ebook img

The Antibacterial Cell Division Inhibitor PC190723 Is an FtsZ Polymer-stabilizing Agent That ... PDF

20 Pages·2010·10.93 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Antibacterial Cell Division Inhibitor PC190723 Is an FtsZ Polymer-stabilizing Agent That ...

THEJOURNALOFBIOLOGICALCHEMISTRYVOL.285,NO.19,pp.14239–14246,May7,2010 ©2010byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. The Antibacterial Cell Division Inhibitor PC190723 Is an FtsZ Polymer-stabilizing Agent That Induces Filament Assembly and Condensation*□S Receivedforpublication,December21,2009,andinrevisedform,February18,2010Published,JBCPapersinPress,March8,2010,DOI10.1074/jbc.M109.094722 Jose´ M.Andreu‡1,ClaudiaSchaffner-Barbero‡,SoniaHuecas‡,DulceAlonso§,MaríaL.Lopez-Rodriguez§, LauraB.Ruiz-Avila‡,RafaelNu´n˜ez-Ramírez‡2,OscarLlorca‡,andAntonioJ.Martín-Galiano‡ Fromthe‡CentrodeInvestigacionesBiolo´gicas,ConsejoSuperiordeInvestigacionesCientificas,RamirodeMaeztu9and §DepartamentodeQuímicaOrga´nica,FacultaddeCienciasQuímicas,UniversidadComplutenseMadrid,28040Madrid,Spain CelldivisionproteinFtsZcanformsingle-strandedfilaments EssentialcelldivisionproteinFtsZassemblesintofilaments withacooperativebehaviorbyself-switchingassembly.Subse- thatformthecytokineticringatthedivisionsite(1)andrecruits quentcondensationandbendingofFtsZfilamentsareimpor- the accessory proteins of the bacterial divisome (2–4). FtsZ, tantfortheformationandconstrictionofthecytokineticring. withanaddedmembraneanchor,canformconstrictingrings PC190723isaneffectivebactericidalcelldivisioninhibitorthat in liposomes (5). FtsZ is a member of the tubulin family of targetsFtsZinthepathogenStaphylococcusaureusandBacillus cytoskeletal GTPases, also including (cid:1)(cid:2)-tubulin, (cid:3)-tubulin, subtilisanddoesnotaffectEscherichiacolicells,whichappar- bacterialtubulinBtubA/B(3,6),anddivergentTubZs(7).FtsZ entlybindstoazoneequivalenttothebindingsiteoftheanti- andtubulinusethesamestructuralfoldandsimilarhead-to-tail tumordrugtaxolintubulin(Haydon,D.J.,Stokes,N.R.,Ure,R., protofilamentswithGTPboundattheintersubunitassociation Galbraith,G.,Bennett,J.M.,Brown,D.R.,Baker,P.J.,Barynin, interface(8),yettheyhaveevolvedtoformdifferentassemblies V.V.,Rice,D.W.,Sedelnikova,S.E.,Heal,J.R.,Sheridan,J.M., with specialized functions. Their GTPase sites are completed Aiwale,S.T.,Chauhan,P.K.,Srivastava,A.,Taneja,A.,Collins, uponcontactoftheapicalGTP-bindingdomainofonesubunit I.,Errington,J.,andCzaplewski,L.G.(2008)Science312,1673– withthebasalGTPaseactivationdomainofthenextsubunit. 1675).WehavefoundthatthebenzamidederivativePC190723 GTPhydrolysisrendersthepolymersmetastableandreadyfor isanFtsZpolymer-stabilizingagent.PC190723inducednucle- disassembly. There is evidence that unassembled tubulin, atedassemblyofBs-FtsZintosingle-strandedcoiledprotofila- unlikeotherGTPases,ispredominantlyinaninactive(curved) mentsandpolymorphiccondensates,includingbundles,coils, conformation regardless of which nucleotide is bound and andtoroids,whoseformationcouldbemodulatedwithdifferent switchesintotheactive(straight)conformationmainlythrough solutionconditions.Underconditionsforreversibleassemblyof the assembly contacts and that GTP binding lowers the free Bs-FtsZ, PC190723 binding reduced the GTPase activity and energybarrierbetweenbothconformations(6,9–11).Binding inducedtheformationofstraightbundlesandribbons,which ofthesuccessfulantitumordrugtaxoloverridestheGTP/GDP wasalsoobservedwithSa-FtsZbutnotwithnonsusceptible regulation,inducingmicrotubuleassemblyevenwithGDP(12, Ec-FtsZ. The fragment 2,6-difluoro-3-methoxybenzamide 13).Tubulinpromiscuouslyinteractswithsmallmoleculesof alsoinducedBs-FtsZbundling.Weproposethatpolymersta- natural origin that induce or inhibit its assembly. However, bilization by PC190723 suppresses in vivo FtsZ polymer therearefewerfunctionalinhibitorsforFtsZ. dynamics and bacterial division. The biochemical action of FtsZ is a relatively simple assembly machine capable of PC190723onFtsZparallelsthatofthemicrotubule-stabiliz- nucleatedlinearpolymerization.Suchcooperativebehaviorof ingagenttaxolontheeukaryoticstructuralhomologuetubu- alinearpolymerwasanticipatedbytheself-switchingassembly lin.BothtaxolandPC190723stabilizepolymersagainstdis- concept(14)andsuggestedtobepossibleforFtsZifdimeriza- assemblybypreferentialbindingtoeachassembledprotein. tioncausedaconformationalchangethatincreasestheaffinityof Itisyettobeinvestigatedwhetherbothligandstargetstruc- the next monomer to bind (3, 15). Cryoelectron microscopy of turallyrelatedassemblyswitches. unsupportedsampleshasshownthatFtsZfromEscherichiacoli canformsemiflexiblesingle-strandedfilaments(16).Theircoop- *ThisworkwassupportedbyGrantsMinisteriodeCiencia(MCINN)BFU2008- erativebehaviorisexplainedbyanunfavorablemonomerisomer- 00013(toJ.M.A.),ComunidadAuto´nomadeMadridS-BIO-0214-2006(to ization(activationswitch)betweenaninactive,assemblyincom- J.M.A.andO.L.),MCINNSAF2007-67008(toM.L.L.-R.),S-SAL-249-2006 petent, and active conformation, which is coupled to assembly, (toM.L.L.-R.),SAF2008-00451(toO.L.),RedTema´ticadeInvestigacio´n creating a nucleation barrier (16–19). On the other hand, FtsZ CooperativaenCa´ncerRD06-0020-1001(toO.L.),HumanFrontiersSci- enceProgramRGP39-2008(toO.L.)andcontractsFormacio´ndePersonal from Methanococcus jannaschii forms characteristic double- Investigatio´n(toC.S.-B.),ConsejoSuperiordeInvestigacionesCientificas strandedfilaments(20,21).AnumberofcrystalstructuresofFtsZ i3p(toS.H.),andJuandelaCierva(toA.J.M.-G.). □S Theon-lineversionofthisarticle(availableathttp://www.jbc.org)contains did not reveal a nucleotide-induced activation switch (22). The supplemental“ExperimentalProcedures,”TableS1,andFigs.S1–S6. structuralflexibilitychangescoupledtoassemblyareunknown, 1Towhomcorrespondenceshouldbeaddressed.Tel.:34-918373112(ext. requiringdeterminationofanFtsZfilamentstructure. 4381);Fax:34-915360432;E-mail:[email protected]. A cryoelectron tomography study of the Caulobacter cres- 2Presentaddress:InstitutodeEstructuradelaMateria,CSIC,Serrano113bis, 28006Madrid,Spain. centuscytoskeletonrevealedaputativeFtsZring,consistingof MAY7,2010•VOLUME285•NUMBER19 JOURNALOFBIOLOGICALCHEMISTRY 14239 This is an Open Access article under the CC BY license. FtsZAssemblyInducedbySmallAntibacterialMolecule afewshort(100nm)apparentlysingle-strandedFtsZfilaments EXPERIMENTALPROCEDURES (5-nmwide)belowtheplasmamembranenearthedivisionsite, MethodsforBs-FtsZ,Ec-FtsZ,Sa-FtsZ,andtubulinpurifica- andsuggestedthattheseFtsZpolymersgeneratetheforcethat tion, monitoring assembly with light scattering, electron constrictsthemembranefordivisionthroughiterativecyclesof microscopy, polymer pelleting, binding measurements, GTPhydrolysis,depolymerization,andrepolymerization(23). GTPase,andascreenofsolutionconditionsforassemblyare Lateral FtsZ filament association is also important for Z-ring describedunderthesupplemental“ExperimentalProcedures.” formationandconstriction.Severalproteinsareknowntobun- PC190723wasprovidedbyProlysis(32).Stocksolutions(1mM) dleFtsZfilaments,includingZipA,ZapA,andSepF(4).Helical indeuterateddimethylsulfoxide(MerckUvasol)werekeptfro- FtsZstructuresremodelbylateralassociationintotheZ-ringin zenanddry.Theywerediluteddirectlyintotheexperimental Bacillus subtilis (24), and artificial FtsZ rings coalesce into samples.Residualdimethylsulfoxidewas2%(v/v)unlessindi- brighterrings(5).SeveraltheoreticalmodelsfortheZ-ringhave cated.DFMBA,2,6-difluoro-3-hydroxybenzamide,andCTPM proposed different roles for FtsZ filament condensation and were synthesized in this work (supplemental data). Buffers bending(reviewedinRef.25). employed were as follows: Hepes50 (50 mM Hepes/KOH, 50 FtsZfilamentsaredynamic,withasubunithalf-lifeof(cid:1)10s, mMKCl,1mMEDTA,pH6.8),Hepes250(50mMHepes/KOH, depending on the GTPase rate (26). Although FtsZ polymers 250mMKCl,1mMEDTA,pH6.8)(whereindicated,thesebuff- can exchange nucleotides, GDP dissociation may be slow ersweremadeatpH7.5),andMes50(50mMMes/KOH,50mM enoughforpolymerdisassemblytotakeplacefirst,resultingin KCl,1mMEDTA,pH6.5). the subunits of FtsZ polymers recycling with GTP hydrolysis RESULTS (27,28).ThelengthdynamicsofthesmallindividualFtsZfila- mentshavenotbeendetermined. PC190723 induced Bs-FtsZ assembly into bundles and iso- Impairing FtsZ filament dynamics should block bacterial lated filaments. These processes could be dissected and ana- division. FtsZ has been recognized as an attractive target for lyzed, employing different solution conditions, as described newantibiotics(29)foremergingresistantpathogens.Expres- below. sion of ftsZ is more stringently required for bacterial growth PCInducesBundlesofB.subtilisFtsZFilaments—Tocharac- terizetheeffectsofPConFtsZassembly,full-length,untagged than the established antibacterial targets murA and fabl (30). FtsZ from B.subtilis was first expressed and purified, and its Potentially druggable cavities in FtsZ structures (22) are the apicalnucleotide-bindingsiteandalateralchannelbetweenthe reversible assembly was induced by 10 mM MgCl2 and 2 mM GTPinHepes50,25°C(see“ExperimentalProcedures”)with- N-andC-terminaldomains.Thelatteroverlapsthebindingsite outotheradditives,whichwerechosenforconvenienceasref- ofthemicrotubule-stabilizingantitumordrugtaxolineukary- erenceconditions.AdditionofPCinducedadramaticincrease otic tubulin. Several GTP analogues substituted at C-8 selec- in FtsZ light scattering and stabilized polymers against disas- tivelyinhibitFtsZpolymerizationbutsupporttubulinassembly semblyinducedbyGDP(Fig.1A).ManylargePC-inducedbun- into microtubules (31), indicating differences in nucleotide dlesandribbons,inadditiontoFtsZfilaments,wereobserved binding by each protein that may be exploited to selectively bynegativestainelectronmicroscopy(Fig.1B).Thesebundles inhibit bacterial FtsZ without poisoning eukaryotic tubulin. andribbonswereseveralmicronslong,hadavariable(cid:1)30to FtsZ recently has been validated as the target of an effective (cid:1)60nmwidth,andwereapparentlymadeofassociatedFtsZ antibacterialcompounddevelopedasacelldivisioninhibitorin filaments. Computed diffraction patterns indicated an axial B.subtilisandthepathogenStaphylococcusaureus,PC190723. spacing of 4.5 (cid:2) 0.5 nm between subunits (Fig. 1, C and D), Its putative binding site, mapped with resistance mutations, whichiscompatiblewiththe4.3-nmspacingofFtsZmonomers correspondstothetaxol-bindingsiteintubulin(32). associatedhead-to-tailintubulin-likeprotofilaments(20,21), Weaimedtodeterminethemechanismoffunctionalinhibi- andashorterlateralspacingof3.8(cid:2)0.3nm,suggestingalateral tion of FtsZ by the small antibacterial molecule PC190723, association of Bs-FtsZ molecules (Protein Data Bank code 3-[(6-chloro[1,3]thiazolo[5,4-b]pyridin-2-yl)methoxy]-2,6-dif- 2VXY; 32) in contact along their shortest dimension (that is, luorobenzamide(abbreviatedhereasPC).3Wehavefoundthat rotated (cid:1)90° on the longitudinal axis with respect to tubulin PC enhances the cooperative assembly of Bs-FtsZ into fila- protofilamentsinamicrotubule)(33).PC-inducedbundlesand ments, bundles, and other condensates. PC also is a Sa-FtsZ ribbons also formed with the slowly hydrolyzable GTP ana- polymer stabilizer. Stabilizing FtsZ polymers should reduce logue GMPCPP (0.1 mM). Most FtsZ above a small (cid:1)0.3 (cid:4)M theirdynamics,whichexplainswhyPCblockscelldivisionin criticalconcentration(Cr)pelletedupon20minofcentrifuga- bacteriaanalogouslytotheactionoftaxolontubulin. tion at 386,000 (cid:3) g (Fig. 1E). In the absence of PC, relatively short, (cid:1)4-nm wide filaments were observed (Fig. 1F), which sedimentedabovealargerCr(cid:1)5(cid:4)MFtsZ.Theseresultsindi- cated that the small molecule PC stabilized Bs-FtsZ filament 3Theabbreviationsusedare:PC,3-[(6-chloro[1,3]thiazolo[5,4-b]pyridin-2-yl)- bundlesbutdidnotdistinguishwhetherPCprimarilyenhances methoxy]-2,6-difluorobenzamide;Mes,4-morpholineethanesulfonicacid; DFMBA, 2,6-difluoro-3-methoxybenzamide; CTPM, (6-chloro[1,3]thia- filamentformationorbundling. zolo[5.4-b]prydin-2-yl)methanol;Bs-FtsZ,FtsZfromB.subtilis;Sa-FtsZ,FtsZ EffectsofSolutionConditions,Mg2(cid:4)andNucleotide—Toelu- fromS.aureus;Ec-FtsZ,FtsZfromEscherichiacoli;Cr,criticalproteincon- cidatethemechanismofPC-inducedassemblyandtocharac- centrationforpolymerization;HPLC,highpressureliquidchromatogra- phy;GMPCPP,guanosine-5(cid:5)-[(2,(cid:2))-methylene]triphosphate. terize the effects of PC under more physiological conditions, 14240 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER19•MAY7,2010 FtsZAssemblyInducedbySmallAntibacterialMolecule FIGURE1.AssemblyofbundlesofBs-FtsZ(10(cid:1)M)inducedbyPC(20(cid:1)M).A,lightscatteringtimecourseswithandwithoutPCinHepes50assemblybuffer, 10mMMgCl2,pH6.8,25°C.GTP(2mM)wasaddedattime0and2mMGDPasindicatedbythearrows.B,electronmicrographofBs-FtsZwithPC.Bar,200nm. C,anenlargedbundle.D,itscomputeddiffractogram.Thecorrespondingspacingofthemainequatorialspotandthefirstlayerlineareindicatedinnm. E,Bs-FtsZpolymerpelletingassaysatvaryingpHandionicstrength.F,Bs-FtsZwithoutPC,magnifiedasinB. pHwasincreasedto7.5,orionicstrengthincreasedto250mM KCl,whichreducedtheextentofspontaneousBs-FtsZassem- bly with nucleotide and Mg2(cid:4). Assembly was efficiently inducedbyPCinthesecases(Fig.1E),althoughbundleforma- tion was reduced. Assembly was markedly sensitive to the bufferanion(supplemental“ExperimentalProcedures”).Disas- semblycouldbemonitoredbylightscatteringfollowingassem- blyof10(cid:4)MBs-FtsZwith25(cid:4)MGMPCPP(expectedtostabi- lize polymers) and 10 mM MgCl in 250 mM KCl (scattering 2 with GTP was very small). This was attributed to GMPCPP hydrolysisandwasnotobservedinthepresenceofPC.GTPor GMPCPPwasrequiredforPC-enhancedassembly.Mg2(cid:4)with- outnucleotidewasineffective.Interestingly,GTPorGMPCPP without Mg2(cid:4) induced assembly of Bs-FtsZ filaments, which were not formed with GDP or GMPCP. Mg2(cid:4) plus GDP or FIGURE2.PCandmagnesium-inducedBs-FtsZassemblies.Electronmicro- GMPCPandPCgaveaweakpolymerformation.Theseresults graphofnegativelystainedpolymersformedbyBs-FtsZ(10(cid:4)M)inHepes250 confirmedthatPCstabilizesBs-FtsZpolymersandshowedthe assemblybufferwith0.1mMGMPCPP(A),0.1mMGMPCPPand20(cid:4)MPC(B), requirementofthenucleotide(cid:3)-phosphate. a0n.1dm2M0G(cid:4)MMPPCCP(PD)a.nTdhe10bamrMinMdigcCatl2es(C2)0,a0nndm0..1mMGMPCPPand10mMMgCl2 It was possible to separate PC-induced filament assembly from bundle formation by using 250 mM KCl and GMPCPP. Bs-FtsZ assembly was only incipient without Mg2(cid:4) (Fig. 2A). IncipientassemblyofBs-FtsZwasobservedwithnucleotidein AddingonlyPCinducedcharacteristicfilamentcoils(Fig.2B), the absence of PC (no nucleotide-induced light scattering whereasMg2(cid:4)aloneinducedtheformationoffilaments(Fig. increase or pelleting). However, addition of PC under these 2C).BothwereinhibitedwithGMPCP.PCandMg2(cid:4)together conditions resulted in Bs-FtsZ polymerization. There was a inducedtheformationoffilamentsandbundles(Fig.2D).Sim- smalllightscatteringincreasewithPCandGMPCPP(Fig.3A). ilar results were obtained with GTP, but with PC and Mg2(cid:4), These PC-induced FtsZ filaments sedimented in 80 min at dense coils and no bundles were observed (supplemental 386,000(cid:3)g,whichallowedtheirquantification.Practicallyall Fig.S1). Bs-FtsZwaspelletedwithPCandGTPorGMPCPPaboveaCr PC Induces Bs-FtsZ Single-stranded Filament Assembly— (cid:1)1(cid:4)M(Fig.3B;GTP,0.8(cid:2)0.1(cid:4)M;GMPCPP,1.3(cid:2)0.3(cid:4)M). Mg2(cid:4)-less Hepes250 buffer permitted PC-induced nucleated InsignificantGTPhydrolysiswasdetectedunderthesecondi- assembly of single-stranded Bs-FtsZ filaments. Our divalent tions. These results indicated a nucleated polymerization cation-free solutions typically contain (cid:1)1 (cid:4)M residual Mg2(cid:4) mechanismforthePC-inducedassemblyofBs-FtsZfilaments, (34)thatwith1mMEDTAinbufferresultsin(cid:1)4nMfreeMg2(cid:4). with an apparent free energy change for polymer elongation MAY7,2010•VOLUME285•NUMBER19 JOURNALOFBIOLOGICALCHEMISTRY 14241 FtsZAssemblyInducedbySmallAntibacterialMolecule between0.5and1PCperFtsZ(Fig. 4A), compatible with PC inducing polymerization by binding to one site in FtsZ. For a ligand to induce protein association, it has to bind more to the protein polymer than the monomer. As a first approach, PCbindingtoBs-FtsZpolymerswas determined by extraction of the ligandfromthepelletsandsuperna- tantsfollowedbyHPLC.PCcosedi- mentedwiththepolymersandinhi- bition of polymerization with GDP alsoinhibitedthePCpulldown.The resultswere0.5PCboundperFtsZ at (cid:1)10 (cid:4)M free PC, irrespective of ionicstrengthandmagnesiumlevel (0.46(cid:2)0.14inHepes50with10mM MgCl , 0.40 (cid:2) 0.10 in Hepes250 2 without MgCl , and 0.54 (cid:2) 0.10 in 2 Hepes250with10mMMgCl ).FtsZ 2 was active in polymer formation (Fig.3B),andsaturatingthebinding to an expected 1 PC per FtsZ was precludedbythefreeligandsolubil- ity ((cid:1)10 (cid:4)M in our buffers). The simplest interpretation of these results is one PC binding site per polymer FtsZ molecule with an apparentaffinity(cid:1)105M(cid:8)1. FIGURE3.Bs-FtsZfilamentassemblyinducedbyPC.A,solidline,lightscatteringchangesinducedonBs-FtsZ Interestingly, the PC fragment D(1a0s(cid:4)heMd)wliniteh,sPaCm(e20w(cid:4)itMho)buytPaCd.dBit,ieoxnasmopfGleMoPfsCePdPim(2e5n(cid:4)taMt)ioanndofMBgs-CFlt2s(Z1p0omlyMm)(earrsrofowrms)eindHweiptheos2u5t0M,gp2H(cid:4)6(.t8o,p2)5an°Cd. DFMBA(1–4mM;Fig.5,AandC), 2,6-difluoro-3-hydroxybenzamide pelletquantification(bottom).Filledcircles,PCandGMPCPP(0.1mM);filledsquares,PCandGTP(2mM);open symbols,withoutPC;triangle,PCandGDP;invertedtriangle,PCandGMPCP.C,cryoelectronmicrographof (1–4 mM) and to a lesser extent Bs-FtsZfilamentsassembledwithPCandGTPunderthesameconditionswithoutMg2(cid:4).Inset,negatively 3-methoxybenzamide (20 mM), stainedfilaments.Bar,200nm.D,cryoelectronmicroscopyfilamentwidthdistribution,indicatingthatthe filamentsareoneBs-FtsZmolecule-wide. werefoundtoinducelargeBs-FtsZ bundles similar to those obtained (cid:6)G0 (cid:7) RTlnCr (cid:7) (cid:8)8.2 kcal mol(cid:8)1 (16). With GTP or with PC (20 (cid:4)M), thus following their relative antibacterial app GMPCPPandnoPC,abackgroundsimilartothatofPCand activities(35).TheotherfragmentofthePCmolecule,CTPM GDPorGMPCPwasobserved(Fig.3B).Crdecreasedtoinsig- (1mM)didnotinduceBs-FtsZbundling(Fig.5,BandC).These nificant values in experiments made in parallel with 10 mM resultssuggestedspecificbutweakbindingofDFMBAtoBs- MgCl (supplementalFig.S2),indicatingalargereffectiveelon- FtsZpolymers,whichcouldnotbeaccuratelymeasuredbypel- 2 gationaffinity,althoughthesystemwasnotatchemicalequi- leting HPLC. DFMBA has an (cid:1)102-fold higher effective con- libriumduetonucleotidehydrolysis.Interestingly,thePC-in- centrationthanPC,suggestingatwoorderofmagnitudelower duced Bs-FtsZ filaments without Mg2(cid:4) typically had an affinity.NotethatifPCwereanonself-associatingidealbifunc- (cid:1)100-nm curvature radius and appeared single-stranded. To tionalligand(36),therestofthemolecule,ifisolated,wouldbe confirmthatthesefilamentsaresingle-stranded,weperformed expected to bind more weakly than DFMBA and be inactive cryoelectron microscopy under these conditions, using holey below(cid:1)0.5M. carbon film. The sample trapped within the small holes was Modulation of the GTPase Activity of Bs-FtsZ by PC—The quicklyvitrifiedandkeptunderliquidnitrogentemperaturesto effects of PC on the GTPase activity of polymerizing Bs-FtsZ ruleoutanyeffectofthestainingagentortheadsorptiontoa solutionswasexaminedwith10mMMgCl inthreebuffersthat 2 supportfilm(Fig.3C).Filamentwidthmeasurementsfromthe give quite different degrees of PC-induced bundling (see cryomicrographshadadistributionwithanaverage3.5(cid:2)0.7 above).ControlGTPasewithoutPCwasdependentontheKCl nm (Fig. 3D), indicating that these filaments are one Bs-FtsZ concentration: 0.61 (cid:2) 0.09 min(cid:8)1 in Hepes250, 0.22 (cid:2) 0.02 moleculewide. min(cid:8)1inHepes50,0.15(cid:2)0.08min(cid:8)1inMes50.Apartialinhi- BindingofPCandItsFragmentDFMBAtoBs-FtsZPolymers— bition of the GTPase rate was observed with PC, to a similar Titrations of Bs-FtsZ polymer formation with PC showed an extent(Fig.6)irrespectiveofthebuffer.Theinhibitionbetween increasing fraction of sedimented FtsZ, which saturated (cid:1)1and(cid:1)10(cid:4)MPCroughlyparalleledtheformationofpellet- 14242 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER19•MAY7,2010 FtsZAssemblyInducedbySmallAntibacterialMolecule FIGURE5.Bs-FtsZpolymersinducedbyPCfragmentsinMes50assembly bufferwith10mMMgCl2and2mMGTP.A,1mMfragmentofDFMBA.B,1 mMfragmentofanalogueCTPM(similartocontrolwithoutfragment,asin Fig.1F).Bar,200nm.C,chemicalstructureofPCandlowspeedFtsZpolymers pelleting(15,000(cid:3)g,20min)underthesameconditions(PC,20(cid:4)M).DFMBA also induced a FtsZ light scattering increase that was not observed with CTPM.TheCrforassemblyinHepes50wasreducedfrom(cid:1)5(cid:4)Mto(cid:1)1(cid:4)M FtsZwithDFMBA(4mM). FIGURE4.BindingofPCtoBs-FtsZpolymers.A,Bs-FtsZ(10(cid:4)M)sedimenta- tionassaysinHepes250,pH6.8,25°C,andquantificationofpolymerwith increasingconcentrationsofPC.Opencircles,with2mMGTP;filledcircles,with 2mMGTPandMg2(cid:4);voidsquares,with0.1mMGMPCPP.Triangles,corre- spondingdatawithGDP,GDP,andMg2(cid:4)orGMPCP.B,HPLCanalysisofPC(10 (cid:4)Mtotal)co-sedimentationwithBs-FtsZpolymers.Solidlinesandarrow,with GTPandMg2(cid:4);dashedgraylinesandarrow,controlwithGDPandMg2(cid:4).Taxol isaninternalstandardhere.Inthisexperiment,thepelletedPCandFtsZwere FIGURE6.EffectsofPContheGTPaseactivityofFtsZ(10(cid:1)M),with1mM 4.8and10(cid:4)M,respectively.mAU,milliabsorbanceunits. GTPand10mMMgCl2,pH6.8at25°C.Bs-FtsZ:solidcircles,Hepes50;trian- gles,Hepes250;squares,Mes50.Ec-FtsZ:opencircles,Hepes50(averageof threedifferentproteinpreparations).Thelinesaredrawnsolelytoshowthe able polymer (Fig. 4A). Low PC concentrations variably trendofthedata.TheincreaseinGTPaseactivityofEc-FtsZwasconfirmedby enhancedtherelativeGTPaseactivityinHepes250.Thismay measurementsatvaryingproteinconcentrationswithexcess15(cid:4)MPC(not be a simple consequence of a large increase in FtsZ GTPase shown). uponpolymerizationrelativetotheweaklypolymerizingcon- trolwithoutPC(Fig.1E)(sincetheratemeasuredispertotal FtsZ,notperassembledFtsZ).Controlmeasurementsshowed Formation of Polymorphic Bs-FtsZ Filament Condensates that3H[GTP]bindingtoBs-FtsZandtoEc-FtsZwasnotmod- with Different Curvatures—Bs-FtsZ filaments frequently ifiedbyPC(supplementalFig.S3). adopted bow shapes and easily coalesced into coils or associ- MAY7,2010•VOLUME285•NUMBER19 JOURNALOFBIOLOGICALCHEMISTRY 14243 FtsZAssemblyInducedbySmallAntibacterialMolecule FIGURE7.PolymorphicassembliesofBs-FtsZ,inadditiontobundlesand ribbons(seeFig.1B).A,filamentsobservedinHepes50,pH6.8,withGTPand PC. B, toroids in another field of the same sample. C, helical bundles in Hepes50atpH7.5withGTP,10mMMgCl2,andPC.D,coiledfilamentsand toroidsformedwithoutPCordimethylsulfoxideinMes50withMgCl and 2 GMPCPP.SimilarpolymerswereobservedinHepes50,pH6.8,orwithGTP. Bar,200nm. atedintostraightbundles(seeabove).OtherBs-FtsZfilament condensatesalsoobservedincludetoroidsandhelicalbundles (seesupplementalTableS1foralistofpolymorphsandcondi- tions).Briefly,alongwithfilamentsformedwithGTPandPC (Fig. 7A) and filament coils (similar to Fig. 2B), toroids(cid:1)300 nmindiameterwereobservedonthesamegrids(Fig.7B).Large helical bundles were observed at pH 7.5 with PC, GTP, and Mg2(cid:4)(Fig.7C).Interestingly,Bs-FtsZcondensatescouldalso form in the absence of PC with GMPCPP and Mg2(cid:4) as coils, and smaller toroids (cid:1)150 nm in diameter were observed (Fig.7D). Specificity of FtsZ-PC Interactions—We next compared the effectsofPContheassemblyofFtsZfromsusceptible(B.sub- tilis and S.aureus) and nonsusceptible (E.coli) bacteria in Hepes50(Fig.8A).Theweakformationofpelletablepolymerby Sa-FtsZ was markedly enhanced by PC, at concentrations higherthanwithBs-FtsZ.AlargePC-inducedincreaseinSa- FtsZlightscatteringwasobservedwithnucleotideandMg2(cid:4) (supplementalFig.S4).Electronmicrographsshowedatrans- formationofSa-FtsZoligomers(Fig.8B)intocoils,toroids,and