THEJOURNALOFBIOLOGICALCHEMISTRYVOL.285,NO.19,pp.14239–14246,May7,2010 ©2010byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. The Antibacterial Cell Division Inhibitor PC190723 Is an FtsZ Polymer-stabilizing Agent That Induces Filament Assembly and Condensation*□S Receivedforpublication,December21,2009,andinrevisedform,February18,2010Published,JBCPapersinPress,March8,2010,DOI10.1074/jbc.M109.094722 Jose´ M.Andreu‡1,ClaudiaSchaffner-Barbero‡,SoniaHuecas‡,DulceAlonso§,MaríaL.Lopez-Rodriguez§, LauraB.Ruiz-Avila‡,RafaelNu´n˜ez-Ramírez‡2,OscarLlorca‡,andAntonioJ.Martín-Galiano‡ Fromthe‡CentrodeInvestigacionesBiolo´gicas,ConsejoSuperiordeInvestigacionesCientificas,RamirodeMaeztu9and §DepartamentodeQuímicaOrga´nica,FacultaddeCienciasQuímicas,UniversidadComplutenseMadrid,28040Madrid,Spain CelldivisionproteinFtsZcanformsingle-strandedfilaments EssentialcelldivisionproteinFtsZassemblesintofilaments withacooperativebehaviorbyself-switchingassembly.Subse- thatformthecytokineticringatthedivisionsite(1)andrecruits quentcondensationandbendingofFtsZfilamentsareimpor- the accessory proteins of the bacterial divisome (2–4). FtsZ, tantfortheformationandconstrictionofthecytokineticring. withanaddedmembraneanchor,canformconstrictingrings PC190723isaneffectivebactericidalcelldivisioninhibitorthat in liposomes (5). FtsZ is a member of the tubulin family of targetsFtsZinthepathogenStaphylococcusaureusandBacillus cytoskeletal GTPases, also including (cid:1)(cid:2)-tubulin, (cid:3)-tubulin, subtilisanddoesnotaffectEscherichiacolicells,whichappar- bacterialtubulinBtubA/B(3,6),anddivergentTubZs(7).FtsZ entlybindstoazoneequivalenttothebindingsiteoftheanti- andtubulinusethesamestructuralfoldandsimilarhead-to-tail tumordrugtaxolintubulin(Haydon,D.J.,Stokes,N.R.,Ure,R., protofilamentswithGTPboundattheintersubunitassociation Galbraith,G.,Bennett,J.M.,Brown,D.R.,Baker,P.J.,Barynin, interface(8),yettheyhaveevolvedtoformdifferentassemblies V.V.,Rice,D.W.,Sedelnikova,S.E.,Heal,J.R.,Sheridan,J.M., with specialized functions. Their GTPase sites are completed Aiwale,S.T.,Chauhan,P.K.,Srivastava,A.,Taneja,A.,Collins, uponcontactoftheapicalGTP-bindingdomainofonesubunit I.,Errington,J.,andCzaplewski,L.G.(2008)Science312,1673– withthebasalGTPaseactivationdomainofthenextsubunit. 1675).WehavefoundthatthebenzamidederivativePC190723 GTPhydrolysisrendersthepolymersmetastableandreadyfor isanFtsZpolymer-stabilizingagent.PC190723inducednucle- disassembly. There is evidence that unassembled tubulin, atedassemblyofBs-FtsZintosingle-strandedcoiledprotofila- unlikeotherGTPases,ispredominantlyinaninactive(curved) mentsandpolymorphiccondensates,includingbundles,coils, conformation regardless of which nucleotide is bound and andtoroids,whoseformationcouldbemodulatedwithdifferent switchesintotheactive(straight)conformationmainlythrough solutionconditions.Underconditionsforreversibleassemblyof the assembly contacts and that GTP binding lowers the free Bs-FtsZ, PC190723 binding reduced the GTPase activity and energybarrierbetweenbothconformations(6,9–11).Binding inducedtheformationofstraightbundlesandribbons,which ofthesuccessfulantitumordrugtaxoloverridestheGTP/GDP wasalsoobservedwithSa-FtsZbutnotwithnonsusceptible regulation,inducingmicrotubuleassemblyevenwithGDP(12, Ec-FtsZ. The fragment 2,6-difluoro-3-methoxybenzamide 13).Tubulinpromiscuouslyinteractswithsmallmoleculesof alsoinducedBs-FtsZbundling.Weproposethatpolymersta- natural origin that induce or inhibit its assembly. However, bilization by PC190723 suppresses in vivo FtsZ polymer therearefewerfunctionalinhibitorsforFtsZ. dynamics and bacterial division. The biochemical action of FtsZ is a relatively simple assembly machine capable of PC190723onFtsZparallelsthatofthemicrotubule-stabiliz- nucleatedlinearpolymerization.Suchcooperativebehaviorof ingagenttaxolontheeukaryoticstructuralhomologuetubu- alinearpolymerwasanticipatedbytheself-switchingassembly lin.BothtaxolandPC190723stabilizepolymersagainstdis- concept(14)andsuggestedtobepossibleforFtsZifdimeriza- assemblybypreferentialbindingtoeachassembledprotein. tioncausedaconformationalchangethatincreasestheaffinityof Itisyettobeinvestigatedwhetherbothligandstargetstruc- the next monomer to bind (3, 15). Cryoelectron microscopy of turallyrelatedassemblyswitches. unsupportedsampleshasshownthatFtsZfromEscherichiacoli canformsemiflexiblesingle-strandedfilaments(16).Theircoop- *ThisworkwassupportedbyGrantsMinisteriodeCiencia(MCINN)BFU2008- erativebehaviorisexplainedbyanunfavorablemonomerisomer- 00013(toJ.M.A.),ComunidadAuto´nomadeMadridS-BIO-0214-2006(to ization(activationswitch)betweenaninactive,assemblyincom- J.M.A.andO.L.),MCINNSAF2007-67008(toM.L.L.-R.),S-SAL-249-2006 petent, and active conformation, which is coupled to assembly, (toM.L.L.-R.),SAF2008-00451(toO.L.),RedTema´ticadeInvestigacio´n creating a nucleation barrier (16–19). On the other hand, FtsZ CooperativaenCa´ncerRD06-0020-1001(toO.L.),HumanFrontiersSci- enceProgramRGP39-2008(toO.L.)andcontractsFormacio´ndePersonal from Methanococcus jannaschii forms characteristic double- Investigatio´n(toC.S.-B.),ConsejoSuperiordeInvestigacionesCientificas strandedfilaments(20,21).AnumberofcrystalstructuresofFtsZ i3p(toS.H.),andJuandelaCierva(toA.J.M.-G.). □S Theon-lineversionofthisarticle(availableathttp://www.jbc.org)contains did not reveal a nucleotide-induced activation switch (22). The supplemental“ExperimentalProcedures,”TableS1,andFigs.S1–S6. structuralflexibilitychangescoupledtoassemblyareunknown, 1Towhomcorrespondenceshouldbeaddressed.Tel.:34-918373112(ext. requiringdeterminationofanFtsZfilamentstructure. 4381);Fax:34-915360432;E-mail:[email protected]. A cryoelectron tomography study of the Caulobacter cres- 2Presentaddress:InstitutodeEstructuradelaMateria,CSIC,Serrano113bis, 28006Madrid,Spain. centuscytoskeletonrevealedaputativeFtsZring,consistingof MAY7,2010•VOLUME285•NUMBER19 JOURNALOFBIOLOGICALCHEMISTRY 14239 This is an Open Access article under the CC BY license. FtsZAssemblyInducedbySmallAntibacterialMolecule afewshort(100nm)apparentlysingle-strandedFtsZfilaments EXPERIMENTALPROCEDURES (5-nmwide)belowtheplasmamembranenearthedivisionsite, MethodsforBs-FtsZ,Ec-FtsZ,Sa-FtsZ,andtubulinpurifica- andsuggestedthattheseFtsZpolymersgeneratetheforcethat tion, monitoring assembly with light scattering, electron constrictsthemembranefordivisionthroughiterativecyclesof microscopy, polymer pelleting, binding measurements, GTPhydrolysis,depolymerization,andrepolymerization(23). GTPase,andascreenofsolutionconditionsforassemblyare Lateral FtsZ filament association is also important for Z-ring describedunderthesupplemental“ExperimentalProcedures.” formationandconstriction.Severalproteinsareknowntobun- PC190723wasprovidedbyProlysis(32).Stocksolutions(1mM) dleFtsZfilaments,includingZipA,ZapA,andSepF(4).Helical indeuterateddimethylsulfoxide(MerckUvasol)werekeptfro- FtsZstructuresremodelbylateralassociationintotheZ-ringin zenanddry.Theywerediluteddirectlyintotheexperimental Bacillus subtilis (24), and artificial FtsZ rings coalesce into samples.Residualdimethylsulfoxidewas2%(v/v)unlessindi- brighterrings(5).SeveraltheoreticalmodelsfortheZ-ringhave cated.DFMBA,2,6-difluoro-3-hydroxybenzamide,andCTPM proposed different roles for FtsZ filament condensation and were synthesized in this work (supplemental data). Buffers bending(reviewedinRef.25). employed were as follows: Hepes50 (50 mM Hepes/KOH, 50 FtsZfilamentsaredynamic,withasubunithalf-lifeof(cid:1)10s, mMKCl,1mMEDTA,pH6.8),Hepes250(50mMHepes/KOH, depending on the GTPase rate (26). Although FtsZ polymers 250mMKCl,1mMEDTA,pH6.8)(whereindicated,thesebuff- can exchange nucleotides, GDP dissociation may be slow ersweremadeatpH7.5),andMes50(50mMMes/KOH,50mM enoughforpolymerdisassemblytotakeplacefirst,resultingin KCl,1mMEDTA,pH6.5). the subunits of FtsZ polymers recycling with GTP hydrolysis RESULTS (27,28).ThelengthdynamicsofthesmallindividualFtsZfila- mentshavenotbeendetermined. PC190723 induced Bs-FtsZ assembly into bundles and iso- Impairing FtsZ filament dynamics should block bacterial lated filaments. These processes could be dissected and ana- division. FtsZ has been recognized as an attractive target for lyzed, employing different solution conditions, as described newantibiotics(29)foremergingresistantpathogens.Expres- below. sion of ftsZ is more stringently required for bacterial growth PCInducesBundlesofB.subtilisFtsZFilaments—Tocharac- terizetheeffectsofPConFtsZassembly,full-length,untagged than the established antibacterial targets murA and fabl (30). FtsZ from B.subtilis was first expressed and purified, and its Potentially druggable cavities in FtsZ structures (22) are the apicalnucleotide-bindingsiteandalateralchannelbetweenthe reversible assembly was induced by 10 mM MgCl2 and 2 mM GTPinHepes50,25°C(see“ExperimentalProcedures”)with- N-andC-terminaldomains.Thelatteroverlapsthebindingsite outotheradditives,whichwerechosenforconvenienceasref- ofthemicrotubule-stabilizingantitumordrugtaxolineukary- erenceconditions.AdditionofPCinducedadramaticincrease otic tubulin. Several GTP analogues substituted at C-8 selec- in FtsZ light scattering and stabilized polymers against disas- tivelyinhibitFtsZpolymerizationbutsupporttubulinassembly semblyinducedbyGDP(Fig.1A).ManylargePC-inducedbun- into microtubules (31), indicating differences in nucleotide dlesandribbons,inadditiontoFtsZfilaments,wereobserved binding by each protein that may be exploited to selectively bynegativestainelectronmicroscopy(Fig.1B).Thesebundles inhibit bacterial FtsZ without poisoning eukaryotic tubulin. andribbonswereseveralmicronslong,hadavariable(cid:1)30to FtsZ recently has been validated as the target of an effective (cid:1)60nmwidth,andwereapparentlymadeofassociatedFtsZ antibacterialcompounddevelopedasacelldivisioninhibitorin filaments. Computed diffraction patterns indicated an axial B.subtilisandthepathogenStaphylococcusaureus,PC190723. spacing of 4.5 (cid:2) 0.5 nm between subunits (Fig. 1, C and D), Its putative binding site, mapped with resistance mutations, whichiscompatiblewiththe4.3-nmspacingofFtsZmonomers correspondstothetaxol-bindingsiteintubulin(32). associatedhead-to-tailintubulin-likeprotofilaments(20,21), Weaimedtodeterminethemechanismoffunctionalinhibi- andashorterlateralspacingof3.8(cid:2)0.3nm,suggestingalateral tion of FtsZ by the small antibacterial molecule PC190723, association of Bs-FtsZ molecules (Protein Data Bank code 3-[(6-chloro[1,3]thiazolo[5,4-b]pyridin-2-yl)methoxy]-2,6-dif- 2VXY; 32) in contact along their shortest dimension (that is, luorobenzamide(abbreviatedhereasPC).3Wehavefoundthat rotated (cid:1)90° on the longitudinal axis with respect to tubulin PC enhances the cooperative assembly of Bs-FtsZ into fila- protofilamentsinamicrotubule)(33).PC-inducedbundlesand ments, bundles, and other condensates. PC also is a Sa-FtsZ ribbons also formed with the slowly hydrolyzable GTP ana- polymer stabilizer. Stabilizing FtsZ polymers should reduce logue GMPCPP (0.1 mM). Most FtsZ above a small (cid:1)0.3 (cid:4)M theirdynamics,whichexplainswhyPCblockscelldivisionin criticalconcentration(Cr)pelletedupon20minofcentrifuga- bacteriaanalogouslytotheactionoftaxolontubulin. tion at 386,000 (cid:3) g (Fig. 1E). In the absence of PC, relatively short, (cid:1)4-nm wide filaments were observed (Fig. 1F), which sedimentedabovealargerCr(cid:1)5(cid:4)MFtsZ.Theseresultsindi- cated that the small molecule PC stabilized Bs-FtsZ filament 3Theabbreviationsusedare:PC,3-[(6-chloro[1,3]thiazolo[5,4-b]pyridin-2-yl)- bundlesbutdidnotdistinguishwhetherPCprimarilyenhances methoxy]-2,6-difluorobenzamide;Mes,4-morpholineethanesulfonicacid; DFMBA, 2,6-difluoro-3-methoxybenzamide; CTPM, (6-chloro[1,3]thia- filamentformationorbundling. zolo[5.4-b]prydin-2-yl)methanol;Bs-FtsZ,FtsZfromB.subtilis;Sa-FtsZ,FtsZ EffectsofSolutionConditions,Mg2(cid:4)andNucleotide—Toelu- fromS.aureus;Ec-FtsZ,FtsZfromEscherichiacoli;Cr,criticalproteincon- cidatethemechanismofPC-inducedassemblyandtocharac- centrationforpolymerization;HPLC,highpressureliquidchromatogra- phy;GMPCPP,guanosine-5(cid:5)-[(2,(cid:2))-methylene]triphosphate. terize the effects of PC under more physiological conditions, 14240 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER19•MAY7,2010 FtsZAssemblyInducedbySmallAntibacterialMolecule FIGURE1.AssemblyofbundlesofBs-FtsZ(10(cid:1)M)inducedbyPC(20(cid:1)M).A,lightscatteringtimecourseswithandwithoutPCinHepes50assemblybuffer, 10mMMgCl2,pH6.8,25°C.GTP(2mM)wasaddedattime0and2mMGDPasindicatedbythearrows.B,electronmicrographofBs-FtsZwithPC.Bar,200nm. C,anenlargedbundle.D,itscomputeddiffractogram.Thecorrespondingspacingofthemainequatorialspotandthefirstlayerlineareindicatedinnm. E,Bs-FtsZpolymerpelletingassaysatvaryingpHandionicstrength.F,Bs-FtsZwithoutPC,magnifiedasinB. pHwasincreasedto7.5,orionicstrengthincreasedto250mM KCl,whichreducedtheextentofspontaneousBs-FtsZassem- bly with nucleotide and Mg2(cid:4). Assembly was efficiently inducedbyPCinthesecases(Fig.1E),althoughbundleforma- tion was reduced. Assembly was markedly sensitive to the bufferanion(supplemental“ExperimentalProcedures”).Disas- semblycouldbemonitoredbylightscatteringfollowingassem- blyof10(cid:4)MBs-FtsZwith25(cid:4)MGMPCPP(expectedtostabi- lize polymers) and 10 mM MgCl in 250 mM KCl (scattering 2 with GTP was very small). This was attributed to GMPCPP hydrolysisandwasnotobservedinthepresenceofPC.GTPor GMPCPPwasrequiredforPC-enhancedassembly.Mg2(cid:4)with- outnucleotidewasineffective.Interestingly,GTPorGMPCPP without Mg2(cid:4) induced assembly of Bs-FtsZ filaments, which were not formed with GDP or GMPCP. Mg2(cid:4) plus GDP or FIGURE2.PCandmagnesium-inducedBs-FtsZassemblies.Electronmicro- GMPCPandPCgaveaweakpolymerformation.Theseresults graphofnegativelystainedpolymersformedbyBs-FtsZ(10(cid:4)M)inHepes250 confirmedthatPCstabilizesBs-FtsZpolymersandshowedthe assemblybufferwith0.1mMGMPCPP(A),0.1mMGMPCPPand20(cid:4)MPC(B), requirementofthenucleotide(cid:3)-phosphate. a0n.1dm2M0G(cid:4)MMPPCCP(PD)a.nTdhe10bamrMinMdigcCatl2es(C2)0,a0nndm0..1mMGMPCPPand10mMMgCl2 It was possible to separate PC-induced filament assembly from bundle formation by using 250 mM KCl and GMPCPP. Bs-FtsZ assembly was only incipient without Mg2(cid:4) (Fig. 2A). IncipientassemblyofBs-FtsZwasobservedwithnucleotidein AddingonlyPCinducedcharacteristicfilamentcoils(Fig.2B), the absence of PC (no nucleotide-induced light scattering whereasMg2(cid:4)aloneinducedtheformationoffilaments(Fig. increase or pelleting). However, addition of PC under these 2C).BothwereinhibitedwithGMPCP.PCandMg2(cid:4)together conditions resulted in Bs-FtsZ polymerization. There was a inducedtheformationoffilamentsandbundles(Fig.2D).Sim- smalllightscatteringincreasewithPCandGMPCPP(Fig.3A). ilar results were obtained with GTP, but with PC and Mg2(cid:4), These PC-induced FtsZ filaments sedimented in 80 min at dense coils and no bundles were observed (supplemental 386,000(cid:3)g,whichallowedtheirquantification.Practicallyall Fig.S1). Bs-FtsZwaspelletedwithPCandGTPorGMPCPPaboveaCr PC Induces Bs-FtsZ Single-stranded Filament Assembly— (cid:1)1(cid:4)M(Fig.3B;GTP,0.8(cid:2)0.1(cid:4)M;GMPCPP,1.3(cid:2)0.3(cid:4)M). Mg2(cid:4)-less Hepes250 buffer permitted PC-induced nucleated InsignificantGTPhydrolysiswasdetectedunderthesecondi- assembly of single-stranded Bs-FtsZ filaments. Our divalent tions. These results indicated a nucleated polymerization cation-free solutions typically contain (cid:1)1 (cid:4)M residual Mg2(cid:4) mechanismforthePC-inducedassemblyofBs-FtsZfilaments, (34)thatwith1mMEDTAinbufferresultsin(cid:1)4nMfreeMg2(cid:4). with an apparent free energy change for polymer elongation MAY7,2010•VOLUME285•NUMBER19 JOURNALOFBIOLOGICALCHEMISTRY 14241 FtsZAssemblyInducedbySmallAntibacterialMolecule between0.5and1PCperFtsZ(Fig. 4A), compatible with PC inducing polymerization by binding to one site in FtsZ. For a ligand to induce protein association, it has to bind more to the protein polymer than the monomer. As a first approach, PCbindingtoBs-FtsZpolymerswas determined by extraction of the ligandfromthepelletsandsuperna- tantsfollowedbyHPLC.PCcosedi- mentedwiththepolymersandinhi- bition of polymerization with GDP alsoinhibitedthePCpulldown.The resultswere0.5PCboundperFtsZ at (cid:1)10 (cid:4)M free PC, irrespective of ionicstrengthandmagnesiumlevel (0.46(cid:2)0.14inHepes50with10mM MgCl , 0.40 (cid:2) 0.10 in Hepes250 2 without MgCl , and 0.54 (cid:2) 0.10 in 2 Hepes250with10mMMgCl ).FtsZ 2 was active in polymer formation (Fig.3B),andsaturatingthebinding to an expected 1 PC per FtsZ was precludedbythefreeligandsolubil- ity ((cid:1)10 (cid:4)M in our buffers). The simplest interpretation of these results is one PC binding site per polymer FtsZ molecule with an apparentaffinity(cid:1)105M(cid:8)1. FIGURE3.Bs-FtsZfilamentassemblyinducedbyPC.A,solidline,lightscatteringchangesinducedonBs-FtsZ Interestingly, the PC fragment D(1a0s(cid:4)heMd)wliniteh,sPaCm(e20w(cid:4)itMho)buytPaCd.dBit,ieoxnasmopfGleMoPfsCePdPim(2e5n(cid:4)taMt)ioanndofMBgs-CFlt2s(Z1p0omlyMm)(earrsrofowrms)eindHweiptheos2u5t0M,gp2H(cid:4)6(.t8o,p2)5an°Cd. DFMBA(1–4mM;Fig.5,AandC), 2,6-difluoro-3-hydroxybenzamide pelletquantification(bottom).Filledcircles,PCandGMPCPP(0.1mM);filledsquares,PCandGTP(2mM);open symbols,withoutPC;triangle,PCandGDP;invertedtriangle,PCandGMPCP.C,cryoelectronmicrographof (1–4 mM) and to a lesser extent Bs-FtsZfilamentsassembledwithPCandGTPunderthesameconditionswithoutMg2(cid:4).Inset,negatively 3-methoxybenzamide (20 mM), stainedfilaments.Bar,200nm.D,cryoelectronmicroscopyfilamentwidthdistribution,indicatingthatthe filamentsareoneBs-FtsZmolecule-wide. werefoundtoinducelargeBs-FtsZ bundles similar to those obtained (cid:6)G0 (cid:7) RTlnCr (cid:7) (cid:8)8.2 kcal mol(cid:8)1 (16). With GTP or with PC (20 (cid:4)M), thus following their relative antibacterial app GMPCPPandnoPC,abackgroundsimilartothatofPCand activities(35).TheotherfragmentofthePCmolecule,CTPM GDPorGMPCPwasobserved(Fig.3B).Crdecreasedtoinsig- (1mM)didnotinduceBs-FtsZbundling(Fig.5,BandC).These nificant values in experiments made in parallel with 10 mM resultssuggestedspecificbutweakbindingofDFMBAtoBs- MgCl (supplementalFig.S2),indicatingalargereffectiveelon- FtsZpolymers,whichcouldnotbeaccuratelymeasuredbypel- 2 gationaffinity,althoughthesystemwasnotatchemicalequi- leting HPLC. DFMBA has an (cid:1)102-fold higher effective con- libriumduetonucleotidehydrolysis.Interestingly,thePC-in- centrationthanPC,suggestingatwoorderofmagnitudelower duced Bs-FtsZ filaments without Mg2(cid:4) typically had an affinity.NotethatifPCwereanonself-associatingidealbifunc- (cid:1)100-nm curvature radius and appeared single-stranded. To tionalligand(36),therestofthemolecule,ifisolated,wouldbe confirmthatthesefilamentsaresingle-stranded,weperformed expected to bind more weakly than DFMBA and be inactive cryoelectron microscopy under these conditions, using holey below(cid:1)0.5M. carbon film. The sample trapped within the small holes was Modulation of the GTPase Activity of Bs-FtsZ by PC—The quicklyvitrifiedandkeptunderliquidnitrogentemperaturesto effects of PC on the GTPase activity of polymerizing Bs-FtsZ ruleoutanyeffectofthestainingagentortheadsorptiontoa solutionswasexaminedwith10mMMgCl inthreebuffersthat 2 supportfilm(Fig.3C).Filamentwidthmeasurementsfromthe give quite different degrees of PC-induced bundling (see cryomicrographshadadistributionwithanaverage3.5(cid:2)0.7 above).ControlGTPasewithoutPCwasdependentontheKCl nm (Fig. 3D), indicating that these filaments are one Bs-FtsZ concentration: 0.61 (cid:2) 0.09 min(cid:8)1 in Hepes250, 0.22 (cid:2) 0.02 moleculewide. min(cid:8)1inHepes50,0.15(cid:2)0.08min(cid:8)1inMes50.Apartialinhi- BindingofPCandItsFragmentDFMBAtoBs-FtsZPolymers— bition of the GTPase rate was observed with PC, to a similar Titrations of Bs-FtsZ polymer formation with PC showed an extent(Fig.6)irrespectiveofthebuffer.Theinhibitionbetween increasing fraction of sedimented FtsZ, which saturated (cid:1)1and(cid:1)10(cid:4)MPCroughlyparalleledtheformationofpellet- 14242 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER19•MAY7,2010 FtsZAssemblyInducedbySmallAntibacterialMolecule FIGURE5.Bs-FtsZpolymersinducedbyPCfragmentsinMes50assembly bufferwith10mMMgCl2and2mMGTP.A,1mMfragmentofDFMBA.B,1 mMfragmentofanalogueCTPM(similartocontrolwithoutfragment,asin Fig.1F).Bar,200nm.C,chemicalstructureofPCandlowspeedFtsZpolymers pelleting(15,000(cid:3)g,20min)underthesameconditions(PC,20(cid:4)M).DFMBA also induced a FtsZ light scattering increase that was not observed with CTPM.TheCrforassemblyinHepes50wasreducedfrom(cid:1)5(cid:4)Mto(cid:1)1(cid:4)M FtsZwithDFMBA(4mM). FIGURE4.BindingofPCtoBs-FtsZpolymers.A,Bs-FtsZ(10(cid:4)M)sedimenta- tionassaysinHepes250,pH6.8,25°C,andquantificationofpolymerwith increasingconcentrationsofPC.Opencircles,with2mMGTP;filledcircles,with 2mMGTPandMg2(cid:4);voidsquares,with0.1mMGMPCPP.Triangles,corre- spondingdatawithGDP,GDP,andMg2(cid:4)orGMPCP.B,HPLCanalysisofPC(10 (cid:4)Mtotal)co-sedimentationwithBs-FtsZpolymers.Solidlinesandarrow,with GTPandMg2(cid:4);dashedgraylinesandarrow,controlwithGDPandMg2(cid:4).Taxol isaninternalstandardhere.Inthisexperiment,thepelletedPCandFtsZwere FIGURE6.EffectsofPContheGTPaseactivityofFtsZ(10(cid:1)M),with1mM 4.8and10(cid:4)M,respectively.mAU,milliabsorbanceunits. GTPand10mMMgCl2,pH6.8at25°C.Bs-FtsZ:solidcircles,Hepes50;trian- gles,Hepes250;squares,Mes50.Ec-FtsZ:opencircles,Hepes50(averageof threedifferentproteinpreparations).Thelinesaredrawnsolelytoshowthe able polymer (Fig. 4A). Low PC concentrations variably trendofthedata.TheincreaseinGTPaseactivityofEc-FtsZwasconfirmedby enhancedtherelativeGTPaseactivityinHepes250.Thismay measurementsatvaryingproteinconcentrationswithexcess15(cid:4)MPC(not be a simple consequence of a large increase in FtsZ GTPase shown). uponpolymerizationrelativetotheweaklypolymerizingcon- trolwithoutPC(Fig.1E)(sincetheratemeasuredispertotal FtsZ,notperassembledFtsZ).Controlmeasurementsshowed Formation of Polymorphic Bs-FtsZ Filament Condensates that3H[GTP]bindingtoBs-FtsZandtoEc-FtsZwasnotmod- with Different Curvatures—Bs-FtsZ filaments frequently ifiedbyPC(supplementalFig.S3). adopted bow shapes and easily coalesced into coils or associ- MAY7,2010•VOLUME285•NUMBER19 JOURNALOFBIOLOGICALCHEMISTRY 14243 FtsZAssemblyInducedbySmallAntibacterialMolecule FIGURE7.PolymorphicassembliesofBs-FtsZ,inadditiontobundlesand ribbons(seeFig.1B).A,filamentsobservedinHepes50,pH6.8,withGTPand PC. B, toroids in another field of the same sample. C, helical bundles in Hepes50atpH7.5withGTP,10mMMgCl2,andPC.D,coiledfilamentsand toroidsformedwithoutPCordimethylsulfoxideinMes50withMgCl and 2 GMPCPP.SimilarpolymerswereobservedinHepes50,pH6.8,orwithGTP. Bar,200nm. atedintostraightbundles(seeabove).OtherBs-FtsZfilament condensatesalsoobservedincludetoroidsandhelicalbundles (seesupplementalTableS1foralistofpolymorphsandcondi- tions).Briefly,alongwithfilamentsformedwithGTPandPC (Fig. 7A) and filament coils (similar to Fig. 2B), toroids(cid:1)300 nmindiameterwereobservedonthesamegrids(Fig.7B).Large helical bundles were observed at pH 7.5 with PC, GTP, and Mg2(cid:4)(Fig.7C).Interestingly,Bs-FtsZcondensatescouldalso form in the absence of PC with GMPCPP and Mg2(cid:4) as coils, and smaller toroids (cid:1)150 nm in diameter were observed (Fig.7D). Specificity of FtsZ-PC Interactions—We next compared the effectsofPContheassemblyofFtsZfromsusceptible(B.sub- tilis and S.aureus) and nonsusceptible (E.coli) bacteria in Hepes50(Fig.8A).Theweakformationofpelletablepolymerby Sa-FtsZ was markedly enhanced by PC, at concentrations higherthanwithBs-FtsZ.AlargePC-inducedincreaseinSa- FtsZlightscatteringwasobservedwithnucleotideandMg2(cid:4) (supplementalFig.S4).Electronmicrographsshowedatrans- formationofSa-FtsZoligomers(Fig.8B)intocoils,toroids,and FIGURE8.EffectsofPConthepolymerizationofFtsZ(10(cid:1)M)fromsus- ceptible(B.subtilisandS.aureus)andresistant(E.coli)bacteria.A,FtsZ straightbundleswithPC(Fig.8,CandD).DFMBAhadsimilar polymerversusPCconcentration.Circles,Bs-FtsZ;squares,Sa-FtsZ;triangles, effects at higher concentrations. On the other hand, PC Ec-FtsZ.Thegraysymbolsarecorrespondingcontrolswithoutmagnesium. induced bundling was not observed with Ec-FtsZ. Filament TheconditionswereHepes50bufferwith10mMMgCl2and1mMGTP,pH6.8, 25°C.AGTPregeneratingsystem(1unit/mlacetatekinaseand15mMacetyl morphologywasnotmodified(Fig.8E),andchangesinpoly- phosphate)wasaddedforthemeasurementsinA.Thiswasrequiredtorepro- merizationwereinsignificantwhenemployingaGTP-regener- duciblypellettheEc-FtsZpolymersintheexperimenttimeanddidnotmod- ifythepelletingofBs-FtsZandSa-FtsZ.B–D,electronmicrographsofSa-FtsZ atingsystem(Fig.8A).Unexpectedly,PCinducedafasterdis- withGTP(B),withGTPand20(cid:4)MPCintwofieldsfromthesamesample(C) assembly without a GTP regenerating system (supplemental and with 0.1 mM GMPCPP and 20 (cid:4)M PC (D, upper panel displayed with Fig.S4C)anda2-foldenhancementofEc-FtsZGTPase(Fig.6). reducedcontrast).E,Ec-FtsZfilamentswithGTPand20(cid:4)MPC.Controlswith- outPCgavesimilarimages.Bar,200nm. HPLCmeasurements(with10(cid:4)MEc-FtsZand20(cid:4)MPC)indi- cated binding of 0.4 PC per polymerized Ec-FtsZ, although it didnotinducebundling.Finally,PC(20(cid:4)M)orDFMBA(4mM) DISCUSSION did not affect the assembly of the more distant eukaryotic Wehaveshowninthisstudythatbindingofthesmallanti- homologue(cid:1)(cid:2)-tubulin(15(cid:4)M)inlightscatteringtests,orthe bacterialmoleculePC190723enhancestheassemblyofpurified grossmorphology(inelectronmicroscopy)ofthemicrotubular cell division protein Bs-FtsZ into filaments and bundles. Pre- polymersformed(notshown). ventingdisassemblyofFtsZpolymersshouldinhibittheirfunc- 14244 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER19•MAY7,2010 FtsZAssemblyInducedbySmallAntibacterialMolecule tionaldynamicsinvivo,whichweproposeexplainscytokinesis WehaveemployedBs-FtsZasamodelandconfirmedthat inhibition. This is supported by the observation of FtsZ foci PC also induces bundling of Sa-FtsZ, but does not induce alongPC-treatedbacilliinsteadofZ-rings(32). assembly or condensation of Ec-FtsZ filaments. This is in Our results also give insight into the mechanisms of FtsZ agreementwiththeantibacterialspectrumofPC,whichhas assemblyandfacilitatetheuseofPCasatooltoinvestigatethe beenrelatedtothepresenceofVal307inFtsZfromsuscep- biological role of FtsZ. PC binding induces Bs-FtsZ filament tibleorganisms(32).MutationsconferringresistancetoPC formationunderincipientassemblyconditions(250mMKCl, clusteratthelongchannelbetweenthetwodomainsofthe noMg2(cid:4)).Thesefilamentsaresinglestranded,yettheyassem- FtsZmoleculewherePChasbeendocked(32).Thiszoneis blewithacooperativecriticalconcentrationbehavior,typicalof differentfromtheGTPbindingsiteanditoverlapsthetaxol multi-stranded polymers. This may be explained by Bs-FtsZ binding site in (cid:2)-tubulin. In agreement with the large switching between inactive and active states similarly to Ec- sequencedivergencebetweenbothproteinsnomarkedcross FtsZ(16),indicatingthatPCinducesthepolymerBs-FtsZcon- reactions have been observed (32; Results). In order to sta- formation,possiblybydruggingitsassemblyswitch.However, bilize susceptible FtsZ polymers PC should bind more to itcannotberuledoutthatthecooperativebehaviorofBs-FtsZ them than to monomers. It could be thought that PC does with PC might be caused by some filament cyclization in the notbindtoFtsZmonomers,norfitswellintothebindingsite coilsobservedorbyfilamentnetworkformation.Directmea- ofnon-susceptibleFtsZ(32).However,theGTPaseenhance- surementsofPCbindingtoFtsZpolymerssuggestpartialsat- ment and HPLC measurements indicate PC binding to Ec- urationofonePCbindingsiteinFtsZ,limitedbythesolubility FtsZ.GiventhatPCdidnotmodifysteady-statepolymeriza- of the ligand. PC-induced Bs-FtsZ filament assembly in the tion,itshouldbindsimilarlytothemonomersandpolymers absenceofmagnesiumproceedswithoutGTPhydrolysis,con- of this non-susceptible FtsZ. This binding could occur in a stitutinganequilibriummodelsystemofligand-inducednucle- different manner (ineffectively or at another site) than in ated assembly, analogous to the taxol-induced assembly of susceptibleBs-FtsZandSa-FtsZpolymers.Theasyetunre- GDP-tubulin(12).Itwouldbeworthstudyinginmoredetailthe solved atomic structure of an FtsZ-PC complex could give linkageofPCbindingtoFtsZfilamentassembly. insightintothedetailedstructuralmechanismofPCaction, TheFtsZGTPasesiteisattheaxialinterfacebetweencon- possiblytheFtsZactivationswitch,andwouldfacilitatethe secutiveFtsZmoleculesinaprotofilament(8,37),sothatGTP optimizationofPC-deriveddrugstargetingFtsZinbacterial hydrolysistakesplaceuponFtsZassembly.PCmodulatesthe pathogens. The major determinant of PC binding to FtsZ GTPaseactivityofsteady-statepolymerizingBs-FtsZsolutions. (Results) and antibacterial activity (35) appears to be its TheGTPaseactivationatearlystagesofassemblyremainstobe DFMBAmoiety. studied. Focusing on the effects of the higher PC concentra- Anincreasingnumberofproteinsareknowntomodulate tions,thepartialinhibitionofBs-FtsZGTPaseandthelackof FtsZassembly(4),inhibitingorenhancingFtsZpolymeriza- PCeffectofGTPbindingargueagainstbindingtothesamesite. tionandbundling.SmallmoleculesreportedtostabilizeFtsZ This GTPase inhibition is difficult to explain by a bundling polymers include zantrins 3 and 5 (39), ruthenium red (40) effect,duetothecoincidentextentofinhibitionunderdifferent andDAPI(41),andveryrecentlyFtsZbundlingbytheben- bundlingconditions(Fig.6).Mechanistically,PCbindingata zoicacidderivativeOTBA(42)hasbeenproposedasastrat- sitedifferentfromtheGTPsitemayeitherdecreasetheFtsZ egy to inhibit bacterial division. It would be of interest to subunitturnoverinstabilizedfilamentsandthereforetheGTP know whether these molecules share the PC site or bind hydrolysisturnover(27)orallostericallymodulate(32)theGTP elsewhere in FtsZ. It is known that Ca2(cid:4) ions induce FtsZ hydrolysisandexchangeinFtsZfilaments. filament bundling (43, 44) and that FtsZ condensates can Depending on the solution conditions, the assembly of forminanonspecificmannerbymacromolecularcrowding Bs-FtsZ varies and so does the effect of PC, with a similar (45)orbyinteractionswithpolarmoleculesatrelativelyhigh global assembly enhancement. PC binding under Bs-FtsZ concentrations (46). Volume exclusion in the bacterial filamentassemblyconditions(50mMKCl,Mg2(cid:4))resultsin cytosolshouldfavortheformationofFtsZcondensates.An the formation of large condensates of Bs-FtsZ filaments. importantquestioniswhetherthereareendogenousregula- Thismaybeaconsequenceoffilamentaccumulation,orPC torssharingthePCbindingsiteofFtsZ. might induce the condensation of existing filaments, by ThebiochemicalactionofPConFtsZpolymersparallels bindingmoretocondensedthantoisolatedFtsZfilaments. that of taxol on tubulin (12), since each drug stabilizes its PCinduces,inadditiontocharacteristicallycurvedBs-FtsZ respectiveproteinpolymersagainstdisassembly,bybinding filamentsandstraightbundles(Fig.1),toroidsatpH6.8and moretopolymersthantomonomers.Taxolwasthefirst(47) helicalbundlesatpH7.5(Fig.7),underscoringtheflexibility among antitumor Microtubule Stabilizing Agents, which of FtsZ filaments. The observation of Bs-FtsZ coils and impair cellular microtubule dynamics and mitosis, trigger- toroidsformedwithnucleotideandMg2(cid:4)intheabsenceof ingcelldeath(48).MicrotubuleStabilizingAgentsworkby PC(Fig.7)indicatethattheabilitytoformcurvedconden- preferential binding to assembled tubulin (49). The struc- sates is an intrinsic property of Bs-FtsZ filaments, which is tural mechanism coupling taxol binding and microtubule important for the formation of the Z-ring (24), and is assemblyiscurrentlyunderinvestigation(50).Inthecaseof enhanced by PC binding. Curved FtsZ filaments coalescing thePC-inducedFtsZfilamentstheproblemmaybesimpler intotheZ-ringhaverecentlybeenproposedtogeneratethe due to the lack of lateral interactions. At a cellular level, constrictionforce(38). multiplemicrotubuleastersformintumorcellstreatedwith MAY7,2010•VOLUME285•NUMBER19 JOURNALOFBIOLOGICALCHEMISTRY 14245 FtsZAssemblyInducedbySmallAntibacterialMolecule high taxol concentrations, instead of normal spindles (Fig. 24. Monahan,L.G.,Robinson,A.,andHarry,E.J.(2009)Mol.Microbiol.74, S5; 51). Multiple mislocalized FtsZ foci, instead of a func- 1004–1017 tionalZ-ring,formalongPC-treatedbacteria,whichappear 25. Erickson,H.P.(2009)Proc.Natl.Acad.Sci.U.S.A.106,9238–9243 26. Stricker,J.,Maddox,P.,Salmon,E.D.,andErickson,H.P.(2002)Proc. to cause the inhibition of cytokinesis leading to bacterial Natl.Acad.Sci.U.S.A.99,3171–3175 lysis by PC (32). We speculate that PC is the first of a new 27. Huecas,S.,Schaffner-Barbero,C.,García,W.,Ye´benes,H.,Palacios,J.M., classofsyntheticantibacterials,theFtsZPolymerStabilizing Díaz,J.F.,Mene´ndez,M.,andAndreu,J.M.(2007)J.Biol.Chem.282, Agents.Ourfindingsraisethequestionofwhethertaxoland 37515–37528 PChavetotallydifferentstructuralmechanismsofactionor, 28. Chen,Y.,andErickson,H.P.(2009)Biochemistry48,6664–6673 by binding to equivalent sites, to what extent each of them 29. Vollmer,W.(2006)Appl.Microbiol.Biotechnol.73,37–47 acts on a conserved assembly switch in the tubulin-FtsZ 30. Goh,S.,Boberek,J.M.,Nakashima,N.,Stach,J.,andGood,L.(2009)PLoS One4,e6061 superfamilyofproteins. 31. La¨ppchen,T.,Pinas,V.A.,Hartog,A.F.,Koomen,G.J.,Schaffner-Bar- bero,C.,Andreu,J.M.,Trambaiolo,D.,Lo¨we,J.,Juhem,A.,Popov,A.V., Acknowledgments—WethankN.StokesandProlysisforPC190723, anddenBlaauwen,T.(2008)Chem.Biol.15,189–199 M.A.OlivaandJ.Lo¨wefortheBs-FtsZexpressionplasmid,J.Jimenez- 32. Haydon,D.J.,Stokes,N.R.,Ure,R.,Galbraith,G.,Bennett,J.M.,Brown, Barberoforencouragement,P.Chaco´nandJ.F.Díazfordiscussions, D.R.,Baker,P.J.,Barynin,V.V.,Rice,D.W.,Sedelnikova,S.E.,Heal,J.R., andD.Juanfortechnicalassistance. Sheridan,J.M.,Aiwale,S.T.,Chauhan,P.K.,Srivastava,A.,Taneja,A., Collins, I., Errington, J., and Czaplewski, L. G. (2008) Science 321, 1673–165 REFERENCES 33. Nogales,E.,Whittaker,M.,Milligan,R.A.,andDowning,K.H.(1999)Cell 1. Bi,E.F.,andLutkenhaus,J.(1991)Nature354,161–164 96,79–88 2. Margolin,W.(2005)Nat.Rev.Mol.CellBiol.6,862–871 34. Rivas,G.,Lo´pez,A.,Mingorance,J.,Ferra´ndiz,M.J.,Zorrilla,S.,Minton, 3. Michie,K.A.,andLo¨we,J.(2006)Annu.Rev.Biochem.75,467–492 A. P., Vicente, M., and Andreu, J. M. (2000) J. Biol. Chem. 275, 4. Adams,D.W.,andErrington,J.(2009)Nat.Rev.Microbiol.7,642–653 11740–11749 5. Osawa, M., Anderson, D. E., and Erickson, H. P. (2008) Science 320, 35. Czaplewski,L.G.,Collins,I.,Boyd,E.A.,Brown,D.,East,S.P.,Gardiner, 792–794 M.,Fletcher,R.,Haydon,D.J.,Henstock,V.,Ingram,P.,Jones,C.,Noula, 6. Buey, R. M., Díaz, J. F., and Andreu, J. M. (2006) Biochemistry 45, C.,Kennison,L.,Rockley,C.,Rose,V.,Thomaides-Brears,H.B.,Ure,R., 5933–5938 Whittaker, M., and Stokes, N. R. (2009) Bioorg. Med. Chem. Lett. 19, 7. Larsen,R.A.,Cusumano,C.,Fujioka,A.,Lim-Fong,G.,Patterson,P.,and 524–527 Pogliano,J.(2007)GenesDev.21,1340–1352 36. Andreu,J.M.,andTimasheff,S.N.(1982)Biochemistry21,534–543 8. Nogales,E.,Downing,K.H.,Amos,L.A.,andLo¨we,J.(1998)Nat.Struct. 37. Oliva,M.A.,Cordell,S.C.,andLo¨we,J.(2004)Nat.Struct.Mol.Biol.11, Biol.5,451–458 1243–1250 9. Rice,L.M.,Montabana,E.A.,andAgard,D.A.(2008)Proc.Natl.Acad. 38. Osawa, M., Anderson, D. E., and Erickson, H. P. (2009) EMBO J. 28, Sci.U.S.A.105,5378–5383 3476–3784 10. Gebremichael, Y., Chu, J. W., and Voth, G. A. (2008) Biophys J. 95, 39. Margalit,D.N.,Romberg,L.,Mets,R.B.,Hebert,A.M.,Mitchison,T.J., 2487–2499 Kirschner, M. W., and RayChaudhuri, D. (2004) Proc. Natl. Acad. Sci. 11. Bennett,M.J.,Chik,J.K.,Slysz,G.W.,Luchko,T.,Tuszynski,J.,Sackett, U.S.A.101,11821–11826 D.L.,andSchriemer,D.C.(2009)Biochemistry48,4858–4870 40. Santra,M.K.,Beuria,T.K.,Banerjee,A.,andPanda,D.(2004)J.Biol. 12. Díaz, J. F., Mene´ndez, M., and Andreu, J. M. (1993) Biochemistry 32, Chem.279,25959–25965 10067–10077 41. Nova,E.,Montecinos,F.,Brunet,J.E.,Lagos,R.,andMonasterio,O.(2007) 13. Elie-Caille,C.,Severin,F.,Helenius,J.,Howard,J.,Muller,D.J.,andHy- Arch.Biochem.Biophys.465,315–319 man,A.A.(2007)Curr.Biol.17,1765–1770 42. Beuria,T.K.,Singh,P.,Surolia,A.,andPanda,D.(2009)Biochem.J.423, 14. Caspar,D.L.(1980)Biophys.J.32,103–138 61–69 15. Dajkovic,A.,andLutkenhaus,J.(2006)J.Mol.Microbiol.Biotechnol.11, 43. Yu,X.C.,andMargolin,W.(1997)EMBOJ.16,5455–5463 140–151 44. Marrington,R.,Small,E.,Rodger,A.,Dafforn,T.R.,andAddinall,S.G. 16. Huecas,S.,Llorca,O.,Boskovic,J.,Martín-Benito,J.,Valpuesta,J.M.,and (2004)J.Biol.Chem.279,48821–48829 Andreu,J.M.(2008)Biophys.J.94,1796–1806 45. Gonza´lez,J.M.,Jime´nez,M.,Ve´lez,M.,Mingorance,J.,Andreu,J.M., 17. Dajkovic,A.,Mukherjee,A.,andLutkenhaus,J.(2008)J.Bacteriol.190, Vicente,M.,andRivas,G.(2003)J.Biol.Chem.278,37664–37671 2513–2526 18. Miraldi, E. R., Thomas, P. J., and Romberg, L. (2008) Biophys. J. 95, 46. Popp, D., Iwasa, M., Narita, A., Erickson, H. P., and Mae´da, Y. (2009) 2470–2486 Biopolymers91,340–350 19. Lan, G., Dajkovic, A., Wirtz, D., and Sun, S. X. (2008) Biophys. J. 95, 47. Schiff,P.B.,Fant,J.,andHorwitz,S.B.(1979)Nature277,665–667 4045–4056 48. Jordan,M.A.,andWilson,L.(2004)Nat.Rev.Cancer4,253–265 20. Lo¨we,J.,andAmos,L.A.(1999)EMBOJ.18,2364–2371 49. Diaz, J. F., Andreu, J. M., and Jimenez-Barbero, J. (2009) Topics Curr. 21. Oliva,M.A.,Huecas,S.,Palacios,J.M.,Martín-Benito,J.,Valpuesta,J.M., Chem.286,121–149 andAndreu,J.M.(2003)J.Biol.Chem.278,33562–33570 50. Xiao,H.,Verdier-Pinard,P.,Fernandez-Fuentes,N.,Burd,B.,Angeletti, 22. Oliva, M. A., Trambaiolo, D., and Lo¨we, J. (2007) J. Mol. Biol. 373, R.,Fiser,A.,Horwitz,S.B.,andOrr,G.A.(2006)Proc.Natl.Acad.Sci. 1229–1242 U.S.A.103,10166–10173 23. Li,Z.,Trimble,M.J.,Brun,Y.V.,andJensen,G.J.(2007)EMBOJ.26, 51. Abal,M.,Souto,A.A.,Amat-Guerri,F.,Acun˜a,A.U.,Andreu,J.M.,and 4694–4708 Barasoain,I.(2001)CellMotil.Cytoskeleton49,1–15 14246 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER19•MAY7,2010
Description: