Chapter 4 The Analytic Hierarchy and Analytic Network Measurement Processes: The Measurement of Intangibles Decision Making under Benefits, Opportunities, Costs and Risks ThomasL.SaatyandMariyaSodenkamp AbstractMulticriteriathinkingdemonstratesthatinordertomakeabestchoicein a decision,discussionandcause-effectreasoningareinadequateto learnwhatthe bestoveralloutcomeis.TheAnalyticHierarchyProcess(AHP)anditsgeneraliza- tiontodependenceandfeedback,theAnalyticNetworkProcess(ANP),providea comprehensivestructureandmathematicstoincorporatemeasurementsfortangible criteriaandderiveprioritiesforintangiblecriteriatoenableonetochooseabestal- ternativeforadecision.Itovercomesso-calledboundedrationalitythatisbasedon theassumptionoftransitivitybyincludinginitsstructuresandcalculations,thesen- sitivityanddepthoffeelingsassociatedwithunderstandingandtheimaginationand awarenessneededtoaddressalltheconcerns.TheAHPcancopewiththeinherent subjectivityinalldecisionmaking,andmakeitexplicittothestakeholdersthrough relativequantitativepriorities.Italsoprovidesthemeanstovalidateoutcomeswhen measurementsareavailabletoshowthatitdoesnotdonumbercrunchingwithout meaningfuljustification.Itcandealwiththebenefits,opportunities,costsandrisks separatelyandbringthemtogethertodeterminethebestoveralloutcome.Onecan alsoperformdynamicsensitivityanalysisofchangesinjudgmentstoensurethatthe bestoutcomeisstable. In an award from the Institute for OperationsResearch and the ManagementSci- ences (INFORMS) given to the author in October 2008 it is written: “The AHP hasrevolutionizedhowweresolvecomplexdecisionproblems...theAHPhasbeen applied worldwide to help decision makers in every conceivable decision context acrossboththepublicandprivatesectors,withliterallythousandsofreportedappli- cations.” ThomasL.Saaty UniversityofPittsburgh,USAe-mail:saaty@katz.pitt.edu(thischapterwhichoriginallyappeared inInt.J.AppliedDecisionSciences,Vol.1,No.1,2008[7](Interscienceretainsthecopyright),is basedonmaterialprovidedbythisauthorandonhisresearch) MariyaSodenkamp UniversityofPaderborn,Germanye-mail:msodenk@mail.uni-paderborn.de(visitingstudentwho assistedinpreparationofpaper) C. Zopounidis and P.M. Pardalos (eds.), Handbook of Multicriteria Analysis, Applied 91 Optimization 103, DOI 10.1007/978-3-540-92828-7_4, © Springer-Verlag Berlin Heidelberg 2010 92 T.L.Saaty,M.Sodenkamp 4.1 Introduction The Analytic Hierarchy Process (AHP) and its generalization to dependence and feedback,theAnalyticNetworkProcess(ANP)arepsychophysicaltheoriesofmea- surement.Thismeansthattheymaketheassumptionthatjudgmentsaboutsubjec- tive feelings and understandingare essentially not verydifferentthan and depend onjudgmentsaboutthephysicalworldinwhichweacquireourexperienceandun- derstanding.Inthephysicalworldwerespondtointensitiesofoccurrence,suchas thevaryingintensitiesofsight, soundandsmell.Theseintensities fall indifferent threshold intervals of just noticeable differences because we are unable to detect changeinintensityuntilastimulusisincreasedbyanoticeableamount.Judgments mustreflectnotonlyknowledgeaboutinfluences,butalsothestrengthswithwhich these influencesoccur.These strengthsare expressedbyus, andespeciallybyex- pertswhohaveexperiencedthecomplexitywithwhichweareconcerned,through judgmentsfromwhichprioritiesarederivedinrelativeformthatreflectnumerical intensitiesthatcanbevalidatedinthosecaseswherewehavemeasurementinorder toimproveourconfidenceintheapplicabilityofourquantifiedjudgmentsinthose cases where measurements are not available. Measurements in