FIGURE8.EffectsofPConthepolymerizationofFtsZ(10(cid:1)M)fromsus- ceptible(B.subtilisandS.aureus)andresistant(E.coli)bacteria.A,FtsZ straightbundleswithPC(Fig.8,CandD).DFMBAhadsimilar polymerversusPCconcentration.Circles,Bs-FtsZ;squares,Sa-FtsZ;triangles, effects at higher concentrations. On the other hand, PC Ec-FtsZ.Thegraysymbolsarecorrespondingcontrolswithoutmagnesium. induced bundling was not observed with Ec-FtsZ. Filament TheconditionswereHepes50bufferwith10mMMgCl2and1mMGTP,pH6.8, 25°C.AGTPregeneratingsystem(1unit/mlacetatekinaseand15mMacetyl morphologywasnotmodified(Fig.8E),andchangesinpoly- phosphate)wasaddedforthemeasurementsinA.Thiswasrequiredtorepro- merizationwereinsignificantwhenemployingaGTP-regener- duciblypellettheEc-FtsZpolymersintheexperimenttimeanddidnotmod- ifythepelletingofBs-FtsZandSa-FtsZ.B–D,electronmicrographsofSa-FtsZ atingsystem(Fig.8A).Unexpectedly,PCinducedafasterdis- withGTP(B),withGTPand20(cid:4)MPCintwofieldsfromthesamesample(C) assembly without a GTP regenerating system (supplemental and with 0.1 mM GMPCPP and 20 (cid:4)M PC (D, upper panel displayed with Fig.S4C)anda2-foldenhancementofEc-FtsZGTPase(Fig.6). reducedcontrast).E,Ec-FtsZfilamentswithGTPand20(cid:4)MPC.Controlswith- outPCgavesimilarimages.Bar,200nm. HPLCmeasurements(with10(cid:4)MEc-FtsZand20(cid:4)MPC)indi- cated binding of 0.4 PC per polymerized Ec-FtsZ, although it didnotinducebundling.Finally,PC(20(cid:4)M)orDFMBA(4mM) DISCUSSION did not affect the assembly of the more distant eukaryotic Wehaveshowninthisstudythatbindingofthesmallanti- homologue(cid:1)(cid:2)-tubulin(15(cid:4)M)inlightscatteringtests,orthe bacterialmoleculePC190723enhancestheassemblyofpurified grossmorphology(inelectronmicroscopy)ofthemicrotubular cell division protein Bs-FtsZ into filaments and bundles. Pre- polymersformed(notshown). ventingdisassemblyofFtsZpolymersshouldinhibittheirfunc- 14244 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER19•MAY7,2010 FtsZAssemblyInducedbySmallAntibacterialMolecule tionaldynamicsinvivo,whichweproposeexplainscytokinesis WehaveemployedBs-FtsZasamodelandconfirmedthat inhibition. This is supported by the observation of FtsZ foci PC also induces bundling of Sa-FtsZ, but does not induce alongPC-treatedbacilliinsteadofZ-rings(32). assembly or condensation of Ec-FtsZ filaments. This is in Our results also give insight into the mechanisms of FtsZ agreementwiththeantibacterialspectrumofPC,whichhas assemblyandfacilitatetheuseofPCasatooltoinvestigatethe beenrelatedtothepresenceofVal307inFtsZfromsuscep- biological role of FtsZ. PC binding induces Bs-FtsZ filament tibleorganisms(32).MutationsconferringresistancetoPC formationunderincipientassemblyconditions(250mMKCl, clusteratthelongchannelbetweenthetwodomainsofthe noMg2(cid:4)).Thesefilamentsaresinglestranded,yettheyassem- FtsZmoleculewherePChasbeendocked(32).Thiszoneis blewithacooperativecriticalconcentrationbehavior,typicalof differentfromtheGTPbindingsiteanditoverlapsthetaxol multi-stranded polymers. This may be explained by Bs-FtsZ binding site in (cid:2)-tubulin. In agreement with the large switching between inactive and active states similarly to Ec- sequencedivergencebetweenbothproteinsnomarkedcross FtsZ(16),indicatingthatPCinducesthepolymerBs-FtsZcon- reactions have been observed (32; Results). In order to sta- formation,possiblybydruggingitsassemblyswitch.However, bilize susceptible FtsZ polymers PC should bind more to itcannotberuledoutthatthecooperativebehaviorofBs-FtsZ them than to monomers. It could be thought that PC does with PC might be caused by some filament cyclization in the notbindtoFtsZmonomers,norfitswellintothebindingsite coilsobservedorbyfilamentnetworkformation.Directmea- ofnon-susceptibleFtsZ(32).However,theGTPaseenhance- surementsofPCbindingtoFtsZpolymerssuggestpartialsat- ment and HPLC measurements indicate PC binding to Ec- urationofonePCbindingsiteinFtsZ,limitedbythesolubility FtsZ.GiventhatPCdidnotmodifysteady-statepolymeriza- of the ligand. PC-induced Bs-FtsZ filament assembly in the tion,itshouldbindsimilarlytothemonomersandpolymers absenceofmagnesiumproceedswithoutGTPhydrolysis,con- of this non-susceptible FtsZ. This binding could occur in a stitutinganequilibriummodelsystemofligand-inducednucle- different manner (ineffectively or at another site) than in ated assembly, analogous to the taxol-induced assembly of susceptibleBs-FtsZandSa-FtsZpolymers.Theasyetunre- GDP-tubulin(12).Itwouldbeworthstudyinginmoredetailthe solved atomic structure of an FtsZ-PC complex could give linkageofPCbindingtoFtsZfilamentassembly. insightintothedetailedstructuralmechanismofPCaction, TheFtsZGTPasesiteisattheaxialinterfacebetweencon- possiblytheFtsZactivationswitch,andwouldfacilitatethe secutiveFtsZmoleculesinaprotofilament(8,37),sothatGTP optimizationofPC-deriveddrugstargetingFtsZinbacterial hydrolysistakesplaceuponFtsZassembly.PCmodulatesthe pathogens. The major determinant of PC binding to FtsZ GTPaseactivityofsteady-statepolymerizingBs-FtsZsolutions. (Results) and antibacterial activity (35) appears to be its TheGTPaseactivationatearlystagesofassemblyremainstobe DFMBAmoiety. studied. Focusing on the effects of the higher PC concentra- Anincreasingnumberofproteinsareknowntomodulate tions,thepartialinhibitionofBs-FtsZGTPaseandthelackof FtsZassembly(4),inhibitingorenhancingFtsZpolymeriza- PCeffectofGTPbindingargueagainstbindingtothesamesite. tionandbundling.SmallmoleculesreportedtostabilizeFtsZ This GTPase inhibition is difficult to explain by a bundling polymers include zantrins 3 and 5 (39), ruthenium red (40) effect,duetothecoincidentextentofinhibitionunderdifferent andDAPI(41),andveryrecentlyFtsZbundlingbytheben- bundlingconditions(Fig.6).Mechanistically,PCbindingata zoicacidderivativeOTBA(42)hasbeenproposedasastrat- sitedifferentfromtheGTPsitemayeitherdecreasetheFtsZ egy to inhibit bacterial division. It would be of interest to subunitturnoverinstabilizedfilamentsandthereforetheGTP know whether these molecules share the PC site or bind hydrolysisturnover(27)orallostericallymodulate(32)theGTP elsewhere in FtsZ. It is known that Ca2(cid:4) ions induce FtsZ hydrolysisandexchangeinFtsZfilaments. filament bundling (43, 44) and that FtsZ condensates can Depending on the solution conditions, the assembly of forminanonspecificmannerbymacromolecularcrowding Bs-FtsZ varies and so does the effect of PC, with a similar (45)orbyinteractionswithpolarmoleculesatrelativelyhigh global assembly enhancement. PC binding under Bs-FtsZ concentrations (46). Volume exclusion in the bacterial filamentassemblyconditions(50mMKCl,Mg2(cid:4))resultsin cytosolshouldfavortheformationofFtsZcondensates.An the formation of large condensates of Bs-FtsZ filaments. importantquestioniswhetherthereareendogenousregula- Thismaybeaconsequenceoffilamentaccumulation,orPC torssharingthePCbindingsiteofFtsZ. might induce the condensation of existing filaments, by ThebiochemicalactionofPConFtsZpolymersparallels bindingmoretocondensedthantoisolatedFtsZfilaments. that of taxol on tubulin (12), since each drug stabilizes its PCinduces,inadditiontocharacteristicallycurvedBs-FtsZ respectiveproteinpolymersagainstdisassembly,bybinding filamentsandstraightbundles(Fig.1),toroidsatpH6.8and moretopolymersthantomonomers.Taxolwasthefirst(47) helicalbundlesatpH7.5(Fig.7),underscoringtheflexibility among antitumor Microtubule Stabilizing Agents, which of FtsZ filaments. The observation of Bs-FtsZ coils and impair cellular microtubule dynamics and mitosis, trigger- toroidsformedwithnucleotideandMg2(cid:4)intheabsenceof ingcelldeath(48).MicrotubuleStabilizingAgentsworkby PC(Fig.7)indicatethattheabilitytoformcurvedconden- preferential binding to assembled tubulin (49). The struc- sates is an intrinsic property of Bs-FtsZ filaments, which is tural mechanism coupling taxol binding and microtubule important for the formation of the Z-ring (24), and is assemblyiscurrentlyunderinvestigation(50).Inthecaseof enhanced by PC binding. Curved FtsZ filaments coalescing thePC-inducedFtsZfilamentstheproblemmaybesimpler intotheZ-ringhaverecentlybeenproposedtogeneratethe due to the lack of lateral interactions. At a cellular level, constrictionforce(38). multiplemicrotubuleastersformintumorcellstreatedwith MAY7,2010•VOLUME285•NUMBER19 JOURNALOFBIOLOGICALCHEMISTRY 14245 FtsZAssemblyInducedbySmallAntibacterialMolecule high taxol concentrations, instead of normal spindles (Fig. 24. Monahan,L.G.,Robinson,A.,andHarry,E.J.(2009)Mol.Microbiol.74, S5; 51). Multiple mislocalized FtsZ foci, instead of a func- 1004–1017 tionalZ-ring,formalongPC-treatedbacteria,whichappear 25. Erickson,H.P.(2009)Proc.Natl.Acad.Sci.U.S.A.106,9238–9243 26. Stricker,J.,Maddox,P.,Salmon,E.D.,andErickson,H.P.(2002)Proc. to cause the inhibition of cytokinesis leading to bacterial Natl.Acad.Sci.U.S.A.99,3171–3175 lysis by PC (32). We speculate that PC is the first of a new 27. Huecas,S.,Schaffner-Barbero,C.,García,W.,Ye´benes,H.,Palacios,J.M., classofsyntheticantibacterials,theFtsZPolymerStabilizing Díaz,J.F.,Mene´ndez,M.,andAndreu,J.M.(2007)J.Biol.Chem.282, Agents.Ourfindingsraisethequestionofwhethertaxoland 37515–37528 PChavetotallydifferentstructuralmechanismsofactionor, 28. Chen,Y.,andErickson,H.P.(2009)Biochemistry48,6664–6673 by binding to equivalent sites, to what extent each of them 29. Vollmer,W.(2006)Appl.Microbiol.Biotechnol.73,37–47 acts on a conserved assembly switch in the tubulin-FtsZ 30. Goh,S.,Boberek,J.M.,Nakashima,N.,Stach,J.,andGood,L.(2009)PLoS One4,e6061 superfamilyofproteins. 31. La¨ppchen,T.,Pinas,V.A.,Hartog,A.F.,Koomen,G.J.,Schaffner-Bar- bero,C.,Andreu,J.M.,Trambaiolo,D.,Lo¨we,J.,Juhem,A.,Popov,A.V., Acknowledgments—WethankN.StokesandProlysisforPC190723, anddenBlaauwen,T.(2008)Chem.Biol.15,189–199 M.A.OlivaandJ.Lo¨wefortheBs-FtsZexpressionplasmid,J.Jimenez- 32. Haydon,D.J.,Stokes,N.R.,Ure,R.,Galbraith,G.,Bennett,J.M.,Brown, Barberoforencouragement,P.Chaco´nandJ.F.Díazfordiscussions, D.R.,Baker,P.J.,Barynin,V.V.,Rice,D.W.,Sedelnikova,S.E.,Heal,J.R., andD.Juanfortechnicalassistance. Sheridan,J.M.,Aiwale,S.T.,Chauhan,P.K.,Srivastava,A.,Taneja,A., Collins, I., Errington, J., and Czaplewski, L. G. (2008) Science 321, 1673–165 REFERENCES 33. Nogales,E.,Whittaker,M.,Milligan,R.A.,andDowning,K.H.(1999)Cell 1. Bi,E.F.,andLutkenhaus,J.(1991)Nature354,161–164 96,79–88 2. Margolin,W.(2005)Nat.Rev.Mol.CellBiol.6,862–871 34. Rivas,G.,Lo´pez,A.,Mingorance,J.,Ferra´ndiz,M.J.,Zorrilla,S.,Minton, 3. Michie,K.A.,andLo¨we,J.(2006)Annu.Rev.Biochem.75,467–492 A. P., Vicente, M., and Andreu, J. M. (2000) J. Biol. Chem. 275, 4. Adams,D.W.,andErrington,J.(2009)Nat.Rev.Microbiol.7,642–653 11740–11749 5. Osawa, M., Anderson, D. E., and Erickson, H. P. (2008) Science 320, 35. Czaplewski,L.G.,Collins,I.,Boyd,E.A.,Brown,D.,East,S.P.,Gardiner, 792–794 M.,Fletcher,R.,Haydon,D.J.,Henstock,V.,Ingram,P.,Jones,C.,Noula, 6. Buey, R. M., Díaz, J. F., and Andreu, J. M. (2006) Biochemistry 45, C.,Kennison,L.,Rockley,C.,Rose,V.,Thomaides-Brears,H.B.,Ure,R., 5933–5938 Whittaker, M., and Stokes, N. R. (2009) Bioorg. Med. Chem. Lett. 19, 7. Larsen,R.A.,Cusumano,C.,Fujioka,A.,Lim-Fong,G.,Patterson,P.,and 524–527 Pogliano,J.(2007)GenesDev.21,1340–1352 36. Andreu,J.M.,andTimasheff,S.N.(1982)Biochemistry21,534–543 8. Nogales,E.,Downing,K.H.,Amos,L.A.,andLo¨we,J.(1998)Nat.Struct. 37. Oliva,M.A.,Cordell,S.C.,andLo¨we,J.(2004)Nat.Struct.Mol.Biol.11, Biol.5,451–458 1243–1250 9. Rice,L.M.,Montabana,E.A.,andAgard,D.A.(2008)Proc.Natl.Acad. 38. Osawa, M., Anderson, D. E., and Erickson, H. P. (2009) EMBO J. 28, Sci.U.S.A.105,5378–5383 3476–3784 10. Gebremichael, Y., Chu, J. W., and Voth, G. A. (2008) Biophys J. 95, 39. Margalit,D.N.,Romberg,L.,Mets,R.B.,Hebert,A.M.,Mitchison,T.J., 2487–2499 Kirschner, M. W., and RayChaudhuri, D. (2004) Proc. Natl. Acad. Sci. 11. Bennett,M.J.,Chik,J.K.,Slysz,G.W.,Luchko,T.,Tuszynski,J.,Sackett, U.S.A.101,11821–11826 D.L.,andSchriemer,D.C.(2009)Biochemistry48,4858–4870 40. Santra,M.K.,Beuria,T.K.,Banerjee,A.,andPanda,D.(2004)J.Biol. 12. Díaz, J. F., Mene´ndez, M., and Andreu, J. M. (1993) Biochemistry 32, Chem.279,25959–25965 10067–10077 41. Nova,E.,Montecinos,F.,Brunet,J.E.,Lagos,R.,andMonasterio,O.(2007) 13. Elie-Caille,C.,Severin,F.,Helenius,J.,Howard,J.,Muller,D.J.,andHy- Arch.Biochem.Biophys.465,315–319 man,A.A.(2007)Curr.Biol.17,1765–1770 42. Beuria,T.K.,Singh,P.,Surolia,A.,andPanda,D.(2009)Biochem.J.423, 14. Caspar,D.L.(1980)Biophys.J.32,103–138 61–69 15. Dajkovic,A.,andLutkenhaus,J.(2006)J.Mol.Microbiol.Biotechnol.11, 43. Yu,X.C.,andMargolin,W.(1997)EMBOJ.16,5455–5463 140–151 44. Marrington,R.,Small,E.,Rodger,A.,Dafforn,T.R.,andAddinall,S.G. 16. Huecas,S.,Llorca,O.,Boskovic,J.,Martín-Benito,J.,Valpuesta,J.M.,and (2004)J.Biol.Chem.279,48821–48829 Andreu,J.M.(2008)Biophys.J.94,1796–1806 45. Gonza´lez,J.M.,Jime´nez,M.,Ve´lez,M.,Mingorance,J.,Andreu,J.M., 17. Dajkovic,A.,Mukherjee,A.,andLutkenhaus,J.(2008)J.Bacteriol.190, Vicente,M.,andRivas,G.(2003)J.Biol.Chem.278,37664–37671 2513–2526 18. Miraldi, E. R., Thomas, P. J., and Romberg, L. (2008) Biophys. J. 95, 46. Popp, D., Iwasa, M., Narita, A., Erickson, H. P., and Mae´da, Y. (2009) 2470–2486 Biopolymers91,340–350 19. Lan, G., Dajkovic, A., Wirtz, D., and Sun, S. X. (2008) Biophys. J. 95, 47. Schiff,P.B.,Fant,J.,andHorwitz,S.B.(1979)Nature277,665–667 4045–4056 48. Jordan,M.A.,andWilson,L.(2004)Nat.Rev.Cancer4,253–265 20. Lo¨we,J.,andAmos,L.A.(1999)EMBOJ.18,2364–2371 49. Diaz, J. F., Andreu, J. M., and Jimenez-Barbero, J. (2009) Topics Curr. 21. Oliva,M.A.,Huecas,S.,Palacios,J.M.,Martín-Benito,J.,Valpuesta,J.M., Chem.286,121–149 andAndreu,J.M.(2003)J.Biol.Chem.278,33562–33570 50. Xiao,H.,Verdier-Pinard,P.,Fernandez-Fuentes,N.,Burd,B.,Angeletti, 22. Oliva, M. A., Trambaiolo, D., and Lo¨we, J. (2007) J. Mol. Biol. 373, R.,Fiser,A.,Horwitz,S.B.,andOrr,G.A.(2006)Proc.Natl.Acad.Sci. 1229–1242 U.S.A.103,10166–10173 23. Li,Z.,Trimble,M.J.,Brun,Y.V.,andJensen,G.J.(2007)EMBOJ.26, 51. Abal,M.,Souto,A.A.,Amat-Guerri,F.,Acun˜a,A.U.,Andreu,J.M.,and 4694–4708 Barasoain,I.(2001)CellMotil.Cytoskeleton49,1–15 14246 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER19•MAY7,2010

Description:
§Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense Madrid, 28040 Madrid, Cell division protein FtsZ can form single-stranded filaments Jordan, M. A., and Wilson, L. (2004) Nat.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.