ebook img

The Antarctic Impulsive Transient Antenna ultra-high energy neutrino detector: Design ... PDF

50 Pages·2008·4.13 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Antarctic Impulsive Transient Antenna ultra-high energy neutrino detector: Design ...

SLAC-PUB-16278 The Antarctic ImpulsiveTransient Antenna Ultra-highEnergy Neutrino Detector Design,Performance, andSensitivity for2006-2007BalloonFlight P.W. Gorham1,P.Allison1,S.W.Barwick2,J.J.Beatty3,D.Z.Besson4,W.R.Binns5,C.Chen6, P. Chen6,13, J. M.Clem7, A. Connolly8, P. F. Dowkontt5, M. A. DuVernois10, R. C. Field6, D.Goldstein2, A. Goodhue9 C.Hast6, C. L.Hebert1, S.Hoover9, M.H. Israel5, J. Kowalski,1 J.G.Learned1,K.M.Liewer11,J.T.Link1,13,E.Lusczek10,S.Matsuno1,B.C.Mercurio3,C.Miki1, P.Miocˇinovic´1,J.Nam2,12,C.J.Naudet11,R.J.Nichol8,K.Palladino3,K.Reil6,A.Romero-Wolf1 8 0 M.Rosen1,L.Ruckman1, D.Saltzberg9, D.Seckel7,G.S.Varner1, D.Walz6,Y.Wang12, F.Wu21 0 (ANITA Collaboration) 2 1 Dept. of Physics and Astronomy, Univ. of Hawaii, Manoa, c HI 96822. 2Univ. of California, Irvine CA 92697. 3Dept. of Physics, e Ohio State Univ., Columbus, OH 43210. 4Dept. of Physics and Astronomy, D Univ. of Kansas, Lawrence, KS 66045. 5Dept. of Physics, Washington Univ. inSt. Louis, MO 63130. 6Stanford Linear Accelerator Center, 0 Menlo Park, CA, 94025. 7Dept. of Physics, University of Delaware, 1 Newark, DE 19716. 8Dept. of Physics, University College London, London, United Kingdom. 9Dept. of Physics and Astronomy, Univ. of California, ] h LosAngeles, CA 90095. 10School of Physicsand Astronomy, Univ. of Minnesota, p Minneapolis, MN 55455. 11Jet Propulsion Laboratory, Pasadena, - CA 91109. 12Dept. of Physics, National Taiwan University, Taipei, o Taiwan. 13Currentlyat NASA Goddard Space Flight Center, Greenbelt, MD, 20771. r t s We present a detailed report on the experimental details of the Antarctic Impulsive Transient Antenna a (ANITA)longdurationballoonpayload,includingthedesignphilosophyandrealization,physicssimulations, [ performanceoftheinstrumentduringitsfirstAntarcticflightcompletedinJanuaryof2007, andexpectations 1 forthelimitingneutrinodetectionsensitivity.Neutrinophysicsresultswillbereportedseparately. v 0 2 I. INTRODUCTION 9 1 CosmicneutrinosofenergyintheExavoltandhigher(1EeV=1018 eV)energyrange,thoughasyetundetected, . 2 areexpectedtoarisethroughahostofenergeticaccelerationandinteractionprocessesatsourcelocationsthroughout 1 theuniverse. However,in onlyoneof thesesources–thedistributedinteractionsofthe ultra-highenergycosmicray 8 flux–doesthecombinationofobservationalevidenceandinteractionphysicsleadtoastrongrequirementforresulting 0 : highenergyneutrinos. Whateverthesourcesofthehighestenergycosmicrays, theirobservedpresencein thelocal v universe,combinedwiththeexpectationthattheirsourcesoccurwidelythroughouttheuniverseatallepochs,leadsto i X theconclusionthattheirinteractionswiththecosmicmicrowavebackgroundradiation(CMBR)–theso-calledGZK process(afterGreisen,Zatsepin,andKuzmin[1])–mustyieldanassociatedcosmogenicneutrinoflux,asfirstnoted r a by Berezinsky and Zatsepin [2]. These neutrinos are often called the GZK neutrinos, as they arise from the same interactions of the ultra-high energy cosmic rays (UHECR) that cause the GZK cutoff, but they are perhaps more properlyreferredtoastheBZneutrinos. InBZneutrinoproductionscenarios,currentexperimentalUHECRmeasurementsinvariablypointtothepresenceof anassociatedultra-highenergyneutrinoflux.ForUHECRaboveseveraltimes1019eV,intergalacticspaceisoptically thicktoUHECRpropagationthroughtheCMBRatadistancescaleofseveraltensofMpc. EachUHECRsourceat allepochsisthussubjecttolocalconversionofitshadronicfluxtosecondary,lowerenergyparticlesoveradistance scaleoforder100MPcinthecurrentepoch. Neutrinosaretheonlysecondaryparticlethatmayfreelypropagateto cosmicdistances,andtheresultingneutrinofluxatearthisthusrelatedtotheintegraloverthehighest-energycosmic rayhistoryoftheuniverse,totheearliestepochatwhichtheyoccur. AlthoughlocalsourcesmayalsocontributetotheEeV-ZeVneutrinofluxatearth,thebulkofthefluxisgenerally believed to arise from a much wider spectral convolution, and will thus be imprintedwith the cosmologicalsource distributioninadditiontoeffectsfromlocalsources. ThisleadstostrongmotivationstodetecttheBZneutrinoflux: first,itisrequiredbystandardmodelphysics,andthusitsabsencecouldsignalnewphysicsbeyondthestandardmodel. Second,itistheonlywaytodirectlyobservetheUHECRsourcebehaviorovercosmicdistancescales. Finally,once established, the spectrum and absolute flux of such neutrinos may afford a calibrated “test beam” for both particle This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515 and HEP. 2 physics and astrophysics experimentation, providing center-of-momentumenergies on target nucleons of 100-1000 