science are made onscaleswitharbitraryunitsandneedinterpretationthroughjudgmenttoindicate thedegreetowhichtheyserveourvaluesystems.Occasionallythemeasurements are used directly in normalizedform as priorities that reflect our values if indeed wethinktheydo.Indecisionmakingwehavetotrade-offdifferentkindsofmea- surementbyfilteringthemthroughourjudgmentsfromwhichprioritiesarederived therebyreducingamultidimensionalscalingproblemtoaone-dimensionalscaleof prioritiesof the importanceof influenceson whichouractions are based.All this tellsusthatitisnotenoughtoadvocatetheuseofatheorywithnumbersasajusti- fiablewaytomakedecisionsbecausejudgmentsaresubjectiveanyway.Therehas to be validationof theprocess througha varietyof examplestomake it a science basedonreason,quantityandmathematics,notareligionbasedonthestrengthof authority,beliefandlots of statistics devoidofunderstanding,tradeoffsand inter- pretation. Tomakecomplexriskydecisionsweneednotonlyjudgmentsbutalsostructures thatrepresentourbestunderstandingoftheflowofinfluences.Thebasicstructurein doingthisisahierarchyfortheAHPandaninfluencenetworkofclustersandnodes containedwithintheclustersfortheANP.PrioritiesareestablishedintheAHPand ANP using pairwise comparisons and judgment. Many decision problems cannot bestructuredhierarchicallybecausetheyinvolvetheinteractionanddependenceof higher-levelelements such as objectivesandcriteria in a hierarchyon lower-level elements.Notonlydoestheimportanceofthecriteriadeterminetheimportanceof thealternativesas inahierarchy,butalsotheimportanceofthealternativesthem- selvesdeterminestheimportanceofthecriteriaasinanetworkTwobridges,both strong,butthestrongerisalsouglier,wouldleadonetochoosethestrongbutugly oneunlessthecriteriathemselvesareevaluatedintermsofthebridges,andstrength receives a smaller value and appearance a larger value because both bridges are 4 TheAnalyticHierarchyandAnalyticNetworkMeasurementProcesses 93 strong.Feedbackenablesustofactorthefutureintothepresenttodeterminewhat wehavetodotoattainadesiredfuture. Thefeedbackstructuredoesnothavethetop-to-bottomformofahierarchybut looks more like a network, with cycles connecting its components of elements, which we can no longer call levels, and with loops that connect a component to itself.Italsohassourcesandsinks.Asourcenodeisanoriginofpathsofinfluence (importance)andneveradestinationofsuchpaths.Asinknodeisadestinationof paths of influence and never an origin of such paths. A full network can include sourcenodes;intermediatenodesthatfallonpathsfromsourcenodes,lieoncycles, or fall onpaths to sink nodes;andfinally sinknodes.Some networkscancontain onlysourceandsinknodes.Stillotherscanincludeonlysourceandcyclenodesor cycleandsinknodesoronlycyclenodes.A decisionprobleminvolvingfeedback arisesfrequentlyinpractice.Itcantakeontheformofanyofthenetworksjustde- scribed.Thechallengeistodeterminetheprioritiesoftheelementsinthenetwork andinparticularthealternativesofthedecisionandevenmoretojustifythevalidity oftheoutcome.Becausefeedbackinvolvescycles,andcyclingisaninfiniteprocess, theoperationsneededtoderivetheprioritiesbecomemoredemandingthaniswith hierarchies. 4.2 Paired Comparisons, The Fundamental Scale, Eigenvectors, Consistency, Homogeneity HowtomeasureintangiblesisthemainconcernofthemathematicsoftheAHP.In theendwemustfit ourentireworldexperienceintooursystemofprioritiesifwe needtounderstanditinbothitsdetailsanditsgeneralworkings.Aswesaidabove, theAHPreducesamultidimensionalproblemintoaonedimensionalone.Decisions aredeterminedbyasinglenumberforthebestoutcomeorbyavectorofpriorities thatgivesanorderingofthedifferentpossibleoutcomes.Wecanalsocombineour judgmentsorourfinalchoicesobtainedfromagroupwhenwewishtocooperateto agreeonasingleoutcome. 4.2.1 PairedComparisonsand the Fundamental Scale To maketradeoffsamongthe manyobjectivesandcriteria,the judgmentsthatare usuallymadeinqualitativetermsareexpressednumerically.Todothis,ratherthan simplyassigningaseeminglyarbitraryscoreoutofaperson’smemorythatappears reasonable,onemustmakereciprocalpairwisecomparisonsinacarefullydesigned scientific way. In paired comparisons the smaller or lesser element is used as the unit, and the largeror greaterelement is estimated as a multiple of that unit with respect to the commonpropertyor criterionforwhichthe comparisonsare made. Inthissensemeasurementwithjudgmentsis mademorescientificallythanbyas- 94 T.L.Saaty,M.Sodenkamp signingnumbersmoreorlessarbitrarily.Becausehumanbeingsarelimitedinsize andthefiringsoftheirneuronsarelimitedinintensity,itisclearthatthereisalimit ontheirabilitytocomparetheverysmallwiththeverylarge.Itispreciselyforthis reasonthatpairwisecomparisonsaremadeonelementsoralternativesthatareclose orhomogeneousandthemoreseparatedtheyare,themoreneedthereistoputthem indifferentgroupsandlinkthesegroupswitha commonelementfromonegroup toanadjacentgroupofslightlygreaterorslightlysmallerelements.Inthiswayone cangraduallycomparegrainsofsandofvaryingsizes increasingtosmallpebbles andlargerstones.Whendoneproperly,thelargestelementinonegroupisusedas thesmallestoneinthenextgroup,andintheendeachgroupiscomparedseparately andthemeasurementcombined. Fromallthepairedcomparisons,onederivesascaleofrelativevaluesforthepri- orities.Asweshallseebelow,duetoinevitableinconsistencyamongthejudgments andmoreimportantlybecauseoftheneedfortheinvarianceofpriorities,itismath- ematicallynecessarytoderivetheprioritiesintheformoftheprincipaleigenvector ofthematrixofpairedcomparisons. WelearnfrommakingpairedcomparisonsintheAHPthatifAis5timeslarger than B and B is 3 times larger than C, then A is 15 times larger than C and A dominatesC 15times.That is differentfromA having5 dollarsmorethanB and Bhaving3dollarsmorethanCimpliesthatAhas8dollarsmorethanC.Defining intensityalongthearcsofagraphandraisingthematrixtopowersmeasuresthefirst kindof dominanceprecisely andneverthe second.It has definite meaningand as weshallseebelow,inthelimititismeasureduniquelybytheprincipaleigenvector. Thereisausefulconnectionbetweenwhatwedowithdominanceprioritiesinthe AHPandwhatisdonewithtransitionprobabilitiesbothofwhichusematrixalgebra tofindtheiranswers.Probabilitiesoftransitionsbetweenstatesaremultipliedand added.To compose the priorities for the alternatives of a decision with respect to differentcriteria,itisalsonecessarythattheprioritiesofthealternativeswithrespect toeachcriterionbemultipliedbythepriorityofthatcriterionandthenaddedover allthecriteria. TheFundamentalScaleusedforthejudgmentsappliedtocomparehomogeneous (close)elementsisgiveninTable4.1.Judgmentsarefirstgivenverballyasindicated inthescaleandthenacorrespondingnumberisassociatedwiththatjudgment. Judgments that represent dominance belong to an absolute scale of numbers which unlike interval and ratio scales that can be transformedto other interval or ratioscales respectivelyandyielddifferentnumbersthat meanthesame thing,an absolutescaleisinvariantundertheidentitytransformationthatisitsnumberscan- not be changed to other numbers and mean the same thing. From such numbers prioritiescanbederivedwhichalsobelongtoanabsolutescaleofrelativenumbers whosetotalsumisequaltoone. Table4.2exhibitsanexampleinwhichthescaleisusedtocomparetherelative consumptionofdrinksintheUnitedStates(donebyanaudiencemanyyearsago). One compares a drink indicated on the left with another indicated at the top and answers the question: How many times more, or how strongly more is that drink consumed in the US than the one at the top? More simply which drink of a pair 4 TheAnalyticHierarchyandAnalyticNetworkMeasurementProcesses 95 Table4.1 Thefundamentalscaleofabsolutenumbers Intensityof Importance Definition Explanation 1 Equalimportance Two activities contribute equally to theobjective 2 Weakorslight 3 Moderateimportance Experienceandjudgmentslightlyfa- voroneactivityoveranother 4 Moderateplus 5 Strongimportance Experienceandjudgmentstronglyfa- voroneactivityoveranother 6 Strongplus 7 Verystrongordemonstratedimportance An activity is favored very strongly over another; its dominance demon- stratedinpractice 8 Very,verystrong 9 Extremeimportance The evidence favoring one activity overanotherisofthehighestpossible orderofaffirmation 1.1–1.9 When activitiesare very close adecimal Perhaps a better way than assigning isadded to1toshow theirdifference as thesmalldecimalsistocomparetwo appropriate closeactivitieswithotherwidelycon- trastingones,favoringthelargeronea littleoverthesmalleronewhenusing the1–9values. Reciprocals Ifactivityihasoneoftheabovenonzero Alogicalassumption ofabove numbers assigned to it when compared withactivity j,then j has the reciprocal valuewhencomparedwithi dominatestheotherandhowstrongly?Ingeneral,oneusestheverbalexplanation to developa judgmentandthenenters its numericalvalue:forexampleenter9 in the(coffee,wine)positionmeaningthatcoffeeconsumptionisextremelymorethan wine consumption.It is automaticthat 1/9is whatone needsto use inthe (wine, coffee)position.Notethatwaterisconsumedalittle morethancoffee,sooneen- ters 2 in the (water, coffee) position, and 1/2 in the (coffee,water) position. One alwaysentersthewholenumberinitsappropriatepositionandautomaticallyenters itsreciprocalinthetransposeposition. Thepriorities,(obtainedinexactformbyraisingthematrixtolargepowersand summingeachrowanddividingeachbythetotalsumofalltherows,orapproxi- matelybyaddingeachrowofthematrixanddividingbytheirtotalandtakingthe averageoftheresultingcolumns)areshownat thebottomofthe tablealongwith thetruevaluesexpressedinrelativeformbydividingtheconsumptionofeachdrink (volume)bythesumoftheconsumptionofalldrinks.Theinformationaboutactual consumptionwasobtainedfromtheUSStatisticalAbstracts.Weseetheanswersare verycloseandpair-wisecomparisonjudgmentsofsomeonewhoknowscanleadto 96 T.L.Saaty,M.Sodenkamp accurateresultsofdrinkconsumption.Therearenumerousexamplesofthiskindof validation. Table4.2 WhichdrinkisconsumedmoreintheU.S.? Anexampleofestimationusingjudgments: DrinkconsumptionintheU.S. Coffee Wine Tea Beer Sodas Milk Water Coffee 1 9 5 2 1 1 1/2 Wine 1/9 1 1/3 1/9 1/9 1/9 1/9 Tea 1/5 2 1 1/3 1/4 1/3 1/9 Beer 1/2 9 3 1 1/2 1 1/3 Sodas 1 9 4 2 1 2 1/2 Milk 1 9 3 1 1/2 1 1/3 Water 2 9 9 3 2 3 1 Very early in the history of the subject, T.L. Saaty and M. Khouja did the fol- lowingexerciseonanairplanein1973.Theysimplyusedtheircommonknowledge abouttherelativeinfluenceandstandingofthesecountriesintheworldandwithout referringtoanyspecificeconomicdatarelatedtoGNPvalues.Thetworesultsare closeanddemonstratethatthegeneralunderstandinganinterestedpersonhasabout a problemcan beused to advantageto makefairlygoodestimates throughpaired comparisons. Table4.3givesthejudgmentsusingtheAHP 1–9scaleandTable4.4provides thederivedpriorities,theactualandrelativeGNPvalues. Table4.3 Pairedcomparisonsoftherelativedominanceinwealthofsevennations U.S U.S.S.R China France U.K Japan W.Germany U.S 1 4 9 6 6 5 5 U.S.S.R 1/4 1 7 5 5 3 4 China 1/9 1/7 1 1/5 1/5 1/7 1/5 France 1/6 1/5 5 1 1 1/3 1/3 U.K 1/6 1/5 5 1 1 1/3 1/3 Japan 1/5 1/3 7 3 3 1 2 W.Germany 1/5 1/4 5 3 3 1/2 1 The reader may now want to know how the foregoing integer-valued scale of responseusedinmakingpairedcomparisonjudgmentscanbederivedmathemati- callyfromthewell-knownpsychophysicallogarithmicresponsefunctionofWeber- Fechner.Foragivenvalueofthestimulus,themagnitudeofresponseremainsthe sameuntilthevalueofthestimulusis increasedsufficientlylargeinproportionto thevalueofthestimulus,thuspreservingtheproportionalityofrelativeincreasein stimulus for it to be detectable for a new response. This suggests the idea of just noticeabledifferences(jnd),wellknowninpsychology. 4 TheAnalyticHierarchyandAnalyticNetworkMeasurementProcesses 97 Table4.4 Outcomeofestimatedrelativewealthandtheactualandrelativevalues Normalized ActualGNP Normalized eigenvector (1972) GNPvalues U.S 0.427 1,167 0.413 U.S.S.R 0.230 1,635 0.225 China 0.021 1,120 0.043 France 0.052 1,196 0.069 U.K 0.052 1,154 0.055 Japan 0.123 1,294 0.104 W.Germany 0.094 1,257 0.091 Toderivethevaluesinthescalestartingwithastimuluss successivemagnitudes 0 ofthenewstimulitaketheform: Δs s =s +Δs =s + 0s =s (1+r)≡s α 1 0 0 0 0 0 0 s 0 s =s +Δs =s (1+r)=s (1+r)2=s α2 2 1 1 1 0 0 . . . sn=sn−1α=s0αn (n=0,1,2,...) Weconsidertheresponsestothesestimulitobemeasuredonaratioscale(b=0). AtypicalresponsehastheformM =alogαi,i=1,...,n,oroneafteranotherthey i havetheform: M =alogα, M =2alogα,..., M =nalogα 1 2 n We take the ratios M/M i=1,...,n of these responses in which the first is i 1 thesmallestandservesastheunitofcomparison,thusobtainingtheintegervalues 1,2,...,nofthefundamentalscaleoftheAHP.Itappearsthatnumbersareintrinsic toourabilitytomakecomparisons,andthattheywerenotaninventionbyourprim- itiveancestors.Wemustbegratefultothemforthediscoveryofthesymbolism.In alessmathematicalvein,wenotethatweareabletodistinguishordinallybetween high,mediumandlowatonelevelandforeachoftheminasecondlevelbelowthat alsodistinguishbetweenhigh,mediumandlowgivingusninedifferentcategories. We assign the value one to (low,low) which is the smallest andthe valuenine to (high,high)whichisthehighest,thuscoveringthespectrumofpossibilitiesbetween twolevels,andgivingthevaluenineforthetopofthepairedcomparisonsscaleas comparedwiththelowestvalueonthescale.Becauseofincreaseininconsistency whenwecomparemorethanabout7elements,wedon’tneedtokeepinmindmore than7±2elements.ThiswasfirstconjecturedbythepsychologistGeorgeMillerin the1950’s.Finally,wenotethatthescalejustderivedisattachedtotheimportance weassigntojudgments.Ifwehaveanexactmeasurementsuchas2.375andwant 98 T.L.Saaty,M.Sodenkamp touseitasitisforourjudgmentwithoutattachingsignificancetoit,wecanuseits entirevaluewithoutapproximation. InthejudgmentmatrixA,insteadofassigningtwonumbersw andw andform- i j ingtheratiow/w weassignasinglenumberdrawnfromtheFundamentalScale i j ofabsolutenumberstorepresenttheratio(w /w )/1.Itisanearestintegerapprox- i j imationtotheratiow/w .Thederivedscalewillrevealwhatw andw are.Thisis i j i j acentralfactabouttherelativemeasurementapproach.Itneedsafundamentalscale toexpressnumericallytherelativedominancerelationship.Thegeneraleigenvalue formulationisobtainedbyperturbationofthefollowingconsistentformulation: ⎡ ⎤⎡ ⎤ ⎡ ⎤ w1 ··· w1 w w ⎢w.1 w.n ⎥⎢ .1⎥ ⎢ .1⎥ Aw=⎣ .. .. ⎦⎣ .. ⎦=n⎣ .. ⎦=nw wn ··· wn w w w1 wn n n whereAhasbeenmultipliedontherightbythetransposeofthevectorofweights w=(w ,...,w ).Theresultofthismultiplicationisnw.Thus,torecoverthescale 1 n fromthematrixofratios,onemustsolvetheproblemAw=nwor(A−nI)w=0. Thisisasystemofhomogeneouslinearequations.Ithasanontrivialsolutionifand only if the determinant of A−nI vanishes, that is, n is an eigenvalue of A. Now Ahasunitranksinceeveryrowisa constantmultipleofthefirst row.Thusallits eigenvaluesexceptonearezero.Thesumoftheeigenvaluesofamatrixisequalto itstrace,thatis,thesumofitsdiagonalelements.InthiscasethetraceofAisequal ton.Thusnis aneigenvalueofA,andonehasa nontrivialsolution.Thesolution consistsofpositiveentriesandisuniquetowithinamultiplicativeconstant. Theforegoingmatrixofratiosofmeasurementsisconsistent.Itsentriessatisfy the relationshipa a =a forall i,j,k. Note that theratio oftwo readingsfrom ij jk ik a ratio scale is an absolute (dimensionless) number. If we were to use judgment we would estimate this absolute number by using the Fundamental Scale of Ta- ble 4.1.When we use judgmentwe no longercan ensure consistency.It becomes importantforustoknowhowinconsistentweareandwhicharethemostinconsis- tent judgmentsand howthey can be changedto improvethe consistency.But our knowledgemaynotbeadequatetocorrectourinconsistencyasneeded.Iftheincon- sistency remainsveryhighdespite the changeswe make that are compatiblewith our understanding,we cannot make a decision. The priorityweights are obtained directly by adding and normalizing to one the sum of the rows of the matrix, or anyofitscolumns.Theintransitivityofinfluences(howmuchAdominatesBand howmuchBdominatesCandthenhowmuchCdominatesA)cannotoccurwhen thejudgmentsareconsistent.However,whenthejudgmentsareinconsistent,such dominancemayhappenalongwiththefactthata a =a foralli,j,k nolonger ij jk ik holds.Itisknownthatthedifferentordertransitivityofinfluencescanbemeasured byraisingthematrixtodifferentpowers.Eachpowerofthematrixyieldsaset of prioritiesobtainedasthenormalizedsumofitsrows.Itisnotdifficulttoshowthat theaveragepriorityoftheallthesepriorityvectorsistheirCesarosumthatleadsto takingthelimitingpowerofthematrix.Perron’stheoryaboutpositivematricestells usthatthislimitistheprincipaleigenvectorofthematrixthusrequiringustosolve 4 TheAnalyticHierarchyandAnalyticNetworkMeasurementProcesses 99 theprincipaleigenvalueproblemforourpositivematrix.Thisshowsthattheprin- cipal eigenvectoris a necessaryconditionforderivingprioritiesfrominconsistent judgments. Associatedwiththeweightsisaninconsistencyindex.Theconsistencyindexof a matrix is given by C.I.= λmax−n ≡ μ. The consistency ratio (C.R.) is obtained n−1 byformingtheratioofC.I.andtheappropriateoneofthefollowingsetofnumbers showninTable4.5,eachofwhichisanaveragerandomconsistencyindexcomputed forn≤10forverylargesamples.Theycreaterandomlygeneratedreciprocalmatri- cesusingthescale1/9,1/8,...,1/2,1,2,...,8,9andcalculatetheaverageoftheir eigenvalues.ThisaverageisusedtoformtheRandomConsistencyIndexR.I.Table 4.5showsthevaluesobtainedfromonesetofsuchsimulationsandalsotheirfirst orderdifferences,formatricesofsize1,2,...,15.Ofcoursewedonotrecommend comparingmorethan7itemsinanysinglematrix. Table4.5 Randomindex Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 R.I. 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 1.52 1.54 1.56 1.58 1.59 Firstorder 0 0.52 0.37 0.22 0.14 0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.02 0.01 differences Figure4.1belowisaplotofthefirsttworowsofTable4.5.Itshowstheasymp- toticnatureofrandominconsistency. 1.8 1.6 y c 1.4 n e t 1.2 s si n 1.0 o c n 0.8 i m o 0.6 d n 0.4 a R 0.2 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Number of elements compared Fig.4.1 Plotofrandominconsistency 100 T.L.Saaty,M.Sodenkamp Since it would be pointless to try to discern any priority rankingfrom a set of random comparison judgments, we should probably be uncomfortableabout pro- ceedingunlesstheconsistencyindexofapairwisecomparisonmatrixisverymuch smaller than the correspondingrandomindexvalue in Table 4.5. The consistency ratio(C.R.)ofapairwisecomparisonmatrixistheratioofitsconsistencyindex∼ tothecorrespondingrandomindexvalueinTable4.5.Thenotionoforderofmag- nitude is essential in any mathematical considerationof changes in measurement. Whenonehasanumericalvaluesaybetween1and10forsomemeasurementand onewishestodeterminewhetherchangeinthisvalueissignificantornot,onerea- sonsasfollows:Achangeofawholeintegervalueiscriticalbecauseitchangesthe magnitudeandidentityoftheoriginalnumbersignificantly.Ifthechangeorpertur- bationinvalueisoftheorderofapercentorless,itwouldbesosmall(bytwoorders ofmagnitude)andwouldbeconsiderednegligible.Howeverifthisperturbationis adecimal(oneorderofmagnitudesmaller)wearelikelytopayattentiontomodify theoriginalvaluebythisdecimalwithoutlosingthesignificanceandidentityofthe originalnumberaswefirstunderstoodittobe.Thusinsynthesizingnearconsistent judgmentvalues,changesthataretoolargecancausedramaticchangeinourunder- standing,and valuesthat are toosmall cause nochangein ourunderstanding.We areleftwithonlyvaluesofoneorderofmagnitudesmallerthatwecandealwithin- crementallytochangeourunderstanding.Itfollowsthatourallowableconsistency ratioshouldbenotmorethanabout0.10foramatrixlargerthan5by5,8fora4by 4matrixand5fora3by3matrix.Thisrequirementcannotbemadesmallersuch as1or0.1withouttrivializingtheimpactofinconsistency.Butinconsistencyitself isimportantbecausewithoutit,newknowledgethatchangespreferencecannotbe admitted.Assumingthatallknowledgeshouldbeconsistentcontradictsexperience thatrequirescontinuedrevisionofunderstanding. If the C.R. is larger than desired, we do three things: 1) Find the most incon- sistentjudgmentinthematrix(forexample,thatjudgmentforwhichε = aijwj is ij wi largest),2)Determinetherangeofvaluesto whichthat judgmentcanbechanged correspondingtowhichtheinconsistencywouldbeimproved,3)Askthejudgeto consider,ifhecan,changehisjudgmenttoaplausiblevalueinthatrange.Ifheis unwilling,wetrywiththesecondmostinconsistentjudgmentandsoon.Ifnojudg- mentischangedthedecisionispostponeduntilbetterunderstandingofthestimuli is obtained. Judges who understand the theory are always willing to revise their judgmentsoftennotthefullvaluebutpartiallyandthenexaminethesecondmost inconsistentjudgmentandsoon.Itcanhappenthatajudge’sknowledgedoesnot permittheimprovementofconsistencyandmoreinformationisrequiredtoimprove thatconsistency. Beforeproceedingfurther,thefollowingobservationsmaybeusefulforabetter understandingoftheimportanceoftheconceptofalimitonourabilitytoprocessin- formationandalsochangeininformation.Thequalityofresponsetostimuliisdeter- minedbythreefactors.Accuracyorvalidity,consistency,andefficiencyoramount ofinformationgenerated.Ourjudgmentis muchmoresensitiveandresponsiveto large perturbations. When we speak of perturbation, we have in mind numerical changefromconsistentratiosobtainedfrompriorities.Thelargertheinconsistency
Description: