THE ALKALOIDS Chemistry and Biology 68 VOLUME Edited by Geoffrey A. Cordell Evanston, Illinois (cid:1) (cid:1) (cid:1) (cid:1) Amsterdam Boston Heidelberg London NewYork (cid:1) (cid:1) (cid:1) (cid:1) OxfordParis SanDiego SanFrancisco Sydney Tokyo ACADEMIC AcademicPressisanimprintofElsevier PRESS Academic Press isanimprintofElsevier 84Theobald’s Road,London WC1X8RR,UK Radarweg29, PO Box211, 1000AEAmsterdam,The Netherlands LinacreHouse, JordanHill, OxfordOX2 8DP, UK 30Corporate Drive, Suite400, Burlington, MA01803, USA 525BStreet,Suite1900, SanDiego, CA92101-4495, USA Firstedition 2010 Copyrightr2010Elsevier Inc.Allrights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission ofthe publisher PermissionsmaybesoughtdirectlyfromElsevier’sScience&Technology RightsDepartmentinOxford,UK:phone(+44)(0)1865843830;fax(+44) (0) 1865 853333; email: [email protected]. Alternatively you can submityourrequestonlinebyvisitingtheElsevierwebsiteathttp://www. elsevier.com/locate/permissions, and selecting Obtaining permission to use Elseviermaterial Notice No responsibility is assumed by the publisher for any injury and/or damagetopersonsorpropertyasamatterofproductsliability,negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification ofdiagnosesanddrugdosages should be made ISBN:978-0-12-381335-0 ISSN:1099-4831 ForinformationonallAcademicPresspublications visitourwebsiteatelsevierdirect.com Printed andbound inUSA 1011121314109 8 76 5 4 3 21 CONTRIBUTORS Numbers in parentheses indicate the pages on which the authors’ contributions begin. Bruce K. Cassels (83), Department of Chemistry, Faculty of Sciences, University of Chile, Chile; Millennium Institute for Cell Dynamics and Biotechnology, Santiago, Chile Juan C. Cedro´n (1), Instituto Universitario de Bio-Orga´nica ‘‘Antonio Gonza´lez’’, Universidad de La Laguna, La Laguna-Tenerife, Spain; Instituto Canario de Investigacio´n del Ca´ncer, Spain M.DelArco-Aguilar(1),DepartamentodeBiolog´ıaVegetal,Universidad de La Laguna, La Laguna-Tenerife, Spain AnaEste´vez-Braun(1),InstitutoUniversitariodeBio-Orga´nica‘‘Antonio Gonza´lez’’, Universidad de La Laguna, La Laguna-Tenerife, Spain; Instituto Canario de Investigacio´n del Ca´ncer, Spain Michael Heinrich (157), The School of Pharmacy, Centre for Pharma- cognosy and Phytotherapy, University of London, London, UK Emil D. Molle (167), Faculty of Ecology and Landscape Architecture, University of Forestry, Sofia, Bulgaria Matthew J. Palframan (39), Department of Chemistry, University of York, Heslington, York, UK Andrew F. Parsons (39), Department of Chemistry, University of York, Heslington, York, UK EdwinG.Pe´rez(83),DepartmentofChemistry,FacultyofChemistryand Biology,UniversityofSantiago,Santiago,Chile;MillenniumInstituteforCell DynamicsandBiotechnology,Santiago,Chile;Presentaddress:Facultadde Qu´ımica,PontificiaUniversidadCato´licadeChile,Santiago,Chile A´ngel G. Ravelo (1), Instituto Universitario de Bio-Orga´nica ‘‘Antonio Gonza´lez’’, Universidad de La Laguna, La Laguna-Tenerife, Spain; Instituto Canario de Investigacio´n del Ca´ncer, Spain Marina I. Stanilova (167), Department of Applied Botany, Institute of Botany-Bulgarian Academy of Sciences, Sofia, Bulgaria Stanislav G. Yanev (167), Department of Toxicology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria vii PREFACE This volume of the series presents timely discussions on some of the important groups of alkaloids derived biosynthetically from phenylala- nine and tyrosine. These authoritative chapters provide contemporary commentary on various aspects of alkaloid occurrence, synthesis, biosynthesis, and in one instance, efforts to enhance production to meet commercial needs. Ravelo and coworkers offer a comprehensive overview of the Amaryllidaceae alkaloids present in the genus Pancratium, with an emphasisonusingtheirNMRspectroscopicpropertiestodistinguishthe individualalkaloidtypes.Alsocoveredindetailareimportantaspectsof their synthesis, and the broad spectrum of biological properties which the alkaloids represent. Another small and interesting group of alkaloids with a quite limited chemotaxonomic distribution is the Erythrina alkaloids. These alkaloids possess some very interesting structural diversity, which has inspired the creativity of the synthetic organic chemistry community. Parsons and PalframanprovideanoverviewofthisareaforthefirsttimesinceVolume48. The genus Duguetia produces a range of isoquinoline alkaloids, including those of the benzylisoquinoline type, the aporphinoid type, and the berberine type. Although only a small number of the species in the genus have been examined thus far, Pe´rez and Cassals have, for the first time, summarized these results, and the associated synthetic and biological efforts, and made chemotaxonomic comparisons with the botanically close genus Guaterria. Of particular interest is the diverse pharmacology, some of it potentially useful, which has recently been disclosed for these alkaloids. Themostrecentalkaloidadditiontopharmacotherapyistheintroduc- tion ofgalanthamine,analkaloidfromseveralgenerain theAmaryllida- ceae.AsummarizingchapterfromHeinrichonthehistoricalaspectsand backgroundofgalanthamineasadrugisfollowedbyanextensivereview ofgalanthamineproductionfromthegroupofStanilovabasedinBulgaria. Thechapterbringsfocustotheresearcheffortsovermanyyearstoenhance theavailabilityofgalanthaminefromnaturalsources.Thisisaclassicissue for all natural product development, and this intimate and personal account of the broad diversity of approaches tried, and the sometimes unexpectedresultsobtained,makesfascinatingreading. Geoffrey A. Cordell Evanston, Illinois ix 1 CHAPTER Chemistry and Biology of Pancratium Alkaloids Juan C. Cedro´n1,2, M. Del Arco-Aguilar3, Ana Este´vez-Braun1,2,* and A´ngel G. Ravelo1,2,* Contents I. Introduction 2 A. Classification ofthe Amaryllidaceae Alkaloids 2 B. Biosynthesis 3 II. PancratiumGenus 6 A. General Aspects ofthePancratiumGenus 6 B. Botanical Description 7 C. Alkaloids andOther SecondaryMetabolites Isolated 7 III. NMRStudies 13 A. Lycorenine-Type Alkaloids 14 B. Lycorine-Type Alkaloids 15 C. Montanine-Type Alkaloids 15 D. Narciclasine-Type Alkaloids 16 E. Tazettine-Type Alkaloids 16 F. Galanthamine-Type Alkaloids 17 G. Crinine and Haemanthamine-Type Alkaloids 18 IV. ProductionofPancratium Alkaloids 18 A. RecentSynthetic Studies 18 B. Interconversions betweenSkeletons 28 C. In Vitro CultureSystems 30 V. Biological Activities 31 A. Anticancer Activity 31 1 InstitutoUniversitariodeBio-Orga´nica‘‘AntonioGonza´lez’’,UniversidaddeLaLaguna,LaLaguna- Tenerife,Spain 2 InstitutoCanariodeInvestigacio´ndelCa´ncer,Spain 3 DepartamentodeBiolog´ıaVegetal,UniversidaddeLaLaguna,LaLaguna-Tenerife,Spain *Correspondingauthors. E-mailaddresses:[email protected](A.Este´vez-Braun)[email protected](A´.G.Ravelo) TheAlkaloids,Volume68 r2010ElsevierInc. ISSN:1099-4831, DOI10.1016/S1099-4831(10)06801-X Allrightsreserved 1 2 Cedro´netal. B. Antiplasmodial Activity 33 C. OtherActivities 33 V. Conclusions 33 References 34 I. INTRODUCTION The Amaryllidaceae is a widely distributed, monocotyledonous family, represented by 59 genera and over 850 species all over the world (Figure 1) (1,2). South America (28 genera) and South Africa (19 genera) aretheregionswithmajordiversity.TheMediterraneanregion,beingthe source of numerous horticultural introductions, has only eight genera; whereas Australia has only three genera. Plants in the Amaryllidaceae occupy many different habitats: seasonally dry places, ephemeral pools, rainforests understory, and rivers. Currently, molecular evidence places the most ancient lineages and the origin of the family in Africa (3). PlantsbelongingtotheAmaryllidaceaefamilyareknownforproducing an exclusive group of alkaloids, named ‘‘Amaryllidaceae alkaloids,’’ isolated from plants of all genera of this family. Since the isolation of lycorine(1)fromNarcissuspseudonarcissus in1877,over300alkaloidshave been isolated from plants of this family (4), including those alkaloids recentlyisolatedfromPancratiumcanariensis(5).Althoughtheirstructures appear to be very different, these alkaloids are known to be formed biogeneticallyfromnorbelladines. A. Classification of the Amaryllidaceae Alkaloids According to their structures, the Amaryllidaceae alkaloids are classified into eight skeleton types (6), for which the representative Figure1 Distribution ofplants of theAmaryllidaceae family. ChemistryandBiologyofPancratiumAlkaloids 3 OH OMe OH 3 3 O 9 10H1O0Ha101b H42a 34 11 MeO9 10O 1201a 10b 441a112 O 9 10 1120a10b4a114OHNH1M2e N O O 8 7 6a 6 12 8 7 6a 6 NMe O 8 7 6a 6 1 lycorine 2 galanthamine 3 tazettine OH 1 2 3 OH 1 2 OMe H 10 11 O 9 10 10a10b 4a 4OH O 9 10a 10b 4a 3 OH 12 4 O 8 6a 6 NH O 8 6a N H 7 7 6 OH O 4 narciclasine 5 montanine 12 11 MeO 9 10M1e0HNa 1H0b4a14 23 O 9 10 10a110b2 34 OMOeH O 9 1010a 110b 42a11 34 OH MeO 8 7 6a 6O H O 8 7 6a H6 N4a 1211 O 8 7 6a H6 N 12 OH 6 lycorenine 7 haemanthamine 8 crinine Figure 2 Amaryllidaceae alkaloid types. alkaloidsare:lycorine(1),galanthamine(2),tazettine(3),narciclasine(4), montanine (5), lycorenine (6), haemanthamine (7), and crinine (8) (Figure 2). Ghosal’s model has been used for numbering each skeleton (7).Recently,UnverandJinhaveproposedsubgroupsfor someskeleton types, according to the structures of new alkaloids isolated from Galanthus species (8,9). B. Biosynthesis Except for galanthamine, most of the biosynthetic research on the Amaryllidaceae alkaloids was developed in the 1960s and 1970s. Biosynthesis of this class of alkaloids is the result of several intramole- cular oxidative couplings of precursors related to norbelladine (12) (10). Norbelladine (12) is formed through the combination of 3,4-dihydrox- ybenzaldehyde(10)withtyramine(9);thesetwoprecursorsarisingfrom phenylalanine and tyrosine, respectively (Figure 3). After reduction of 4 Cedro´netal. OH H HO O HO + NH HO 2 HO N 9 10 HO 11 OH OH HO MeO 4(cid:2) H H N N HO HO 12 norbelladine 13 4(cid:2)-O-methylnorbelladine Figure3 Biosynthesis of norbelladine (12) and4u-O-methylnorbelladine (13) from tyramine(9) and 3,4-dihydroxybenzaldehyde (10). the resulting Schiff’s base 11 and methylation of norbelladine, 4u-O- methylnorbelladine (13) is obtained. Alkaloid 13 is considered the key intermediate in the elaboration of most of the alkaloids (11). 4u-O- Methylnorbelladine (13)canundergothreetypes ofoxidative couplings: ortho(cid:1)parau, para(cid:1)parau, and para(cid:1)orthou (Figure 4). Lycorine (1) is formed through an ortho(cid:1)parau coupling, while the crinine(8)andhaemanthamine(7)skeletonsareformedfromapara(cid:1)parau coupling. The galanthamine skeleton (2) is biosynthesized from a para(cid:1)orthoucoupling(Figure4). Aprecursoroflycorine(5),norpluviine(14)isalsoanintermediatein theformationofthelycorenineskeleton(6).Inthiscase,norpluviine(14) is oxidized at the benzylic position to yield a cyclic hemiaminal group, which is in equilibrium with the corresponding open form. The rotation of the C-10a(cid:1)C-10b bond of the amino aldehyde intermediate, followed byhemiacetalformationandmethylation,providethelycoreninecore(6) (Figure 5) (12). The alkaloid haemanthamine (7) is the precursor of the tazettine (3), montanine (5), and narciclasine (4) skeletons. Haemanthamine (7) is formed through a para(cid:1)parau coupling as the enantiomeric skeleton of crinine (8). The biosynthesis of tazettine (3) has been studied and described(Figure6)(13).Itinvolvestheoxidationofhaemanthamine(7) to haemanthidine (15) followed by ring opening to form the amino aldehyde equilibrium system, which, after hemiacetal formation and methylation, yields pretazettine (16) (14). Although pretazettine (16) has been identified in plants, it is unstable either in basic or acid solutions,anditconvertsslowlyintotazettine(3)(15).Biosynthesisofthe ChemistryandBiologyofPancratiumAlkaloids 5 OH HO HO H H MeO O H ortho-para' N N HO O 1 lycorine OH OH MeO O para-para' H NH N HO O 8 crinine OH O O OH OH OH MeO MeO MeO para-ortho' HN NH NH OH OH OH O O O MeO MeO = MeO NH N Me NMe 2 galanthamine Figure 4 Phenoloxidative couplings of4u-O-methylnorbelladine (13) toyield the lycorine, crinine, andgalanthamine skeletons. HO HO HO H H H H H H MeO MeO MeO 10b oxidation 10a N N HN HO HO HO CHO OH 14 norpluviine HN H HN H HN H H H H H H rotation MeO MeO MeO OH O O HO CHO HO MeO OH OH 6 lycorenine Figure 5 Biosynthesis of lycorenine(6)from norpluviine(14).
Description: