THE AMPLE CONE OF THE KONTSEVICH MODULI SPACE IZZETCOSKUN,JOEHARRIS,ANDJASONSTARR Abstract. We produceample,respectivelyNEF,eventually free,divisorsin the Kontsevich space M0;n(Pr;d) of n-pointed, genus 0, stable maps to Pr, givensuchdivisorsinM0;n+d. Weprovethisproducesallample,respectively NEF,eventuallyfree,divisorsinM0;n(Pr;d). Asaconsequence,weconstruct a contraction of the boundary [bkd==12c(cid:1)k;d(cid:0)k in M0;0(Pr;d) analogous to a contraction ofthe boundary[bkn==32c(cid:1)~k;n(cid:0)k inM0;n (cid:12)rstconstructed byKeel andMc Kernan. 1. Introduction Positive-dimensionalfamiliesof varietiesspecialize {non-generalvarietiesinthe family exhibit special properties. Given a parameter space, the subset parametriz- ing varieties with a special property is typically closed. Which special properties occurincodimension1,respectivelyforevery1-parameterfamilyofvarieties? More precisely, when is the associated closed subset an e(cid:11)ective divisor, respectively an ample divisor? These questions, among others, motivate the study of e(cid:11)ective and ample divisors in parameter spaces of varieties. TheparameterspacewestudyistheKontsevichmodulispaceofn-pointed,genus 0, stable maps to projective space, denoted M (Pr;d). Here we study the ample 0;n cone, and more generally the NEF and eventually free cones. In a second article [CHS], using signi(cid:12)cantly di(cid:11)erent methods and under additional hypotheses, we study the e(cid:11)ective cone. Our goal is to study families of curves in a general target X. Fortunately, this largely reduces to the study for Pr: As the Kontsevich space is functorial in the target, for every morphism X ! Pr, NEF and base-point-free divisors on M (Pr;d)giveNEFandbase-point-freedivisorsonM (X;(cid:12))(thisfunctoriality 0;n 0;n isoneofmanyadvantagesofthe KontsevichspaceovertheHilbertschemeandthe Chow variety). Here is our main result. Theorem 1.1. Let r and d be positive integers, n a nonnegative integer such that n+d(cid:21)3. There is an injective linear map, v :Pic(M )Sd !Pic(M (Pr;d)) : 0;n+d Q 0;n Q 2000 Mathematics SubjectClassi(cid:12)cation. Primary:14D20,14E99,14H10. During the preparation ofthis article the second author was partially supported by the NSF grant DMS-0200659. The third author was partiallysupported by the NSF grant DMS-0353692 andaSloanResearchFellowship. 1 The NEF cone of M (Pr;d), respectively, the base-point-free cone, is the product 0;n of the cone generated by H;T;L ;:::;L and the image under v of the NEF cone 1 n of M ==S , respectively, the base-point-free cone. 0;n+d d The action of S on M permutes the last d marked points. The map v d 0;n+d generatesNEFandbase-point-freedivisorsonthe KontsevichspacefromNEFand base-point-freedivisorson M ==S . In particular,it generatescontractionsof 0;n+d d the Kontsevich space from contractions of M ==S . 0;n+d d Theorem 1.2. For every integer r (cid:21)1 and d(cid:21)2, there is a contraction, cont:M (Pr;d)!Y; 0;0 restricting to an open immersion on the interior M (Pr;d) and whose restriction 0;0 to the boundary divisor (cid:1)k;d(cid:0)k (cid:24)= M0;1(Pr;k)(cid:2)Pr M0;1(Pr;d(cid:0)k) factors through the projection to M (Pr;d(cid:0)k) for each 1 (cid:20) k (cid:20) bd=2c. The following divisor is 0;1 the pull-back of an ample divisor on Y, bd=2c D =T + k(k(cid:0)1)(cid:1) : r;d k;d(cid:0)k kX=2 SomeconnectionbetweentheampleconeoftheKontsevichspaceandtheample cone of M is natural, and certainly not surprisingto experts. A similarconnec- 0;n tion between the Fulton-MacPherson space and M was proved in [Che]. The 0;n primaryimportanceofTheorem1.1istheprecise,simpledescriptionofv: withone exception, it maps each boundary divisor of M to the corresponding bound- 0;n+d ary divisor of the Kontsevich space. This is used to construct the contraction in Theorem 1.2, which is analogous to the \democratic" contraction of the boundary of M (cid:12)rst constructed in an unpublished note of Keel and Mc Kernan. 0;n Recently we were informed of di(cid:11)erent constructions of the contraction of The- orem 1.2 in [Par] and by Anca Musta(cid:24)ta(cid:20) and Andrei Musta(cid:24)ta(cid:20). One advantage of our proof is that it uses only the existence of the map v, which is itself a formal consequence of the de(cid:12)nition of the Kontsevich space. The proof of Theorem 1.2 alsogivesanew,veryshortconstructionofKeel-Mc Kernan’scontractionofM . 0;n Acknowledgments: We would like to thank B. Hassett and A. J. de Jong for suggesting helpful references and for useful discussions. 2. Statement of results TheKontsevichmoduli spaceM (Pr;d) compacti(cid:12)esthe schemeparameteriz- 0;n ing smooth, rational curves of degree d in Pr. Precisely, it is the smooth, proper, Deligne-Mumford stack parameterizing families of data (C;(p ;:::;p );f) of, 1 n (i) a proper, connected, at-worst-nodal,genus 0 curve C, (ii) an ordered sequence p ;:::;p of distinct, smooth points of C, 1 n (iii) and a degree-d morphism f : C ! Pr satisfying the following stability condition: every irreducible component of C mapped to a point under f contains at least 3 special points, i.e., marked points p and nodes of C. i In [Pa] R. Pandharipande gives generators of the Kontsevich space: (1) the class H of the divisor of maps whose images intersect a (cid:12)xed codimen- sion two linear space in Pr (provided r >1 and d>0), 2 (2) the class Li of the pull-back ev(cid:3)i(OPr(1)), for 1 (cid:20) i (cid:20) n, associated to the ith evaluation morphism, ev (C;(p ;:::;p );f):=f(p ), i 1 n i (3) and the classes (cid:1) of the boundary divisors consisting of maps (A;dA);(B;dB) with reducibledomains. HereAtB isanyorderedpartitionof themarked points, andd and d arenon-negativeintegerssatisfyingd=d +d . If A B A B d =0 (respectively, if d =0), we demand #A(cid:21)2 (resp. #B (cid:21)2). A B The divisor classes H and L on M (Pr;d) are NEF and base-point-free. For i 0;n d (cid:21) 2, there is another NEF and base-point-free divisor class T, the tangency divisor: Fixing a hyperplane (cid:5) (cid:26) Pr, T is the class of the divisor parametrizing stable maps (C;p ;:::;p ;f) for which f(cid:0)1((cid:5)) is not simply d reduced, smooth 1 i points of C. In terms of Pandharipande’sgenerators,the class of T equals, bd=2c d(cid:0)1 k(d(cid:0)k) T = H+ 0 (cid:1) 1: d d (A;k);(B;d(cid:0)k) kX=0 AX;B @ A Finally, the map v from Theorem 1.1 is described in Section 3. Together, all nonnegative-linearcombinationsofthesedivisorsgiveaconeinPic(M (Pr;d)) . 0;n Q Weusethe methodof test families toprovethisisthe entireconeof NEFdivisors, respectively, eventually free divisors. In other words, we (cid:12)nd morphisms from test varieties to M (Pr;d) . Since every NEF divisor, resp. eventually free divisor, 0;n Q pulls back to such a NEF divisor, resp. eventually free divisor, this constrains the NEF and eventually free divisors among all divisors. By producing su(cid:14)ciently many test families, we prove every NEF, resp. eventually free divisor, is in our cone. Hypothesis 2.1. For the rest of the paper assume that the triple (n;r;d) in M (Pr;d) satis(cid:12)es r (cid:21)1; d(cid:21)1 and n+d(cid:21)3: 0;n Pr f * p C L L L L Figure 1. The morphism (cid:11). The morphism (cid:11). There is a 1-morphism (cid:11) : M (cid:2)Pr(cid:0)1 ! M (Pr;d) 0;n+d 0;n de(cid:12)ned as follows. Fix a point p 2 Pr and a line L (cid:26) Pr containing p. To every curveC inM attachacopyofLateachofthelastdmarkedpointsanddenote 0;n+d the resulting curve by C0. Consider the morphism f : C0 ! Pr that contracts C to p and maps the d rational tails isomorphically to L (see Figure 1). Since the space of lines in Pr passing through the point p is parameterized by Pr(cid:0)1, there is an induced 1-morphism (cid:11):M (cid:2)Pr(cid:0)1 !M (Pr;d): 0;n+d 0;n Since(cid:11)isinvariantforthe actionofS permutingthe lastdmarkedpoints,the d pull-back map determines a homomorphism (cid:11)(cid:3) =((cid:11)(cid:3);(cid:11)(cid:3)):Pic(M (Pr;d))!Pic(M )Sd (cid:2)Pic(Pr(cid:0)1): 1 2 0;n 0;n+d 3 We will denote the two projections of (cid:11)(cid:3) by (cid:11)(cid:3) and (cid:11)(cid:3). 1 2 C p i L * slide p along L i Figure 2. The morphism (cid:12) . i The morphisms (cid:12) . For each 1 (cid:20) i (cid:20) n, there is a 1-morphism (cid:12) : P1 ! i i M (Pr;d) de(cid:12)ned as follows. Fix a degree-(d (cid:0) 1), (n (cid:0) 1)-pointed curve C 0;n containingallexcepttheith markedpoint. AtageneralpointofC,attachalineL. The resulting degree-d, reducible curve will be the domain of our map. The (cid:12)nal, ith markedpointisinL. Varyingp inLgivesa1-morphism(cid:12) :P1 !M (Pr;d) i i 0;n (seeFigure2). Thisde(cid:12)nitionhastobeslightlymodi(cid:12)edinthecases(n;d)=(1;1) or (2;1). When (n;d)=(1;1), we assume that the line L with the varying marked point p constitutes the entire stable map. When (n;d) = (2;1), we assume that i the map has L as the only component. One marked point is allowed to vary on L and the remaining marked point is held (cid:12)xed at a point p2L. slide attachment point Pr C C L f L L Figure 3. The morphism (cid:13). The morphism (cid:13). If d (cid:21) 2, there is a 1-morphism (cid:13) : P1 ! M (Pr;d) 0;n de(cid:12)ned as follows. Take two copies of a (cid:12)xed line L attached to each other at a variable point. Fix a point p in the second copy of L. Let C be a smooth, degree- (d(cid:0)2), genus 0, (n+1)-pointed stable map to Pr whose (n+1)-st point maps to p. Attach this to the second copy of L at p. Altogether, this gives a degree-d, n-pointed, genus 0 stable maps with three irreducible components. The n marked pointsarethe (cid:12)rstnmarkedpointsof C. Theonlyvaryingaspectof thisfamily of stablemapsistheattachmentpointofthetwocopiesofL. Varyingtheattachment point in L(cid:24)=P1 givesa stablemap parameterizedbyP1, hence thereis an induced 1-morphism (cid:13) :P1 !M (Pr;d) (see Figure 3). When (n;d) =(1;2), we modify 0;n the de(cid:12)nition by assuming that the map consists only of the two copies of the line L and the marked point is held (cid:12)xed at the point p on the second copy of L. Notation 2.2. If d(cid:21)2, denote by P the Abelian group r;n;d P :=Pic(M )Sd (cid:2)Pic(Pr(cid:0)1)(cid:2)Pic(P1)n(cid:2)Pic(P1): r;n;d 0;n+d Denote by u=u :Pic(M (Pr;d))!P the pull-back map r;n;d 0;n r;n;d u =((cid:11)(cid:3);((cid:12)(cid:3);:::;(cid:12)(cid:3));(cid:13)(cid:3)): r;n;d 1 n 4 If d=1, denote by P the Abelian group r;n;1 P :=Pic(M )Sd (cid:2)Pic(Pr(cid:0)1)(cid:2)Pic(P1)n r;n;1 0;n+d and denote by u=u :Pic(M (Pr;1))!P the pull-back map r;n;1 0;n r;n;1 u =((cid:11)(cid:3);((cid:12) ;(cid:3);:::;(cid:12)(cid:3))) r;n;1 1 n Theorem 1.1 is equivalent to the following. Theorem 2.3. The map u (cid:10)Q:Pic(M (Pr;d)) !P (cid:10)Q is an isomor- r;n;d 0;n Q r;n;d phism. The image under u (cid:10)Q of the ample cone, resp. NEF, eventually free r;n;d cone of M (Pr;d) equals the product of the ample cones, resp. NEF, eventually 0;n free cones of Pic(M0;n+d)Sd, Pic(Pr(cid:0)1), and the factors Pic(P1). This is equivalent to Theorem 1.1 because the linear map u is simply the r;n;d inverse of the product of the linear map v and the maps Q ! Pic(M (Pr;d)) 0;n Q associated to each generator H, T and L ;:::;L . 1 n Notation 2.4. Denote by n the set f1;:::;ng. Denote by 4 = 4 the set of n;d 4-tuples ((A;d );(B;d )) of an ordered partition AtB of n and an ordered pair A B of nonnegative integers (d ;d ) such that d +d = d and #A (cid:21) 2 (#B (cid:21) 2) if A B A B d = 0 (d = 0, respectively). Denote by 40 the subset of 4 of data such that A B #A+d (cid:21)2 and #B+d (cid:21)2. A B Recall that the groupPic(M ) is generatedby boundary divisors (cid:1)~ , where 0;n A;B AtB is an ordered partition of n with #A (cid:21)2 and #B (cid:21)2. Let (cid:1)~ denote k;n(cid:0)k the sum of the boundary divisors (cid:1)~ , where the sum runs over pairs (A;B) A;B (A;B) suchthat #A=k and#B =Pn(cid:0)k. The groupPic(M0;n+d)Sd is generated by boundary divisors (cid:1)~ , where ((A;d );(B;d )) 2 (cid:1)0. The divisor (A;dA);(B;dB) A B (cid:1)~(A;dA);(B;dB)denotestheSd-invariantsumofboundarydivisors (A0;B0)(cid:1)~(A;A0);(B;B0), where the sum runs over pairs (A0;B0) such that A0 tB0 is a paPrtition of the last d points and #A0 =d and #B0 =d . A B To apply Theorem 2.3, we need to express the images of the standard gener- ators of Pic(M0;n(Pr;d)) in terms of the standard generators for Pic(M0;n+d)Sd, Pic(Pr(cid:0)1) and Pic(P1) factors. Proposition 2.5. (i) Assume d(cid:21)2 so that (cid:13) is de(cid:12)ned. Then (cid:13)(cid:3)T =O (2); (cid:13)(cid:3)H=0; (cid:13)(cid:3)L =0; for 1(cid:20)i(cid:20)n: P1 i The pull-back (cid:13)(cid:3)(cid:1) = 0 unless (#A;d ) or (#B;d ) is equal to (0;1) (A;dA);(B;dB) A B or (0;2). Moreover, if (n;d)6=(0;3), (cid:13)(cid:3)(cid:1) =O (4) and (cid:13)(cid:3)(cid:1) =O ((cid:0)1): (;;1);(n;d(cid:0)1) P1 (;;2);(n;d(cid:0)2) P1 If (n;d)=(0;3), then (cid:13)(cid:3)(cid:1) =O (3). (;;1);(n;d(cid:0)1) P1 (ii) Assume n(cid:21)1 so that (cid:12) ;:::;(cid:12) are de(cid:12)ned. Then 1 n (cid:12)(cid:3)H=0; (cid:12)(cid:3)L =O (1); (cid:12)(cid:3)L =0 if j 6=i; and (cid:12)(cid:3)T =0: i i i P1 i j i For every 1 (cid:20) i (cid:20) n, the pull-back (cid:12)(cid:3)(cid:1) equals O (1) if (n;d) 6= (1;2), i (;;1);(n;d(cid:0)1) P1 and equals O (2) if (n;d) = (1;2). If (n;d) 6= (1;2), then (cid:12)(cid:3)(cid:1) P1 i (fig;1);(figc;d(cid:0)1) equals O ((cid:0)1). And (cid:12)(cid:3)(cid:1) equals 0 if neither (A;d ) nor (B;d ) equal P1 i (A;dA);(B;dB) A B (;;1) or (fig;1). (iii) (cid:11)(cid:3)H=(0;OPr(cid:0)1(d)); (cid:11)(cid:3)Li =0; for 1(cid:20)i(cid:20)n; (cid:11)(cid:3)T =0: 5 Divisors in M (Pr;d) (cid:11)(cid:3) (cid:11)(cid:3) (cid:12)(cid:3) (cid:13)(cid:3) 0;n 1 2 i T 0 0 0 O (2) P1 H 0 OPr(cid:0)1(d) 0 0 L 0 0 O (1) 0 i P1 L 0 0 0 0 j6=i (cid:1)(;;1);(n;d(cid:0)1) c OPr(cid:0)1((cid:0)d) OP1((cid:0)1) OP1(4) (cid:1) (cid:1)~ 0 0 O ((cid:0)1) (;;2);(n;d(cid:0)2) (;;2);(n;d(cid:0)2) P1 (cid:1) (cid:1)~ 0 O ((cid:0)1) 0 (fig;1);(figc;d(cid:0)1) (fig;1);(figc;d(cid:0)1) P1 (cid:1) (cid:1)~ 0 0 0 (A;dA);(B;dB) (A;dA);(B;dB) all others Figure 4. The pull-backs of the standard generators If #A+d ;#B+d (cid:21) 2, then (cid:11)(cid:3)(cid:1) equals (cid:1)~ . The pull- A B (A;dA);(B;dB) (A;dA);(B;dB) back (cid:11)(cid:3)(cid:1)(;;1);(n;d(cid:0)1) equals (c;OPr(cid:0)1((cid:0)d)), where c is the class (cid:0)1 c= d (d +#B)(d +#B(cid:0)1)(cid:1)~ : (n+d(cid:0)1)(n+d(cid:0)2) A B B (A;dA);(B;dB) ((A;dAX);(B;dB)) 2(cid:1)0 Proof. Items (i) and (ii) follow fromLemma 3.5 and Lemma 4.1. Item (iii), except for the computation of c, is straightforward. The class c equals (cid:0) d . To i=1 n+i rewrite this as above, use [Pa, Lemma 2.2.1] (cf. also [dJS, LemmaP6.10]). (cid:3) With the exceptions of (n;d) =(0;3), (1;2), and (1;3), Proposition 2.5 is sum- marized by Figure 4. The phrase \all others" means, all pairs ((A;d );(B;d )) A B such that neither ((A;d );(B;d )) nor ((B;d );(A;d )) already occur in the ta- A B B A ble. The lines (cid:13)(cid:3) and (cid:1) apply only if d (cid:21) 2. The lines L , L and (;;2);(n;d(cid:0)2) i j (cid:1) only apply if n(cid:21)1. (fig;1);(figc;d(cid:0)1) In [Kaw], Kawamata associated an e(cid:11)ective, NEF Q-Cartier divisor L on M 0;n to every n-tuple of rational numbers, (d ;:::;d ) satisfying 0 < d (cid:20) 1 and d + 1 n i 1 (cid:1)(cid:1)(cid:1)+d =2. In an unpublished note Keel and Mc Kernan proved the following. n Theorem 2.6 (Keel-Mc Kernan). The Q-Cartier divisor L is eventually free. In particular, when d =(cid:1)(cid:1)(cid:1)=d =2=n, the divisor class of L equals (1=n(n(cid:0) 1 n 1))D , where n bn=2c D = k(k(cid:0)1)(cid:1)~ : n k;n(cid:0)k kX=2 6 This is the divisor class giving the \democratic" contraction of the boundary of M , cf. [Has, x2.1.2]. One application of Theorem 2.3 is the construction of the 0;n analogous contraction in Theorem 1.2 as well as a new, short construction of the democratic contraction. Theorem 2.7. For every integer n(cid:21)4, there is a contraction cont:M !Y 0;n restricting to an open immersion on the interior M and whose restriction to 0;n the boundary divisor (cid:1) = M (cid:2)M factors through projection to k;n(cid:0)k 0;k+1 0;n+1(cid:0)k M for each 3 (cid:20) k (cid:20) bn=2c. The divisor D is the pull-back of an ample 0;n+1(cid:0)k n divisor on Y. It follows easily that for every rational number b satisfying 2 2 2 <b< resp. b= ; (n(cid:0)1) bn=2c bn=2c settingB =b(cont) ((cid:1)~ ),K +B isanampleQ-Cartierdivisor,and(Y;B)is (cid:3) 2;n(cid:0)2 Y Kawamata log terminal, resp. log canonical (for this one only needs the existence of the contraction and the formula for L). 3. The splitting homomorphism In this section we de(cid:12)ne a map v : Pic(M0;n+d)Sd ! Pic(M0;n(Pr;d))(cid:10)Q that mapstheNEFdivisorsinPic(M0;n+d)Sd toNEFdivisorsinM0;n(Pr;d). Themap v givesasplittingof the map(cid:11)(cid:3) de(cid:12)nedinthe introductionandisessentialforthe 1 proof of Theorem 2.3. Let (cid:5)(cid:26)Pr be a hyperplane not containing the point p used to de(cid:12)ne the mor- phisms (cid:11) and (cid:13). Assume that the degreed(cid:0)1 curveused to de(cid:12)ne the morphisms (cid:12) is not tangent to (cid:5), and none of the marked points on this curve are contained i in (cid:5). Finally, assume that the degreed(cid:0)2 curveused to de(cid:12)ne the morphism (cid:13) is not tangent to (cid:5) and none of the marked points are contained in (cid:5). Denote by M (Pr;d) the open substack of M (Pr;d) parameterizing 0;n+d 0;n+d stable maps with irreducible domain. Let ev :M (Pr;d)!(Pr)d n+1;:::;n+d 0;n+d be the evaluation morphism associated to the last d marked point. Denote by M (Pr;d) the inverse image of (cid:5)d and by M (Pr;d) the closure of 0;n+d (cid:5) 0;n+d (cid:5) M (Pr;d) in M (Pr;d). 0;n+d (cid:5) 0;n+d M (Pr;d) is S -invariant under the action of S on M (Pr;d) per- 0;n+d (cid:5) d d 0;n+d muting the last d marked points. Denote by (cid:25) :M (Pr;d)!M (Pr;d) 0;n+d 0;n the forgetful 1-morphism that forgets the last d marked points and stabilizes the resulting family of prestable maps. This is S -invariant. Denote by d (cid:26):M (Pr;d)!M 0;n+d 0;n+d the1-morphismthatstabilizestheuniversalfamilyofmarkedprestablecurvesover M (Pr;d). This is S -equivariant. 0;n+d d 7 Lemma 3.1. The 1-morphism (cid:25) :M (Pr;d) !M (Pr;d) is (cid:19)etale. Denot- 0;n+d (cid:5) 0;n ing the image by O , the morphism (cid:25) :M (Pr;d) !O is an S -torsor. (cid:5) 0;n+d (cid:5) (cid:5) d Proof. Let (C;(p ;:::;p ;q ;:::;q );f) be a stable map in M (Pr;d) . Then 1 n 1 d 0;n+d (cid:5) (C;(p ;:::;p );f) satis(cid:12)es, 1 n (i) C is irreducible, (ii) f(cid:0)1((cid:5)) is a reduced Cartier divisor, and (iii) none of the marked points p is contained in f(cid:0)1((cid:5)). i Conversely, for every stable map (C;(p ;:::;p );f) satisfying (i){(iii), for every 1 n labeling of f(cid:0)1((cid:5)) as q ;:::;q , (C;(p ;:::;p ;q ;:::;q );f) is a stable map in 1 d 1 n 1 d M (Pr;d) . Thus O is the open substack of stable maps satisfying (i){(iii) 0;n+d (cid:5) (cid:5) andM (Pr;d) istheS -torsoroverO parameterizinglabelingsofthe(cid:12)bers 0;n+d (cid:5) d (cid:5) of f(cid:0)1((cid:5)). (cid:3) Denote by q : M ! M =S the geometric quotient. The composition 0;n+d 0;n+d d q(cid:14)(cid:26):M (Pr;d) !M =S isS -equivariant. BecauseM (Pr;d) is 0;n+d (cid:5) 0;n+d d d 0;n+d (cid:5) an S -torsor over O , there is a unique 1-morphism (cid:30)0 : O ! M =S such d (cid:5) (cid:5) (cid:5) 0;n+d d that (cid:30)0(cid:14)(cid:25) =q(cid:14)(cid:26). De(cid:12)nition 3.2. De(cid:12)ne U to be the maximal open substack of M (Pr;d) over (cid:5) 0;n which (cid:30)0 extends to a 1-morphism, denoted (cid:5) (cid:30) :U !M =S : (cid:5) (cid:5) 0;n+d d De(cid:12)neI tobethenormalizationoftheclosureinM (Pr;d)(cid:2)M =S ofthe (cid:5) 0;n 0;n+d d image of the graph of (cid:30)0 , i.e., I is the normalization of the image of ((cid:25);q (cid:14)(cid:26)). (cid:5) (cid:5) De(cid:12)ne I to be the normalization of the image of ((cid:25);(cid:26)) in M (Pr;d)(cid:2)M . (cid:5) 0;n 0;n+d Finally, de(cid:12)ne U to be the inverse image of U in I . e (cid:5) (cid:5) (cid:5) e e There is a pull-back map of S -invariant invertible sheaves, d (cid:26)(cid:3) :Pic(M )Sd !Pic(I )Sd; 0;n+d (cid:5) whichfurtherrestrictstoPic(U(cid:5))Sd. After(cid:19)etalebasee-changefromU(cid:5) toascheme, the morphism U ! U is the geometric quotient of U by the action of S . (cid:5) (cid:5) e (cid:5) d Therefore the peull-back map Pic(U(cid:5)) ! Pic(U(cid:5))Sd is ane isomorphism after ten- soringwith Q; in fact, both the kerneland cokernelareannihilated by d!. Because e M =S is a proper scheme and because M (Pr;d) is separated and normal, 0;n+d d 0;n bythevaluativecriterionofpropernessthecomplementofU hascodimension(cid:21)2. (cid:5) The smoothness of M (Pr;d) and [Ha, Prop. 6.5(c)] imply that the restriction 0;n map Pic(M (Pr;d))!Pic(U ) is an isomorphism. 0;n (cid:5) De(cid:12)nition3.3. De(cid:12)nev :Pic(M0;n+d)Sd !Pic(M0;n(Pr;d))(cid:10)Qtobetheunique homomorphism commuting with (cid:26)(cid:3) via the isomorphisms above. The map v is independent of the choice of (cid:5), hence it sends NEF divisors to NEF divisors. S Lemma 3.4. For every base-point-free invertible sheaf L in Pic(M0;n+d) d, v(L) is base-point-free. In particular, for every ample invertible sheaf L, v(L) is NEF. Thus, by Kleiman’s criterion, for every NEF invertible sheaf L, v(L) is NEF. 8 Proof. For every [(C;(p ;:::;p );f)] in M (Pr;d), there exists a hyperplane (cid:5) 1 n 0;n satisfying the conditions above and such that f(cid:0)1((cid:5)) is a reduced Cartier divisor containing none of p ;:::;p . By Lemma 3.1, (C;(p ;:::;p );f) is contained in 1 n 1 n U . Since L isbase-point-free,thereexistsa divisorD in the linearsystemjLj not (cid:5) containing(cid:30) [(C;(p ;:::;p );f)]. Bytheproofof[Ha,Prop. 6.5(c)],theclosureof (cid:5) 1 n (cid:30)(cid:0)1(D) is in the linear system jv(L)j; and it does not contain [(C;(p ;:::;p );f)]. (cid:5) 1 n (cid:3) Lemma 3.5. (i) The images of (cid:11), (cid:12) and (cid:13) are contained in U . i (cid:5) (ii) The morphisms (cid:30) (cid:14)(cid:12) and(cid:30) (cid:14)(cid:13) areconstantmorphisms. Therefore (cid:12)(cid:3)(cid:14)v (cid:5) i (cid:5) i and (cid:13)(cid:3)(cid:14)v are the zero homomorphism. (iii) The composition of (cid:11) with (cid:30) equals q(cid:14)pr . Therefore (cid:5) M 0;n+d (cid:11)(cid:3)(cid:14)v :Pic(M )Sd !Pic(M )Sd (cid:2)Pic(Pr(cid:0)1) 0;n+d 0;n+d is the homomorphism whose projection on the (cid:12)rst factor is the identity, and whose projection on the second factor is 0. Proof. (i): The image of (cid:11) is contained in O . Denote by q the intersection point (cid:5) of L and (cid:5). The image (cid:12) (L(cid:0)fqg) is contained in O . The stable map (cid:12) (q) sends the ith i (cid:5) i markedpointinto(cid:5). Uptolabelingthedpointsofthe inverseimageof(cid:5), thereis onlyone(n+d)-pointedstablemapinM (Pr;d) thatstabilizestothisstable 0;n+d (cid:5) map. Itisobtainedfrom(cid:12) (q)byremovingthe ith markedpointfromL,attaching i a contracted component C0 to L at q, containing the ith marked point and exactly one of the last d marked points, and labeling the d(cid:0)1 points in C \(cid:5) with the remaining d(cid:0)1 marked points. Similarly, (cid:13)(L(cid:0)fqg)is containedin O . The stablemap (cid:13)(q) has twocopies of (cid:5) L attached to each other at q. This appears to be a problem, because the inverse image of (cid:13)(q) in M (Pr;d) is 1-dimensional, isomorphic to M . The stable 0;n+d (cid:5) 0;4 maps have a contracted component C0 such that both copies of L are attached to C0 and 2 of the d new marked points are attached to C0. The remaining d(cid:0)2 marked points are the points of C \(cid:5). However, the map (cid:26) that stabilizes the resulting prestable (n+d)-marked curveis constant on this M . Indeed, the (cid:12)rst 0;4 copy of L has no marked points and is attached to C0 at one point. So the (cid:12)rst stepin stabilizationwill pruneL reducingthe numberof special pointson C0 from 4 to 3. (ii): In the family de(cid:12)ning (cid:12) , only the ith marked point on L varies. After i adding the d new marked points, L is a 3-pointed prestable curve; marked by the node p, the ith marked point, and the point q. For every base the only family of genus0, 3-pointed, stable curvesis the constant family. So upon stabilization, this family of genus 0, 3-pointed, stable curves becomes the constant family. Inthefamilyde(cid:12)ning(cid:13),onlythe attachmentpointofthe twocopiesofLvaries. The (cid:12)rst copy of L gives a family of 2-pointed, prestable curves; marked by q and the attachment point of the two copies of L. This is unstable. Upon stabilization, the(cid:12)rstcopyofLisprunedandthemarkedpointqonthe(cid:12)rstcopyisreplacedbya markedpointonthesecondcopyattheoriginalattachmentpoint. Nowthesecond copy of L gives a family of 3-pointed, prestable curves; marked by the attachment pointpofthesecondandthirdirreduciblecomponents,theattachmentpointofthe (cid:12)rst and second components, and q. For the same reason as in the last paragraph, this becomes a constant family. 9 (iii): Eachstable map in (cid:11)(M (cid:2)Pr(cid:0)1) is obtained froma genus0, (n+d)- 0;n+d pointed,stablecurve(C ;(p ;:::;p ;q ;:::;q ))andalineLinPr containingpby 0 1 n 1 d attaching for each 1(cid:20)i(cid:20)n, a copy C of L to C where p in C is identi(cid:12)ed with i 0 i q in C . The map to Pr contracts C to p, and sends each curve C to L via the i 0 0 identity morphism. Denoting by r the intersection point of L and (cid:5), the inverse image of (cid:5) consists of the d points r ;:::;r , where r is the copy of r in C . 1 d i i The component C is a 2-pointed, prestable curve: marked by the attachment i point p of C and by r . This is unstable. So, upon stabilization, C is pruned i i i and the marked point r is replaced by a marking on C at the point of attach- i 0 ment of C and C , namely q . Therefore, up to relabeling of the last d marked 0 i i points, the result is the genus 0, (n+d)-pointed, stable curve we started with, (C ;(p ;:::;p ;q ;:::;q )). (cid:3) 0 1 n 1 d 4. More divisors In the previous section we constructed a map (see De(cid:12)nition 3.3) v :Pic(M )Sd !Pic(M (Pr;d))(cid:10)Q: 0;n+d 0;n In this section we prove that the image of v, the divisor classes H, T and the tautological divisors L , generate Pic(M (Pr;d))(cid:10)Q. i 0;n The divisor class H , [Pa, Prop. 1] is the class of stable maps whose image (cid:3) intersects a (cid:12)xed codimension 2 linear space (cid:3) of Pr. This is de(cid:12)ned to be the empty divisor if r =1. For convenience, assume (cid:3) is contained in (cid:5) and does not intersect L or the curves C used to de(cid:12)ne (cid:12) and (cid:13). If n (cid:21) 1, the divisors L , i i;(cid:5) i=1;:::;n,[Pa,Prop. 1]arethepull-backbyev oftheCartierdivisor(cid:5). Ifd(cid:21)1, i the last divisoris T , [Pa, x2.3];the divisorof stable maps (C;(p ;:::;p );f) such (cid:5) 1 n thatf(cid:0)1((cid:5))isnotareduced,(cid:12)nitesetofdegreed. Thisisde(cid:12)nedtobetheempty divisorifd=1. In[Pa]PandharipandeprovesthatH ,L andT areirreducible (cid:3) i;(cid:5) (cid:5) Cartier divisors (when they are nonempty). Lemma 4.1. (i) The Cartier divisors T , L and H are NEF. (cid:5) i;(cid:5) (cid:3) (ii) The pull-backs (cid:11)(cid:3)(T ) and (cid:11)(cid:3)(L ) are zero. The pull-back (cid:11)(cid:3)(H ) equals (cid:5) i;(cid:5) (cid:3) (0;OPr(cid:0)1(d)) in Pic(M0;n+d)Sd (cid:2)Pic(Pr(cid:0)1); if r =1, then OPr(cid:0)1(1) is the trivial invertible sheaf. (iii) Assume n (cid:21) 1 so that (cid:12) is de(cid:12)ned for 1 (cid:20) i (cid:20) n. The pull-backs (cid:12)(cid:3)(T ) i i (cid:5) and (cid:12)(cid:3)(H ) are zero. For 1 (cid:20) j (cid:20) n di(cid:11)erent from i, (cid:12)(cid:3)(L ) is zero. i (cid:5) i j;(cid:5) Finally, (cid:12)(cid:3)(L ) is O (1). i i;(cid:5) P1 (iv) Assume d (cid:21) 2 so that (cid:13) is de(cid:12)ned. The pull-backs (cid:13)(cid:3)(H ) and (cid:13)(cid:3)(L ) (cid:3) i;(cid:5) are zero, and (cid:13)(cid:3)(T ) is O (2) in Pic(P1). (cid:5) P1 Proof. (i): By an argument similar to the one in Lemma 3.4, these divisors are base-point-free(whenevertheyarenon-empty). ThedivisorH isbigifr(cid:21)2,and (cid:3) T is big if d(cid:21)2. The divisors L are not big. (cid:5) i (ii): Bythe proof of Lemma 3.5, the imageof (cid:11) isin O , which isdisjoint from (cid:5) T . Also,ev (cid:14)(cid:11)istheconstantmorphismwith imagep,sothe inverseimageofL (cid:5) i i is empty. Finally, the pull-back of H equals the pull-back under the diagonal (cid:1) (cid:5) of the Cartier divisor d pr(cid:0)1((cid:3)) in (Pr(cid:0)1), where (cid:3) is considered as a divisor j=1 j in Pr(cid:0)1 via projectionPfrom p. 10
Description: