBS).Thecoverslipswere PBS,thecellswereincubatedwith2.5mlof25mMTris(pH8.0) thenwashedthreetimesin0.7mlofPBSandincubatedfor1h for 15 min at 4°C. The cells were again washed with 5 ml of atroomtemperaturewith25(cid:4)lofsecondaryantibodysolution ice-coldPBSandthenlysedin200(cid:4)loflysisbuffer(50mMTris (1:800goatanti-rabbitAlexafluor488(Invitrogen,catalogno. (pH 8.0), 150 mM NaCl, 0.1% SDS, 1% Nonidet P-40, 0.5% A11008), 1:800 goat anti-mouse Alexafluor 594 (Invitrogen, sodiumdeoxycholate,10mMpyrophosphate,10mMglycero- catalog no. A11005), and DAPI (0.1 (cid:4)g/ml) in 1.25% BSA in phosphate, 50 mM NaF, 0.5 mM NaVO , protease inhibitors PBS).Followingthreewasheswith0.7mlofPBS,thecoverslips 4 (Complete EDTA-free, Roche)) by incubation for 20 min at weremountedwith15(cid:4)lofImmumount(Fisher)andsealed 4°C.Thelysateswerecollectedbyscrapingthedishandthen withclearnailpolish.Confocalimagingwasperformedusinga centrifugedfor10min,10,000(cid:1)gat4°C.Theproteinconcen- Zeiss710NLOMetamultiphotonconfocalmicroscopeandZen trationinthesupernatantwasdeterminedusingaD protein software(CarlZeiss).Representativemicrographsweretaken c assay kit (Bio-Rad) and normalized by the addition of lysis of2fields/condition/independentexperiment. bufferasneeded.Analiquotof200(cid:4)lofsupernatantwasthen RESULTS applied to high capacity steptavidin-agarose beads (Thermo), whichhadbeenequilibratedwithtwo5-minincubationswith1 Itraconazole Induces the Accumulation of a Low Apparent mloflysisbuffer.Asampleoflysatewasalsoboiledfor10min MolecularWeightVEGFR2Species—VEGFR2ordinarilyexists inSDSsamplebufferasaninputcontrol.Aftera1-hincubation as a major high molecular weight species and a minor lower 44048 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER51•DECEMBER23,2011 ItraconazoleInhibitsVEGFR2GlycosylationandSignaling (30–32)(Fig.2A).Invehicle-treatedcells,VEGFR2andPLC(cid:2)1 phosphorylationpeakedby2minafterVEGFaddition,andthe signaldecayedby30minafterstimulation.InHUVECtreated with400nMitraconazole,VEGFR2phosphorylationwasinhib- itedby80%(p(cid:4)0.05),andPLC(cid:2)1phosphorylationwasinhib- itedby60%(p(cid:4)0.05)at2minafterVEGFstimulation(Fig.2,A and B). There was no increase in phosphorylation with time, suggestingthatthedecreaseinphosphorylationat2minwas not simply a result of itraconazole delaying the kinetics of receptor activation. Treatment with 800 nM itraconazole slightly increased the inhibition of PLC(cid:2)1 phosphorylation compared with the 400 nM dose but did not further suppress VEGFR2phosphorylation,whichwasalreadynearthelimitof detection by Western blot. Notably, the degree of VEGFR2 phosphorylationinhibitionby400nMitraconazolewassimilar tothatobservedbytreatmentwithsunitinib,anantiangiogen- esisdrugthathasefficacyagainstrenalcellcarcinoma,gastro- FIGURE 1. Itraconazole induces a change in the migration pattern of intestinal stromal tumors, and pancreatic neuroendocrine VEGFR2.A,HUVECweretreatedfor24hwiththeindicateddosesofitracona- tumors and directly inhibits VEGFR2 kinase activity (33, 34). zoleorvehicle(DMSO),andVEGFR2wasanalyzedbyWesternblot.B,HUVEC weretreatedasinAwiththreeinhibitorsoffungal14DM(terconazole,flu- Interestingly, although sunitinib strongly inhibited the phos- conazole,andketoconazole)andaninhibitorofhuman14DM(azalanstat). phorylationofERK1/2,adownstreameffectoroftheVEGFR2 signaling, itraconazole at doses up to 800 nM did not block molecularweightspeciesasseenonSDS-PAGE.Weobserved ERK1/2activationafterVEGFaddition. thatinHUVECtreatedwithitraconazole,themigrationpattern InorderforVEGFR2tobecomeactivated,thereceptormust of VEGFR2 was altered such that only the lower molecular firstbindVEGF,dimerize,andthenundergoautophosphoryl- weightspecieswaspresent(Fig.1A).Theshiftfromthehighto ation in trans (18, 35). Given the strong inhibition of VEGF- lowmolecularweightspecieswasapparentwhenHUVECwere stimulatedVEGFR2signalingbyitraconazole,wenextsought treated with 200 nM itraconazole and was nearly complete at todeterminewhichstepofVEGFR2activationwasperturbed. 400 nM itraconazole, which is in line with the IC we have FollowingthetechniquesusedbyNeufeldandco-workers(20, 50 previouslyreportedfortheitraconazole-inducedinhibitionof 21) to initially identify the VEGFR2 receptor on the basis of HUVEC proliferation, cholesterol accumulation, and mTOR VEGFbinding,weevaluatedtheabilityofVEGFR2initracona- inhibition(1,9).Thecorrelationofthesepotenciessuggestedto zole-treated cells to bind 125I-VEGF . After drug treatment 165 usthattheeffectswererelatedtoasimilarunderlyingmecha- using the same conditions as in the signaling experiments, nismandthereforewarrantedfurtherexploration. HUVEC were stimulated with the radiolabeled ligand, which Becauseitraconazoleinhibits14DM,wefirsttestedwhether wasthencross-linkedtothereceptorwiththebidentatecross- thisactivitycontributedtotheVEGFR2migrationpatternshift. linking agent disuccinimidyl suberate. Because VEGF binds a We treated HUVEC with terconazole, fluconazole, and keto- number of receptors but we were specifically interested in conazole,whicharethreeothermembersoftheazoleantifun- VEGFR2,weimmunoprecipitatedVEGFR2andevaluatedthe galclass,andazalanstat,anon-azolesmallmoleculeinhibitorof resultant fraction by Western blot and autoradiography (Fig. human14DMwithanapparentK of800pM(27).Nonewere 2C). As expected, there was strong labeling of VEGFR2 after i abletoinducesimilarchangesinVEGFR2migration(Fig.1B). vehicle treatment, which was abrogated by the addition of a Notably, ketoconazole has significant crossover inhibition of 20-foldexcessofcoldVEGF duringtheligand-bindingstep. 165 human14DMatdosesmuchlowerthanweusedhere(28,29). In contrast, itraconazole treatment resulted in a nearly com- Thus, 14DM inhibition could not explain the effects of itra- plete loss of labeling, suggesting that itraconazole prevented conazoleonVEGFR2. VEGFbindingtoVEGFR2. Itraconazole Prevents VEGF-stimulated Signaling by Complete N-Glycosylation of VEGFR2 Is Inhibited by VEGFR2—Havingobservedtheitraconazole-inducedchanges Itraconazole—GiventheclearinhibitionofVEGFR2signaling inVEGFR2migration,wehypothesizedthatVEGFR2function and ligand binding after itraconazole treatment, we next may be perturbed. To test this, HUVEC were incubated in focused on understanding the nature of the itraconazole-in- reducedserummediuminthepresenceofvaryingdoesofitra- duced VEGFR2 molecular weight changes. Because itracona- conazoleorvehicleandthenstimulatedwithVEGF for2–60 zolewasrecentlyshowntointerferewiththeglycosylationof 165 min alongside unstimulated controls. After stimulation, the theCD14receptorandotherproteinsinmacrophages,wehad cells were immediately lysed, and the ligand-induced auto- a strong suspicion that itraconazole was also modulating transphosphorylation of the receptor at Tyr-1175, a require- VEGFR2glycosylation,therebyleadingtothealteredmigration mentforVEGFR2signaling,wasdeterminedbyWesternblot- oftheprotein(11).Thismodelisconsistentwithearlyworkon ting (30). Phosphorylation of phospholipase C (cid:2)1 (PLC(cid:2)1), a VEGFR2, which revealed that the protein was N-glycosylated directbindingpartnerofVEGFR2thatsignalsdownstreamina and that in [35S]methionine pulse-chase experiments, the phospho-Tyr-1175-dependent manner, was also examined newly synthesized protein transits through a low molecular DECEMBER23,2011•VOLUME286•NUMBER51 JOURNALOFBIOLOGICALCHEMISTRY 44049 ItraconazoleInhibitsVEGFR2GlycosylationandSignaling FIGURE2.ItraconazoleblocksVEGF bindingtoVEGFR2andinhibitsVEGFR2signaling.A,HUVECweregrowninlowserummediumfor24hinthe 165 presenceofvehicle(DMSO),itraconazole(Ita),ortheVEGFR2inhibitorsunitinib.ThecellswerethenstimulatedfortheindicatedtimeswithVEGF ,lysed,and analyzedbyWesternblotforanactivatingphosphorylationonVEGFR2(Tyr-1175),itsimmediatedownstreambindingpartnerPLC(cid:2)1(Tyr-783)1,6a5ndadown- streameffectorERK1/2(Thr-202/Tyr-204).Totalproteinlevelsareshownascontrols.B,forthe400nMitraconazolesamples,thephosphorylatedsignalswere quantitated,normalizedtothelevelsoftotalproteinandthentovehiclecontrol.n(cid:5)3independentexperiments;errorbars,S.E.;*,p(cid:4)0.05.C,HUVECwere treatedwith800nMitraconazoleorvehicleunderthesameconditionsasinAandthenwereincubatedwith125I-VEGF165withorwithoutcompetitionwithcold VEGF (20-foldexcess).Theligandwascross-linkedtoVEGFR2,whichwasthenimmunoprecipitatedandsubjecttobothautoradiographyandWestern 165 blotting(IB)forVEGFR2. weightintermediatesimilarinsizetothespeciesthataccumu- wassensitivetobothendoHandPNGaseFbutwasinsensitive lates after itraconazole treatment (31). The same study also to sialidase. This indicated that the VEGFR2 migration shift showedthatonlythematureproteincontainedphosphorylated observedafteritraconazoletreatmentwasduetotheaccumu- tyrosinesafterVEGFstimulation,whichissimilartoourobser- lationofahypoglycosylatedVEGFR2species. vationsontheitraconazole-inducedchangesinVEGFR2. Because the ER contains the calnexin/calreticulin quality Wethusexaminedtheeffectsofvariousknowninhibitorsof control chaperones that retain improperly glycosylated pro- N-linked glycosylation on VEGFR2 and compared them with teins, we performed cell surface biotinylation experiments to that of itraconazole. Altering glycosylation in HUVEC using determine if trafficking of the hypoglycosylated VEGFR2 was tunicamycin, swainsonine, deoxymannojirimycin (dMM), or disturbed (36). After treatment under the same conditions in castanospermine,inhibitorsofdifferentenzymesintheN-gly- whichweassessedVEGFR2signalingandVEGFbinding,cell cosylation pathway, clearly affected the migration pattern of surfaceproteinswerereactedwithNHS-biotinandthencap- VEGFR2(Fig.3,AandC).Thissuggestedthatperturbedglyco- turedonstreptavidinbeadsafterlysis(pull-downfraction)and sylationinHUVECmightunderliethemobilityshiftsseenafter analyzed by Western blot. In contrast to tubulin, which is an itraconazoletreatment.Interestingly,timecourseexperiments intracellular protein and therefore not biotinylated, VEGFR2 with tunicamycin and dMM indicated that they induced fromvehicle-treatedcellswaspresentinthepull-downfraction VEGFR2shiftsmuchmorerapidlythanitraconazole(Fig.3,B (Fig.3F).However,itraconazoletreatmentstronglyreducedthe andC).Wenextdigestedlysatesfromitraconazoleorvehicle- levelsofVEGFR2onthecellsurface. treatedHUVECwithsialidase,whichcleaves(cid:1)2–3,(cid:1)2–6,and TodeterminethefateofthehypoglycosylatedVEGFR2,its (cid:1)2–8N-acetyl-neuraminicacidresiduesfromcomplexN-gly- subcellular localization was determined by immunofluores- cans; endo H, which releases either hybrid or oligomannose cence(Fig.4A).Initraconazole-treatedcells,VEGFR2accumu- N-linkedsugars;andPNGaseF,whichreleasesallN-linkedsug- latedinaunipolar,perinuclear,Golgi-likestructure,whichpar- ars, respectively (Fig. 3D). Western blots of vehicle-treated tially colocalized with the cis-Golgi marker, GM130. In lysates showed that the upper band was sensitive to sialidase contrast,VEGFR2invehicletreatedcellswasuniformlydistrib- andPNGaseF,whereasthelowerbandwassensitivetoendoH utedinsmallpunctithroughoutthecytoplasm.TheVEGFR2 andPNGaseF.ThisconfirmsthatbothspeciesareN-glycosy- signal was clearly not associated with the ER marker PDI in lated and indicates that the upper band contains the more eithervehicle-oritraconazole-treatedsamples(Fig.4B).Treat- highly processed complex N-glycans. In contrast, all of the mentwitheithercastanospermine,dMM,orswainsoninefailed VEGFR2presentinthelysatesfromitraconazole-treatedcells toinduceasimilarVEGFR2accumulation(Fig.4C),suggesting 44050 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER51•DECEMBER23,2011 ItraconazoleInhibitsVEGFR2GlycosylationandSignaling FIGURE3.ItraconazolealtersN-linkedglycosylationinHUVEC.A,WesternblotofVEGFR2fromHUVECtreatedfor24hwithitraconazole(Ita)orN-linked glycosylationinhibitorsSws,dMM,orcastanospermine(Cast).HUVECweretreatedfortheindicatedtimeswith800nMitraconazole(B),tunicamycin,ordMM (C)priortoanalysisofVEGFR2byWesternblot.D,lysatesfromitraconazole-orvehicle-treatedHUVECweredigestedwithsialidase,endoH,orPNGaseF,and themigrationpatternofVEGFR2wasanalyzedbyWesternblot.E,partialMALDI-TOFmassspectraofthehighmolecularmassregionoftheglobalpopulation ofN-glycansfromHUVECtreatedwith800nMitraconazoleorvehiclealone.TheinsetshowsaWesternblotforVEGFR2fromsamplesofthecellpelletsusedfor theglobalprofiling.SeesupplementalFig.1forcompletespectraandamoredetaileddescriptionoftheannotations.F,cellsurfaceproteinsfromitraconazole- treatedHUVECorvehiclecontrolswerebiotinylated,capturedonstreptavidinbeads,andsubjectedtoWesternblotting.Tubulin,acontrolintracellular protein,waspresentonlyintheinputfraction.Yellowcircles,galactose;greencircles,mannose;bluesquares,N-acetylglucosamine;yellowsquares,N-acetyl- galactosamine;redtriangles,fucose;purplediamonds,N-acetylneuraminicacid. DECEMBER23,2011•VOLUME286•NUMBER51 JOURNALOFBIOLOGICALCHEMISTRY 44051 ItraconazoleInhibitsVEGFR2GlycosylationandSignaling tionpatternwithaneffectiveconcentrationstartingfrom200 nM(Fig.5A).Thiswassimilartotheconcentrationthatinduced hypoglycosylation of VEGFR2 and the IC for proliferation 50 andtheotheritraconazole-inducedphenotypesinHUVEC. Next,weexaminedtheeffectsofitraconazoleontheN-gly- cosylation pattern of another RTK family member, EGFR, in ACHNcells,whichisarenalcarcinomaline.Inaninitialexper- iment, we determined whether itraconazole affected ACHN cellproliferation.Becauseitraconazoleishighlyprotein-bound inserum,wereasonedthatinthisexperiment,thepotencyof itraconazole would be serum concentration-dependent and thereforetestedmediawithboth10and2%serum(Fig.5C).As expected,ACHNcellswereconsiderablymoresensitivein2% serum, with an EC of 373 nM. We note that even with 2% 50 serum,ACHNcellsweresignificantlylesssensitivetoitracona- zolethanHUVEC,asseenpreviouslywithothercelltypes(1). BecauseHUVECarenormallygrownin2%serum,wechoseto use the 2% serum medium for the ACHN cell glycosylation FIGURE4.SubcellularlocalizationofVEGFR2aftertreatmentwithitra- conazoleorotherglycosylationinhibitors.HUVECweretreatedfor24h experiments. Under these conditions, itraconazole increased withitraconazole(Ita;800nM)orvehicle(DMSO),fixed,andstainedwithanti- themotilityofEGFRstartingnear500nM,whichissimilarto VEGFR2andanti-GM130(A),acis-Golgimarker,oranti-PDI(B),anERmarker. C,cellsweretreatedwith500(cid:4)Mcastanospermine(Cast),500(cid:4)MdMM,50(cid:4)M the EC50 for ACHN cell proliferation, suggesting that the Sws,800nMitraconazole,orvehicle(DMSO)andtreatedasinA.Representa- migrationshiftmaybemechanisticallylinkedtotheeffectson tive confocal micrographs are shown. Bars, 20 (cid:4)m. Experiments were cellproliferation(Fig.5B).ItraconazolealsoconferredendoH repeatedintriplicateforGM130stainingexperimentsandinduplicateforPDI sensitivitytoEGFR,indicatingthat,likeVEGFR2inHUVEC, staining. itraconazolewasabletomodulatetheN-glycosylationofEGFR thatthedisruptioninVEGFR2traffickingseenafteritracona- inACHNcells(Fig.5D). zole treatment was probably not the result of impaired GlycosylationInhibitionIsIndependentofCholesterolTraf- glycosylation. ficking and mTOR Inhibition—We have previously reported N-Glycosylationisacomplexprocessdependentonmultiple that itraconazole has multiple effects on endothelial cells, enzymesthatactsequentiallyonglycoproteinsastheytransit includinginhibitionofcholesteroltrafficking(NPCphenotype) through the secretory system. To better understand at which andmTORinhibition(9).TheIC forHUVECproliferation, 50 stageitraconazolewasarrestingVEGFR2processing,wechar- cholesteroltrafficking,mTORinhibition,andVEGFR2glyco- acterizedtheN-glycanprofileofitraconazole-treatedHUVEC sylation were all similar, suggesting a common underlining using MALDI-TOF mass spectrometry (Fig. 3E and supple- mechanism. Thus, we sought to determine the relationship mental Fig. 1). Itraconazole caused a clear reduction in high betweenVEGFR2hypoglycosylationandtheseotheractivities molecular weight tetra-antennary and poly-N-acetyllac- of itraconazole. We first determined whether glycosylation tosamine(poly-LacNAc)-containingN-glycans.Thisisdemon- inhibition in general could affect cholesterol trafficking by strated by the fact that the most abundant species in the treatingHUVECwithcastanospermine,swainsonine,ordMM depictedmassrangeafteritraconazoletreatmentwasatrian- andimagingcholesterollocalizationwiththecholesterol-bind- tennaryspeciesatm/z3055.8comparedwithatetra-antennary ing dye, filipin (Fig. 6A). None of the glycosylation inhibitors species at m/z 3504.7 without itraconazole treatment. Addi- wasabletoperturbcholesteroltrafficking.Similarly,castano- tionally, the poly-LacNAc-containing species at m/z 3953.7, spermine,swainsonine,anddMMallfailedtoinhibitmTOR,as 4316.2,4490.0,and4766.1werenolongerobservedafteritra- determinedbythephosphorylationstateofS6kinase,acanon- conazole treatment. These differences would be associated icalmTORsubstrate(Fig.6B).Wealsotestedwhetherdirect withadeficiencyinlateN-glycanprocessingstepsandinthe blockade of cholesterol trafficking using U18666A or imip- caseofthepoly-LacNAc-containingN-glycansspecificallywith ramine,knowninducersoftheNPCphenotype,ormTORinhi- lackofprocessingbyenzymeslocalizedinthetrans-Golgicom- bition by rapamycin would lead to hypoglycosylation of partment(37,38).Notably,thesemassspectroscopydataalso VEGFR2(Fig.6C).Noneoftheseagentscouldrecapitulatethe indicated an increase in the relative abundance of effectscausedbyitraconazole. Man GlcNAc species,whichisconsistentwiththeeffectsof Becauseitraconazolehaspleiotropiceffects,itwaspossible 5 2 itraconazoleinmacrophages(11). thatanactivityotherthanhypoglycosylationcouldbecontrib- Itraconazole Inhibits the Glycosylation of EGFR in ACHN uting to the inhibition of VEGFR2 signaling. Thus, we took CellsandVEGFR1inHUVEC—Theresultsobtainedfromthe advantageofsmallmoleculesthatrecapitulatesubsetsofitra- global profiling of N-glycans from itraconazole-treated conazole’s activities to test their effects on VEGF-dependent HUVECsuggestedthattheeffectsonglycosylationarenotlim- activation of VEGFR2. Neither treatment with rapamycin, ited to VEGFR2. To validate this at the level of an individual U18666A,nordMMcouldmimictheeffectsofitraconazoleon protein,weexaminedasecondisoformofVEGFRinHUVEC, VEGR2 signaling (Fig. 6D). Thus, of the molecular activities VEGFR1, and found that itraconazole also affected its migra- associated with itraconazole, induction of hypoglycosylation 44052 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER51•DECEMBER23,2011 ItraconazoleInhibitsVEGFR2GlycosylationandSignaling FIGURE5.Itraconazole’seffectsonglycosylationextendbeyondVEGFR2andHUVEC.A,HUVECweretreatedwiththeindicateddosesofitraconazole(Ita) orDMSOvehicle(0(cid:4)Mitraconazoledose),andthemigrationpatternofVEGFR1wasanalyzedbyWesternblot.B,ACHNcellsweretreatedwiththeindicated concentrationsofitraconazolein2%serum,andEGFRwasanalyzedbyWesternblot.C,theeffectsofitraconazoleontheproliferationoftherenalcell carcinomaline,ACHN,inthepresenceof2or10%serum.D,lysatesfromitraconazole-treatedACHNcellsweredigestedwitheitherendoHorPNGaseFand analyzedbyWesternblotforEGFR.Errorbars,S.E. FIGURE6.Itraconazole’seffectsonVEGFR2glycosylationoccurinparalleltootheritraconazole-inducedeffects.A,cholesterollocalizationwasvisual- izedbyfilipinstainingofHUVECtreatedwith800nMitraconazole(Ita),500(cid:4)Mcastanospermine(Cast),500(cid:4)MdMM,or50(cid:4)MSws.Bar,20(cid:4)m.B,mTOR inhibitionwasdeterminedbasedonthephosphorylationstatusofitssubstrateS6kinase(S6K)aftertreatmentwithitraconazole,castanospermine,dMM,or Sws,asdeterminedbyWesternblot.C,VEGFR2migrationpatternswereanalyzedbyWesternblotinlysatesfromHUVECtreatedfor24hwithitraconazole,the mTORinhibitorrapamycin,ortwoinhibitorsofcholesteroltrafficking,U18666Aandimipramine.D,activationofVEGFR2phosphorylationbyVEGF after 165 treatmentwiththeindicatedcompoundswasassessedbyWesternblotting. wasthemostcloselylinkedtotheinhibitionofVEGF-induced CholesterolRepletionRescuesItraconazole-inducedGlycosyl- VEGFR2 autophosphorylation. Interestingly, treatment with ation and VEGFR2 Signaling Inhibition—In earlier work, we dMMdidnotblockVEGFR2activation,althoughdMMtreat- foundthattheadditionofcholesteroltoHUVECviaacyclo- mentalsoleadstohypoglycosylation. dextrincarriercouldrescuetheeffectsofitraconazoleonpro- DECEMBER23,2011•VOLUME286•NUMBER51 JOURNALOFBIOLOGICALCHEMISTRY 44053 ItraconazoleInhibitsVEGFR2GlycosylationandSignaling tration(Fig.7A).Themethyl-(cid:3)-cyclodextrin(cid:3)cholesterolrescue ofVEGFR2wasalsospecifictoitraconazole-inducedglycosyl- ation changes because dMM-induced hypoglycosylation was notaffectedbycholesterolsupplementation(Fig.7C). DISCUSSION Because itraconazole was found to possess previously unknownantiangiogenicactivity,ithasbeensubjecttoexten- sivestudiestodeconvoluteitsmechanismofinhibitionofendo- thelial cell proliferation and angiogenesis (1, 8, 9). Concur- rently,ithasenteredmultiplePhaseIIhumanclinicalstudiesas a novel agent for treating cancer. Although itraconazole has beenshowntoinhibitmTORandinducecholesteroltrafficking defects in endothelial cells, how these activities relate to the overall effects in endothelial cells has remained unknown. In thiswork,wehaveidentifiedanewmechanismbywhichitra- conazole may be affecting angiogenesis. We have shown that itraconazoleiscapableofinducingVEGFR2hypoglycosylation andthatitstronglyinhibitsVEGFR2autophosphorylationafter VEGF stimulation. Blockade of VEGF binding, secondary to VEGFR2 trafficking defects, contributes to this mechanism. TheeffectsofVEGFR2signalinginhibitionextenddownstream toPLC(cid:2)1activation.Consistentwithstudiesinmacrophages, the glycosylation effects we observed were not shared with other members of the azole class of antifungals or human 14DMinhibitors,therebyinvokingauniquemechanismunre- latedto14DMinhibition(11).Notably,theseeffectsoccurred startingat200nM,whichisfarbelowitraconazole’ssteadystate troughplasmalevel(2.6(cid:4)M)inpatientsonastandard200-mg oral dosing regimen, suggesting that this mechanism may be FIGURE7.Itraconazole-induced VEGFR2 hypoglycosylation and sig- nalinginhibitionisrescuedbysupplementationofcellularcholes- relevant in vivo (SPORANOX(cid:2) (itraconazole) package insert, terol.A,HUVECweretreatedwithitraconazoleorvehiclealoneinthe PriCara,Raritan,NJ). presenceoffreecholesterolorfree(cid:3)-estradiol,freemethyl-(cid:3)-cyclodex- trin,methyl-(cid:3)-cyclodextrin(cid:3)cholesterol,ormethyl-(cid:3)-cyclodextrin(cid:3)(cid:3)-estra- The serendipitous discovery of itraconazole’s effects on diolcomplexes.VEGFR2migrationpatternsinlysateswereanalyzedby VEGFR2 glycosylation and function makes itraconazole a Westernblot.B,theabilityofmethyl-(cid:3)-cyclodextrin(cid:3)cholesteroltorescueitra- uniqueantiangiogenicagent.Ithasbeenshownthatinhibition conazole(Itra)-inducedVEGFR2signalinginhibitioninHUVECafterVEGF stimulationwasdeterminedbyWesternblot.C,thecapacityofmethyl-1(cid:3)65- ofmTOR,cholesteroltrafficking,orVEGFRsignalingaloneis cyclodextrin(cid:3)cholesterol to rescue dMM-induced migration changes was sufficienttoblockendothelialcellproliferationand/orangio- determinedasinA. genesis (9, 39). Because itraconazole is capable of simultane- ouslyinhibitingmTORandVEGFR2signaling,itsinvivoeffi- liferation and mTOR inhibition (9). This suggested that itra- cacyasanantiangiogenicagentmaybesignificantlyenhanced conazole-inducedcholesterolmislocalizationwastheprimary as a result. Interestingly, the blockade of VEGFR2 signaling driverofitraconazole’sglobaleffects.However,givenournew after VEGF addition did not extend to the level of ERK1/2, findingthatcholesteroltraffickingdisruptionbyU18666Aand suggestingthatitraconazolemaybeaffectingonlyasubsetof imipraminecouldnotinduceVEGFR2hypoglycosylationand VEGF-responsive receptors. Sunitinib, a direct inhibitor of thatU18666AdidnotinhibitVEGFsignaling,furtherexplora- multiplereceptortyrosinekinases,includingVEGFR1,-2,and tionoftheinterplaybetweenitraconazole’seffectsandcholes- -3,PDGFR(cid:1),andPDGFR(cid:3),blockedbothPLC(cid:2)1andERKacti- terolwaswarranted.Wefoundthattheadditionofcholesterol vationinourexperiments(33).Thus,theactivationofERK1/2 via methyl-(cid:3)-cyclodextrin(cid:3)cholesterol complexes, but not byVEGFinthepresenceofitraconazolemaybeduetoother methyl-(cid:3)-cyclodextrin or free cholesterol alone, could rescue VEGF-binding receptors or receptor complexes on HUVEC, the itraconazole-induced hypoglycosylation of VEGFR2 and suggesting that VEGFR2 may be preferentially sensitive to thatmethyl-(cid:3)-cyclodextrin(cid:3)cholesterolcouldalsorescueitra- hypoglycosylation. Alternatively, the residual activation of conazole-induced VEGFR2 signaling inhibition (Fig. 7, A and VEGFR2afteritraconazoletreatmentmaybesufficienttodrive B). signalingviaERK1/2. Importantly, the addition of methyl-(cid:3)-cyclodextrin com- Havingdescribedanewactivityofitraconazoleinendothe- plexedwith(cid:3)-estradiol,asterolrelatedtocholesterol,hadno lialcells,wenextdeterminedtherelationshipbetweenglyco- effectonVEGFR2glycosylation,suggestingthatthecholesterol sylationinhibitionandtheknownmoleculareffectsofitracona- rescuewasprobablynotageneraleffectofeitheramethyl-(cid:3)- zole. We found that the induction of cholesterol trafficking cyclodextrin(cid:3)sterolcomplexorthetotalcellularsterolconcen- defectsandmTORinhibitionoccurinparalleltothehypogly- 44054 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER51•DECEMBER23,2011

Description:
preclinical models for non-small cell lung cancer (2). Angiogenesis, the .. ml of ice-cold PBS and lysed by the addition of 500 l of lysis buffer (50 mM
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.