ebook img

The analysis of a mixed steam-gas aero derivative turbine PDF

44 Pages·2015·1.28 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The analysis of a mixed steam-gas aero derivative turbine

UNIVERSITY OF TWENTE BACHELOR ASSIGNMENT FOR ADVANCED TECHNOLOGY FINAL REPORT The analysis of a mixed steam-gas aero derivative turbine Bachelorcommittee: Author: Dr. Ir. J.B.W.Kok AlexanderHaselhoff,s1120891 Prof. Dr. Ir. A.deBoer Dr. S.Vanapalli July2,2015 Abstract An analysis is done by the use of thermodynamics for an aero derivative gas turbine which utilizes steam injection to increase its efficiency. This type of cycle is known as the steam injected gas turbine cycle. The main purpose of this researchwastodevelopabetterunderstandingofhowoptimalcycleefficiencyisreached,forwhichthesteamofinjection isgeneratedbyuseoftheturbineexhaustheat. AmodelhasbeendevelopedusingthesoftwareEngineeringEquationSolvertosimulatethesimplegasturbine,steam generation and effects after steam injection. Input parameters for the model are taken for the GE LM6000 turbine as provided by General Electric. Turbine property results are compared with literature for validation and show the same characteristicbehaviour. Severalparameterinfluencesarevisualizedandexplained.Ithasbeenfoundthatthistypeofcycleshowsaveryspecific point where the efficiency is the highest. By using steam injection for the chosen turbine and parameters an efficiency gainsofaround11%andpoweraugmentationof45%ispossibletobeachieved. 3 Contents Abstract 3 Listoffigures 7 Listoftables 7 Nomenclature 9 1. Introduction 11 1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2. Previousstudiesandperspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. Theory 13 2.1. Theidealgasturbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2. Idealandactualcycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3. STIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4. OTSG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5. Enginechoiceandparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3. EESmodel 19 3.1. SimpleGTmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2. STIGmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3. OTSGmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4. Analysis 23 4.1. Verificationwithliterature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2. STIGefficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5. Discussion 27 6. Conclusionsandrecommendations 29 A. Simplegasturbine 33 B. STIG 37 C. OTSG 41 D. Completemodelsolutions 43 5 List of Figures 2.1. Braytoncyclevisualized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2. Schematicoverviewofasimplegasturbine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3. SchematicoverviewoftheSTIGsetup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4. SchematicoverviewoftheOTSG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1. SchematicoverviewoftheEESmodel.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1. SimpleGTspecificworkandefficiencyforgivenP-ratiosatTIT =1200,1300,1400◦C. . . . . . . . . 23 4.2. STIGspecificworkandefficiencyforgivenP-ratiosatTIT =1200,1300,1400◦C. . . . . . . . . . . . 24 4.3. STIGspecificwaterconsumptionandoptimalsteamfractionatP-ratiosforTIT =1200,1300,1400◦C. 24 4.4. Highestpossiblesteamtemperatureforcertainmass-fractionx . . . . . . . . . . . . . . . . . . . . . . . 25 4.5. STIGefficiencyforcertainamountofinjectedsteamx. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.6. TurbineoutlettemperatureandoptimalsteamfractionxforcertainpressureratioatgivenTIT. . . . . . . 26 List of Tables 2.1. ManufacturerdataLM6000-PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1. Modelparameterassumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2. ManufacturerdatacomparedwithsimpleGTmodelresults . . . . . . . . . . . . . . . . . . . . . . . . . 20 7 Nomenclature Abbreviations CC combustionchamber EES engineeringequationssolver GT gasturbine PR pressureratio SF steamfraction STIG steaminjectedgasturbine TIT turbineinlettemperature Symbols Unit c specificheatcapacity kJ/kgK η efficiency - h enthalpy kJ/kg LHV lowerheatingvalue kJ/kg m˙ mas-flow kg/s s entropy kJ/kgK W˙ work kJ/s w specificwork kJ/kg Q˙ heat kJ/s q specificheat kJ/kg T temperature K or◦C Subscripts a air amb ambientcondition eco economizer c compressor cc combustionchamber f fuel g combustiongas is isentropic p pressure s steam sh superheated t turbine vap evaporation w water 9

Description:
This type of cycle is known as the steam injected gas turbine cycle. The main purpose of [7] Maya Livshits and Abraham Kribus. Solar hybrid steam
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.