TeV,anenergyscalenotlikelytobereachedbyothermethodsinthenearfuture. TheAntarcticImpulsiveTransientAntennawasdesignedwiththegoalofmeasuringtheBZneutrinofluxdirectly, orlimitingitatalevelwhichwouldprovidecompellingandusefulconstraintsontheearlyUHECRsourcehistory.The BZneutrinofluxispotentiallyverylow–oforder1neutrinopersquarekilometerperweekarrivingover2p steradians is a typical estimate. This flux presents an extreme challenge to detection, since the low neutrino interaction cross section also means that any targetvolume will have an inherently low efficiencyfor convertingany given neutrino. ANITA’smethodologycentersonobservingthelargestpossiblevolumeofthemosttransparentpossibletargetmate- rial: Antarcticice,whichhasbeendemonstratedtoprovideextremelylow-losstransmissionofradiosignalsthrough itsbulkovermuchofthecontinent. ANITAthenexploitstheAskaryaneffect[3],coherent,impulsiveradioemission fromthechargeasymmetryintheelectromagneticcomponentofahighenergyparticlecascadeinadielectricmedium. ANITAsearchesforcascadesinitiatedbyaprimaryneutrinointeractingintheAntarcticicesheetwithinitsfieldof viewfromtheLong-DurationBalloon(LDB)altitudeof35-37km. Theobservedareaoficefromthese altitudesis oforder1.5Mkm2. Combiningthiswiththeelectromagneticfield attenuationlengthoficewhichisoforder1km atANITA’sobservationfrequencyrange,ANITAissensitivetoatargetvolumeoforder1-2Mkm3. Theacceptance, however,isconstrainedbythefactthatatanylocationwithinthetarget,theallowedsolidangleofarrivalforaneutrino tobedetectableattheseveral-hundred-kmaveragedistanceofthepayloadisasmallfractionofasteradian. Folding intheseconstraints,thevolumetricacceptanceisstilloforderhundredstothousandsofkm3steradiansovertherange ofenergyoverlap–1018.5 20eV–withtheBZneutrinospectrum.Thislargeacceptance,whiletemperedbythelimited − exposure in time provided by a balloon flight, still yields the largest sensitivity of any experiment to date for BZ neutrinos. InthisreportwedocumenttheANITAinstrumentandourestimatesofitssensitivityandperformancefor thefirstflightofthepayload,completedinJanuaryof2007. Aseparatereportwilldetailtheresultsontheneutrino flux. II. THEORETICALBASISFORANITAMETHODOLOGY. Theconceptofdetectinghighenergyparticlesthroughthecoherentradioemissionfromthecascadetheyproduce canbetracedbackover40yearstoAskaryan[3],whoarguedpersuasivelyforthepresenceofstrongcoherentradio emission from these cascades, and even suggested that any large volume of radio-transparentdielectric, such as an ice sheet, a geologic saltbed, or the lunar regolith could provide the target material for such interactions and radio emission. Infactalloftheseapproachesarenowbeingpursued[4,5,6]. Althoughsignificantearlyeffortsweresuccessfulindetectingradioemissionfromhighenergyparticlecascadesin theearth’satmosphere[7],itisimportanttoemphasizethatthecascaderadioemissionthatANITAdetectsisunrelated totheprimarymechanismforairshowerradioemission. ParticlecascadesinducedbyneutrinosinAntarcticiceare verycompact,consistingofa“plug”ofrelativisticchargedparticlesseveralcmindiameterand 1cmthick,which ∼ develops at the speed of light over a distance of several meters from the vertex of the neutrino interaction, before dissipating into residual ionization in the ice. The resulting radio emission is coherent Cherenkov radiation with a particularly clean and simple geometry, providing high information content in the detected pulses. In contrast, the radio emission from air showers is a complex phenomenonentangled with geomagnetic and near field effects. Attemptsto understandand exploitthis formofair showeremission forcosmic raystudieshavebeenhamperedby thiscomplexitysinceitsdiscoveryinthemid-1960’s,althoughthisefforthasseenarecentrenaissance[? ]. Surprisinglylittle workwas doneon Askaryan’ssuggestionsthatsolidssuchas ice couldbe importantmediafor detection until the mid-1980’s, when Gusev and Zheleznykh [10], and Markov & Zheleznykh [11] revisited these ideas. MorerecentlyahostofinvestigatorsincludingZheleznykh[12],Dagkesamansky&Zheleznykh[13],Frichter, Ralston, & McKay [17], Zas, Halzen, & Stanev[14], Alvarez-Mun˜iz& Zas [15], andRazzaque et. al [19] among others have taken up these suggestions and confirmed the basic results through more detailed analysis. Of equal importance,asetofexperimentsattheStanfordLinearAcceleratorcenterhavenowclearlyconfirmedtheeffectand exploreditinsignificantdetail[6,16,20,21] A. FirstOrderEnergyThreshold&Sensitivity. Toillustratethemethodology,weconsideraspecificexample. ThecoherentradioCherenkovemissioninanelec- tromagnetice+e cascade arises from the 20% electron excess in the shower, which is itself producedprimarily − ∼ 3 by Comptonscattering and positron annihilationin flight. Consideringdeep-inelastic scattering charged-currentin- teractions of a high energy neutrino n with a nucleon N, given generically by n +N ℓ +X, the chargedlepton ± → ℓ± escapeswhilethehadronicdebrisX leadstoahadroniccascade. IftheinitialneutrinohasenergyenergyEn , the resultinghadroniccascadeenergywillEc=yEn ,whereyistheBjorkeninelasticity,withameanof y 0.22atvery h i≃ highenergies,andaverybroaddistribution. TheaveragenumberofelectronsandpositronsN neartotalshower e+e maximumisoforderthecascadeenergyexpressedinGeV,or − E c N . (1) e+e − ≃ 1GeV Consider a case with En =1019 eV and a slightly positivefluctuationabovethe meangivingy=0.4. Thisleads toE =4 1018 eV,givingN 4 109. TheradiatingchargeexcessisthenoforderN 0.2N . Single- c e+e ex e+e charged-p×articleCherenkovradia−tio∼ngi×vesatotalradiatedenergy,fortracklengthLoverafrequ≃encyband−fromn min ton ,of: max p h 1 W = a L 1 n 2 n 2 (2) tot c −n2b 2 max− min (cid:18) (cid:19) (cid:18) (cid:19) (cid:0) (cid:1) wherea 1/137isthefinestructureconstant,handcarePlanck’sconstantandthespeedoflight,andnandb arethe ≃ mediumdielectricconstant,andtheparticlevelocityrelativetoc,respectively.ForacollectionofN chargedparticles radiatingcoherently(e.g.,withmeanspacingsmallcomparedtothemeanradiatedwavelength),thetotalenergywill beoforderW =N2w. Insoliddielectricswithdensitycomparabletoiceorsilicasand,thecascadeparticlebunchis tot compact,withtransversedimensionsofseveralcm,andlongitudinaldimensionsoforder1cm. Thuscoherencewill obtainuptoseveralGHzormore. Fora4 1018eVcascade,N 8 108,andL 6minthevicinityofshowermaximuminamediumofdensity ex × ≃ × ≃ 0.9withn 1.8asinAntarcticice. Takingthemeanradiofrequencytobe0.6GHzwithaneffectivebandwidth o∼f600MHz,∼thenetradiatedenergyisW =10 7 J.Thisenergyisemittedintoarestrictedsolidangledefinedby tot − the Cherenkovcone at an angle q defined by cosq =(nb ) 1, and a width determined(primarily from diffraction c c − considerations)byDq csinq /(n¯L). TheimpliedtotalsolidangleofemittanceisW 2pDq sinq =0.36sr. c c c c c ≃ ≃ ThepulseisproducedbycoherentsuperpositionoftheamplitudesoftheCherenkovradiationshockfront,which yieldsextremelybroadbandspectralpoweroverthespecifiedfrequencyrange. Theintrinsicpulsewidthislessthan 100ps[20],andthispulsethusexcitesasingletemporalmodeofthereceiver,withcharacteristictimeD t=(Dn ) 1, − orabout1.6nsinourcasehere. Radiosourceintensityinradioastronomyistypicallyexpressedintermsoftheflux density Jansky (Jy), where 1 Jy = 10 26 W m 2 Hz 1. The energy per unit solid angle derived above,W /W = − − − tot c 2.7 10 7 J/sr in a 600 MHz bandwidth, produces an instantaneous peak flux density of S =1.4 107 Jy at the − c × × meangeometricdistanceD=480kmoftheiceinview,afteraccountingforthefactthatatthisdistancethegeometry constrainstheFresnelcoefficientfortransmissionthroughtheicesurfaceto 0.12,sincetheradiationemergesfrom ∼ anglesclosetothetotal-internal-reflectance(TIR)angle. Thesensitivityofaradioantennaisdeterminedbyitscollectingapertureandthethermalnoisebackground,called thesystemtemperatureT . TheRMSlevelofpowerfluctuationsinthisthermalnoise,expressedinWm 2Hz 1,is sys − − givenby kT D S = sys Wm 2Hz 1 (3) A √D tDn − − eff wherekisBoltzmann’sconstantandA istheeffectiveareaoftheantenna.Notethatinourcase,becausethepulseis eff band-limited,theterm√D tDn 1. ForANITA,asingleon-boardantennahasafrequency-averagedeffectiveareaof 0.2m2. Forobservationsofice≃thesystemtemperatureisdominatedbytheicethermalemissivitywithT 320K, sys ≤ assuming 140Kreceivernoisetemperature. TheimpliedRMSnoiselevelisthusD S=2 106Jy,givingasignal- ∼ × to-noiseratioof6.3inthiscase. Thesesimpleargumentsshowthattheexpectedthresholdforneutrinodetectionisof order1019 eVeventotheedgesoftheobservedareaviewedbyANITA.Inpractice,eventsmaybedetectedatlower energiesduetofluctuationsorinteractionsclosertothepayload,butmoredetailedsimulationsoftheenergy-dependent acceptanceofANITAdonotdepartgreatlyfromthisfirst-orderexample. 4 III. INSTRUMENTDESIGN A. OverviewofTechnicalApproach Asindicatedbyitsacronym,ANITAisconceptuallyanantennaorantennaarrayoptimizedtodetectimpulsiveRF eventswithacharacteristicsignatureestablishedbycarefulmodelingandexperimentalmeasurements. Thearrayof antennasshouldviewmostoftheentireAntarcticicesheetbeneaththeballoon,outtothehorizon,toretainsensitivity to most of the potential ice volume available for neutrino event production. It should have the ability to trigger with high efficiency on events of interest, and should have the lowest feasible intrinsic noise levels in its receivers tomaximizesensitivity. Itshouldhavebroadradiospectralcoverageanddual-polarizationcapabilitytoimproveits abilitytoidentifythesignalsandrejectthebackgrounds.Itmusthaveimmunitytotransientorsteadyradio-frequency interference. It must have enough spatial resolution of the source of measured pulses to determine if they match expectedsignalsources,andtoallowforfirst-ordergeolocationandsubsequentskymappingiftheeventisfoundto beconsistentwithaneutrino. Itmustmakeasmanydistinctandstatisticallyindependentmeasurementsaspossible ofeachimpulsethattriggersthesystemcoveringallavailabledegreesoffreedom(spatial,temporal,polarization,and spectral),becausethenumberofpotentialneutrinoeventsamongthesetriggersmaybeclosetozero,andthispotential rarityofeventsdemandsthattheinformationcontentofeachmeasuredeventbemaximized. Theseguidingprincipleshaveledtoatechnicalapproachthatcentersarounddual-polarization,broadbandantenna clusterswithoverlappingfields-of-view,combinedwithatriggersystembasedonaheritageofRFimpulsedetection instruments,bothspace-based(theFORTEsatellite[22,23])andground-based(theGLUEandRICEexperiments[4, 5]). Theneedfordirectiondetermination,combinedwiththeconstraintsonusableradiofrequencyrangedictatedby iceparameters,leadstoanoverallgeometryforbothindividualantennasandtheentirearray,thatisgovernedbythe requirementsforradiopulseinterferometryoverthespectralbandofinterest. The key challenges for ANITA are in the area of background rejection and management of electromagnetic in- terference (EMI). Impulsive interference events are likely to be primarily from anthropogenicsources, and in most cases do not mimic real cascade Cherenkovradio impulses because they lack many of the requiredpropertiessuch as polarization-, spectral-, and phase-coherence. A subset of impulsive anthropogenicinterference, primarily from systemswheresparkgapsorrapidsolid-stateswitchingrelaysareemployed,canproduceeventswhicharedifficultto distinguishfromeventsofinteresttoANITA,andthusthetaskofpinpointingtheoriginofanyimpulsiveeventisof highimportancetothefinalselectionofneutrinocandidates.If,afterrejectionofallimpulsiveeventsassociatedwith anyknowncurrentorpriorhumanactivity,thereremainsaclassofeventswhicharedistributedacrosstheintegrated fieldofviewofthepayloadandintimeinawaythatisinconsistentwithhumanorigin,wemaythenbegintoconsider thiseventclassascontainingneutrinocandidates. Whethertheysurvivewiththatdesignationwillultimatelydepend onourabilitytoexcludeallotherknownpossibilities. Inapreviousballoonexperiment[24],wefoundAntarcticatoberelativelyradioquietatballoonaltitudesoncethe payloadleavesthevicinityofthelargestbases. Whatcontinuouswave(CW)interferenceispresentcanbemanaged withcarefultriggerconfigurationandthresholdadjustmenttoservo-adjustforthetemporaryincreasesinnarrow-band powerthatoccasionallyare seen. With regardto impulsiveinterference, we foundtriggersdueto itto be relatively infrequentawayfromthemainbasesthougheventhesmallerbasesdidoccasionallyproduceburstsoftriggers. Alesswell-understoodbackgroundmayarisefromultra-highenergyairshowerswhichcanproduceatailofradio emissionouttoANITAfrequencies,buttheseevents,thoughtheymayproducetriggers,areeliminatedonthebasis oftheirdirection,arisingfromabovethehorizon,andtheirlossofcoherenceatVHFandUHFfrequencies.However, inallcasesabove,ANITAmaybepresentedwithunexpectedchallenges. B. BackgroundInterferenceIssues. BecauseANITAoperateswithextremelyhighradiobandwidthoverfrequenciesthatarenotreservedforscientific use,theproblemofradiobackgrounds,bothanthropogenicandnatural,iscrucialtothedevelopmentofarobustmis- siondesign.Wehavenotedpreviouslythatthethermalnoisepower[61]providestheultimatebackgroundlimitation, for both impulsive and time-averaged measurements, in much the same way that photon noise providesone of the ultimatelimitstoopticalimagingsystems. Electromagneticinterferencemaytakedifferentforms:near-sinusoidal”CarrierWave”(CW)interferencecanhave veryhigh narrow-bandpowerand saturate the system, or it can appear at a low level, sometimesas a composite of contributionsfrommanybands, andeffectivelyact to raise the aggregatesystem noise. ImpulsiveEMI oftenarises fromelectronicswitchingphenomena,andmaytriggerthesystemevenifitcannotbemistakenforsignalsofinterest, 5 sincethetriggershouldbeasinclusiveaspossible. ANITAhasonlyonechancepertrueneutrinoeventtodetectand characterizethe radio wavefrontas it passes by the payload; thusit mustbe as efficientas possible at triggeringon anythingsimilar to theeventsofinterest. Inthe end, itisthe informationcontentofa giventriggeredmeasurement thatwilldeterminethe confidencewithwhichwe canascribeittoa neutrinoorigin. Thisconclusionistheprimary missiondesigndriverforthetypeofpayloadandthenumberofantennas. Thedesign ofthe mission, payload,ballooncraft,andallancillaryinstrumentationmustthereforebe evaluatedin thelightofwhetheritproducesEMI,mitigatesit,respondsappropriatelytoit,orfacilitatesrejectionofit. Intheend, whenallbackgroundinterferencehasbeenrejected,whatisleftbecomesthesubstanceforANITAscience. 1. AnthropogenicBackgrounds. Backgroundsfromman-madesourcesdo notin generalposea risk of beingmistakenforthe signalsofscientific interest,unlesstheyarisefromlocationswherenohumanactivityispreviouslyknown. Aswewillshowlaterinthis report,ANITA’sangularreconstructionabilityforterrestrialinterferenceeventsgivesaccuraciesoforder1degreeor better,enablinggroundlocationofeventsourcestoalevelmorethanadequatetoremoveeventsthatoriginatefrom knowncampsoranthropogenicsources.HumanactivityinAntarcticaishighlycontrolledandpositionsandlocations for all such activity are logged with high reliability during a season. However, man-made sources can still pose a significantriskofinterferingwiththe operationoftheinstrument. Interferencefromman-madeterrestrialororbital sourcesisaubiquitousprobleminallofradioastronomy.InthisrespectANITAfacesavarietyofpotentialinterfering signalswithvariouspossibleimpactsonthedataacquisitionandanalysis. a. Satellitesignals. Orbitingsatellitetransmitterpowerisgenerallylowinthebandsofinterest.Forexample,the GPSconstellationsatellitesatanaltitudeof21000km,havetransmitpowersoforder50Winthe1227MHzand1575 MHzbands,withantennagainsof11-13dBi.Theimpliedpowerattheearth’ssurfaceis-127dBWm 2maximumin − the1227MHzband. TheimpliedRMSnoisevoltageforANITA,giventheantenna’seffectiveareaatthisfrequency, is of order0.7 µV, far below the RMS thermalnoise voltage ( 10 15µVRMS) referencedto the receiverinputs. ∼ − Currentsatellite systemsdonottypicallyoperateinANITA’sband,howevertherearesomelegacysystemsthatcan producedetectablepowerwithinANITA’sband. Aswewilldiscussinalatersection,ANITAhasencounteredsome satelliteinterferenceinthe200-300MHzrange,butithasnotcausedsignificantperformancedegradationtodate. Satellitesdonotingeneralintentionallyproducenanosecond-scaleimpulsivesignals;however,suchsignalsmaybe producedbysolid-staterelayoractuatoractivityonasatellitethatischangingitsconfiguration. Suchsignalswould appearto comefromabovethe horizon, butmightalso show up in reflectionoff the ice surface. In this latter case, the Fresnel coefficient for such a reflection will in general signficantly boost the horizontal polarization of such a reflection,andthischaracteristicprovidesastrongdiscriminator,iftheinitialabove-the-horizonimpulsewasforsome reasonnotdetected. b. Terrestrial signals. The primary risk for terrestrial signals is not that they trigger the system. Terrestrial sources often do producesignificant impulsiveinterference, and will trigger our system at significantrates anytime thepayloadiswithinviewofsuchanthropogenicsources. However,suchtriggersareeasilyselectedagainstinpost- analysis since their directions can be precisely associated with known sources in Antarctica. The greater issue for ANITAoccursifthereisastrongtransmitterinthefieldofviewwhichsaturatestheLNA,causingitsgaintodecrease so that the sensitivity in that antenna is lost. The present LNA design tolerates up to about 1 dBm output before saturation,withaninputstagegainof36dB.Thusasignalof0.25µWcoupledintotheantennawouldposeariskof saturationandtemporarylossofsensitivity. Sincetheantennaeffectiveareaisoforder0.6m2atthelowendoftheband,ANITAthereforetoleratesuptoa0.2 MWin-bandtransmitteratornearthehorizon,oraseveralkWin-bandtransmitternearthenadir,accountingforthe off-axisresponseoftheANITAantennas. MostofthehigherpowerradarandothertransmittersinuseinAntarctica areprimarilyattheSouthPoleandMcMurdostations. Suchsystemsdidreduceoursensitivitywhenthepayloadwas incloseproximitytoMcMurdostation,andtoalesserdegree,wheninviewoftheSouthPolestation. 2. Otherpossiblebackgrounds. a. Lightning. Lightningisknowntoproduceintenseburstsofelectromagneticenergy,butthesehaveaspectrum that falls steeply with frequency, with very little power extendinginto the UHF and microwave regimes. Although lightningdoesoccuroverthe SouthernOcean[25, 26], itis unknownon theAntarctic continent. We donotexpect lightningtocompriseasignificantbackgroundtoANITA. 6 b. CosmicRayAirShowerbackgrounds. Cosmicrayextensiveairshowers(EAS)atEeVenergiesalsoproduce an electromagnetic pulse, known from observations since the late 1960’s. The dominant RF emission comes from synchrotron radiation in the geomagnetic field. This emission is coherent below about 100 MHz, transitioning to partialcoherenceaboveabout200MHzintheANITAband. Althoughtherehasbeenarecentincreaseinactivityto measuretheradiocharacteristicsofEASeventsinthecoherentregimebelow100MHz[27],thereisstilllittlereliable informationregardingthepartiallycoherentregimewhereANITAissensitivetosuchevents,althoughinfactseveral oftheearlydetectionsofsucheventswereat500MHz[28]. TheradioemissionfromEASishighlybeamed,sothe acceptanceforsucheventsisnaturallysuppressedbygeometry.Theyarealsoexpectedtohaveasteeplyfallingradio spectralsignature, and thusan invertedspectrum comparedto eventsoriginatingfromthe Askaryanprocess, which hasanintrinsicrisingspectrumoverthefrequencyregionthatcoherenceobtains,andaslowplateauanddeclineabove thosefrequencies. ANITAmaydetectsucheventseitherbydirectsignalsorreflectedsignalsofftheicesurface,inamannersimilar to that mentioned above for posible impulses from satellites. The EAS signals are known to be linearly polarized, withtheplaneofpolarizationdeterminedbythelocalgeomagneticfielddirection. Sincethefieldis largelyvertical inthepolarregions,thereisatendencyfortheEASradioemissiontobehorizontallypolarizedforairshowerswith largezenithangles. ANITA’sfield-of-view,whichhasmaximumsensitivitynearthehorizon,thusfavorsEASevents with these largezenithangles. Such eventswhenobserveddirectlyarrivefromanglesabovethehorizon,butunder therightcircumstancestheymayalsobeseeninreflection,thusappearingtooriginatefrombelowthehorizon. They mightthusbeconfusedwithneutrino-likeeventsoriginatingfromundertheice,iftheirradio-spectralandpolarization signaturewas notconsidered. In an appendixwe will addressthis possible physicsbackgroundand show whyit is straightforwardtoseparateitfromtheeventsofinterest. C. CSBFSupportInstrumentationPackage. UNIVERSAL SCIENCE FLIGHT COMPUTER SSCTIEANCCKE TEPR(AUMCTIKPNA)AGTEION TDRSS HI−RATE COMM1 SCIENCE LOW−RATE INTERFACE SCIENCE "PARTY LINE" INTERFACE LOS TRANSMITTER COMM2 LOW−RATE SCIENCE INTERFACE SCIENCE LOS DOWDANTLAINK COMM1 ISOLATOR COMM2 TDRSS SIDE IRIDIUM SIDE IRIDIUM CMD CROSSOVER GPS GPS RECEIVER BACKUP CMD RECEIVER DECODER BACKUP NAV SYSTEM MIP−BASED TDRSS UHF CMD LOS PCM IRIDIUM IRIDIUM 9601 TRANSEIVER TRANSCEIVERS TRANSMITTER ENCODER MODEM W/ ad INTERFACE DCAMTADT DDUROPSWLSLNINLKINK LORS(OE CTTMRHDA ON UNSPLMYLII)TNK LDOOSW DNALTINAK CDMAITRDAI DU DIPUOLMWINNKLINK CDROIWTINCLAILN KPARAMETERS FIG.1:BlockdiagramoftheNSBFSIP. Supportfor NASA long-durationballoon payloadlaunchesand in-flightservices is providedthroughthe staff of the Columbia Scientific Balloon Facility (CSBF), based in Palestine, Texas, USA. CSBF has developed a balloon- craftSupportInstrumentPackage(SIP),anintegratedsuiteofcomputers,sensors,actuators,relays,transmitters,and antennas,forusewithallLDBscienceinstruments. TheCSBFSIPiscontrolledbyapairofindependentflightcom- puters which handle science telemetry, balloon operations, navigation, ballast control and the final termination and descentofthepayload. AsystemdiagramoftheSIPisprovidedinFigure1. AScienceStack,aconfigurablesetof blockmodules,isalsoavailableasanoptiontotheSIPprovidingsuchfunctionsasasimplescienceflightcomputer, analog-to-digitalconversion,andopen-collectorcommandoutputsforadditionalinstrumentcommandandcontrol. 7 The SIP also provides the telemetry link between the ANITA flight computer and data acquisition system and groundbasedoperations. DatafromtheANITAcomputerissentoverseriallinestotheSIPpackagewhichhandles routingandtransmissionoverline-of-sight(LOS),TrackingandDataRelaySatelliteSystem(TDRSS),andIRIDIUM communicationpathways. ANITAutilizestheNSBFSIPScienceStacktoprovidetheabilitytocommandtheflight CPUsystemoffandonandrebootthecomputerduringflight. WithregardtocomputationalresourcesoftheSIP,thesearedesignedtofulfillexistingLDBrequirements,including preserving a full archive of all telemetered data that is passed through the SIP from the science instrument. This functionthusprovidesanadditionalredundantcopyofthetelemetereddatathatcanbeusedifthereistelemetryloss orcorruption. OneimportantcharacteristicoftheSIPrelevanttoANITAisthatitisnothighlyshieldedfromproducinglocalEMI, atleastattheextremelylowlevelrequiredforcompatibilitywithANITAsciencegoals.OfnecessitytheSIPwasthus enclosedinanexternalFaradayhousing,withconnectors,andpenetratorsdesignedinamannersimilartowhatwas donefortheANITAprimaryelectronicsinstrumentation. D. GondolaStructure. FIG.2: ANITApayloadinflight-readyconfigurationwithlaunchvehicle. Thegondolastructureconsistsprimarilyofanaircraft-gradealuminumalloyframe.Amatrixoftubularcomponents is pinnedtogether via a combinationof socket joints, tongueand clevis joints, and quarter-turncam-lockfasteners. ViewsjustpriortothelaunchofthepayloadshowthestructuralelementsofthegondolainFig.2. Theframeisbased onoctagonalsymmetrywhereeightverticalmembers,pluscrossbracing,provideaninternalbackbonethatallowsfor theattachmentofspoke-liketrussestowhichthehornantennasfasten. Threering-shapedclustersofquad-ridgedhorn antennasconstitutethe primaryANITAsensors. Thetoptwo antennaclustershaveeightantennaseach. Positioned aroundtheperimeterofthe baseis a sixteenhorncluster. All ofthe eighthornclustershavea 45 azimuthaloffset ◦ anglebetweenadjacentantennas,witha22.5 azimuthaloffsetbetweenthetoptworings.Theantennasinthesixteen ◦ hornringareoffsetfromeachotherby22.5 . Alloftheantennasintheuppertwoeighthornringsandtheonesin ◦ thesixteenhornringarecanteddown10 belowhorizontaltooptimizetheirsensitivity,basedonMonteCarlostudies ◦ of the effects of the tapering of the antenna beam when convolved with the neutrino arrival directions and energy spectrum. The nearlycircular planethat is established by the sixteen antennaring, nearthe base of the gondola, providesa largedeckareaformostoftheotherpayloadcomponents.Thisregioniscoveredbylightweightpanelsmadeofdacron sailclothonthe topsideanda reflectivelayerontheundersideto maintainthermalbalance. TheANITAelectronics housing, the NASA/CSBF SIP, and the battery packs are mountedon the structuralribs of the deck. Most external metallicstructureispaintedwhitetoavoidoverheatinginthecontinuoussunlight,andcriticalcomponentssuchasthe instrumenthousingsandreceiversarecoveredwithsilver-backedteflon-coatedtapetoprovidehighreflectiverejection ofsolarradiationandhighemissivityforinternalheatdissipation. 8 E. Powersubsystem. TheANITApowersystemiscomposedofaphotovoltaic(PV)array,achargecontroller,batteries,relays,andDC- to-DCconverters.ThePVarrayisanomni-directionalarrayconsistingofeightpanelsconfiguredinanoctagon,with thepanelshangingvertically(seeinstrumentfigure).AlthoughPVpanelsflownonhigh-altitudeballoonsaretypically orientedat 23 tothehorizontal,inAntarctica,thelargesolaralbedofromtheiceresultsinmoreirradianceincident ◦ ∼ onthepanels(formostconditions)iftheyhangvertically.Eachpanelconsistsof84solarcellselectricallyconnected in series. They were mounted on frames made of aircraft-grade spruce wood with a coarse webbing (Shearweave style1000-P02)stretchedontheframes. The PV arrays were designed and fabricated by SunCat Solar. The solar cells used were Sunpower A-300 cells witharatedefficiencyof21.5%anddimensions12.5cmsquareandthickness260um.Bypassdiodeswereplacedin parallelwithsuccessivegroupsof12cellswithinapanel(7-diodes/panel)tomitigatetheeffectofapossiblesinglecell opencircuitfailureduringflight.Additionally,ablockingdiodewasplacedbetweeneachpaneloutputandthecharge controllertopreventcross-chargingofpanelswithdifferentoutputvoltagesresultingfromdifferentilluminationsand temperatures.ToreduceFresnelreflectionlossesforhigh-refractiveindexsilicon(n=3.46at700nm),thesiliconcells hadtwoanti-reflective(AR)coatingsapplied. AnARcoatingwithrefractiveindexn=1.92wasappliedbythesolar cellmanufacturers.Additionally,duringfabricationofthepanelsbySunCatSolar,asecondARcoatingwithrefractive index1.47wasapplied.ThisresultsincalculatedFresnellossesof13-14%forincidenceanglesfrom0to40 . ◦ Themaximumpowerpoint(MPP)voltageandcurrentgeneratedbythesecellsunderstandardconditions(STC)are 0.560Vand5.54Arespectively.However,theactualVandIvaryconsiderablydependingupontheirradianceandcell temperature. Thesingle-celltemperaturecoefficientforthevoltageis-1.9mV/C.PVpaneltemperaturesvariedover therangeof-10Cto+95C,dependingupontheirradianceincidentuponthecells. Thetemperaturesweremeasuredby semiconductortempsensors(AD590)gluedtothebackofcells. PVarraycircuitcomponents(diodes)alsointroduce lossesintheoutputvoltageandpower.TheactualmeasuredPVvoltageinputtothechargecontrollerduringtheflight rangedfrom42.5to47V(ingoodagreementwithestimatesusingthecelltemperatureandtemperaturecoefficient) andthecurrentwasabout9Agivingatotalpowerof400W. The omni-directionalarrayis inherentlyan unbalancedsystem; i.e. the irradianceincidenton each paneldiffers. Foragivenorientationofthegondola,somepanelsaredirectlyirradiatedbysunlightplussolaralbedofromtheice and others are irradiated only indirectly from solar albedo. Additionally, for those that are directly irradiated, the solar incidenceangleisdifferent. Thisresultsin individualpanelsthatgenerateverydifferentcurrentsatanygiven time. Becauseofthedifferingtemperatures,theindividualpanelsalsohavesignificantlydifferentoutputvoltages(the voltagedifferencesaresmallcomparedtothecurrentdifferences)thatfeedintothechargecontroller. Asmentioned above,theblockingdiodespreventcross-chargingofpanelsgeneratingdifferentvoltages. Whenusinganunbalancedarray,toachievethemaximumpoweroutput,itisimportanttouseachargecontroller that senses and operates at the actual MPP as opposed to one that operates at a constant offset voltage from the arrayopen-circuitvoltage. WeusedanOutbackMX-60chargecontrollertosupplypowertotheANITAinstrument. ConductiveheatsinkswereinstalledonthepowerFETsandtransistorsandtheheatwasconductedtotheinstrument radiatorplate. We operatedinthe24V modeandflewninepairsof12VPanasonicLC-X1220P(20AH)leadacid batteriesthatwerechargedbythechargecontrollerandwouldhaveprovided12hoursofpowerincaseofPVarray failure. The InstrumentPower boxconsistedof the MX-60chargecontroller, solid-statepowerrelays, and VicorDC/DC convertersfor the externalradio-frequencyconditionalmodule (RFCM) amplifiers. The main power relays for the cPCI crate were controlled by discrete commands from the SIP. All other solid-state relays were controlled by the CPU, either under software controlor by commandsfrom the ground. The DC/DC box consisted of Vicor DC/DC converterswhichprovidedthe+5,+12,-12,+3.3,+1.5,and5voltagesrequiredbythecPCIcrateandperipherals.All voltagesandcurrentswerereadbythehousekeepingsystem. F. RadioFrequencysubsystem 1. Antennas. Figure2showstheANITApayloadconfigurationjustpriortolaunchinlate2006atWilliamsField,Antarctica.The individualhornsareacustomdesignproducedforANITAbySeaveyEngineering,Inc.,nowasubsidiaryofAntenna ResearchAssociates,Inc.ThesehornsaretheprimaryANITAantennas,andmaybethoughtofasaflaredquad-ridged waveguidesection;thebackofthehorndoesinfactterminateinashortsectionofwaveguide. Thedimensionofthe 9 3 dB bandwidth 200−1280 MHz Seavey Quad−ridge horn, ANITA model FIG.3: Left: AphotographofanANITAquad-ridgeddual-polarizationhorn. Right: Typicaltransmissioncoefficientforsignals intothequad-ridgedhornasafunctionofradiofrequency. mouthisoforder0.8macross,andthehornscanbeclose-packedwithminimaldisturbanceofthebeamresponsesince thefringingfieldsoutsidethemouthofthehornaresmall. Figure3showsanindividualantennapriortopainting,and acorrespondingtypicaltransmissioncurveindicatingtheefficiencyforcouplingpowerintotheantenna,asafunction ofradiofrequency. 0o QR−192175 0o QR−192175 5 dB 5 dB −30o 30o QR−192176 −30o 30o QR−192176 0 QR−192179 0 QR−192179 −5 QR−192180 −5 QR−192180 QR−192181 QR−192181 −60o −10 60o QR−192182 −60o −10 60o QR−192182 −15 QR−193184 −15 QR−193184 QR−193185 QR−193185 −20 QR−187825 −20 QR−187825 −25 −25 −90o 90o −90o 90o Vertical H−plane mean relative gain Horizontal E−plane mean relative gain 0o 0o 5 dB 5 dB −30o 30o −30o 30o 0 0 −5 −5 −60o −10 60o −60o −10 60o −15 −15 −20 −20 −25 −25 −90o 90o −90o 90o Vertical E−plane mean relative gain Horizontal H−plane mean relative gain FIG.4: Left: Antennavertical-polarizationrelativedirectivityindBrelativetothepeakgainforbothEandH-planes. Right: the samequantitiesforthehorizontalpolarization. Ninedifferentantennasareshown. Gainisfrequency-averagedforaflat-spectrum impulseacrossthebandfordifferentanglesin 10 The averagefull-width-at-half-maximum(FWHM) beamwidthof the antennasis about45 with a corresponding ◦ directivitygain(theratioof4p tothemainbeamsolidangle)ofapproximately10dBiaverageacrosstheband.Fig.4 illustratesthisforninedifferentANITAantennas,showingthefrequency-averagedresponserelativetopeakresponse alongtheprincipalantennaplanes(E-planeandH-planeforbothpolarizations)asafunctionofangle. Thechoiceof beampatternforthese antennasalso determinedthe 22.5 angularoffsetsin azimuth,asthis waschosento provide ◦ goodoverlapbetweentheresponseofadjacentantennas,butstillmaintainingreasonabledirectivityfordetermination ofsourcelocations. Byarranginganazimuthallysymmetricarrayof2clustergroupsof8+8(upper)and16(lower)antennas,eachwitha downwardcantofabout10 ,weachievecompletecoverageofthehorizondowntowithin40 ofthenadir,virtuallyall ◦ ◦ oftheobservableicearea. Theantennabeamsinthisconfigurationoverlapwithintheir3dBpoints,givingredundant coverageinthehorizontalplane. The 3mseparationbetweentheupperandlowerclustersof16antennasprovides ∼ a verticalbaselineforestablishingpulse directionin elevationangle. Becausethepulsefromacascadeis knownto be highly linearly-polarized, we convert the two linear polarizations of the antenna into dual circular polarizations usingstandard90 hybridphase-shiftingcombiners.Thisisdonefortworeasons:first,alinearlypolarizedpulsewill ◦ produceequalamplitudesin bothcircularpolarizations,andthussome backgroundrejectionisgainedbyaccepting only linearly-polarizedsignals; and second, the use of circular polarizationsremovesany bias in the triggertoward horizontalorverticallypolarizedimpulses. el0az0 horizontal 1 QR−192175 QR−192176 effective height, m/ns−00..055 QQQQQQQRRRRRRR−−−−−−−111111199999982222337111111878888829012455 −1 5 10 15 20 25 30 35 time, ns el0az0 vertical 1 QR−192175 effective height, m/ns−00..055 QQQQQQQQRRRRRRRR−−−−−−−−111111119999999822222337111111187788888269012455 −1 5 10 15 20 25 30 35 time, ns FIG. 5: Left: Antenna impulse response as measured for nine ANITA antennas, here inunits that also give the instantaneous effectiveheight[20].Right:ANITAimpulseresponseasitappearsvariousstagesofthesignalchain. BecauseANITA’ssensitivitytoneutrinoeventsdependscruciallyonitsabilitytotriggeronimpulsesthatriseabove the intrinsically impulsive thermal noise floor, ANITA’s antennas and receiving system must preserve the narrow impulsivenatureofanysignalthatarrivesattheantenna. Fig.5showsthemeasuredbehaviorofthesystemimpulse response at various stages. On the left, we show details of the measured impulse response of nine of the flight V antennas, in unitsthat give the instantaneouseffective heighth (t). The actualvoltage time response (t) at the eff antennaterminals,assumingtheyareattachedtoamatchedload,isthenjusttheconvolutionofthisfunctionwiththe E incidentfield (t): 1 V E (t) = (t) h (t) eff 2 ⊗ where the convolutionoperatoris indicatedby the symbol . This equationcan also be expressedas an equivalent ⊗ frequencydomainform,thoughinthatcasethequantitiesareingeneralcomplex. On the right, we show the evolution of an Askaryan impulse through the ANITA system. The initial Askaryan impulse(a)iscompletelyunresolvedbytheANITAsystem,sinceitsintrinsicwidthisoforder100ps(reference[20]

Description:
Cosmic neutrinos of energy in the Exavolt and higher (1 EeV = 1018 eV) energy range, though . In practice, events may be detected at lower .. craft Support Instrument Package (SIP), an integrated suite of computers, sensors, the Hawaii code, and a second originally developed at UCLA, but now
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.