MNRAS435,3444–3461(2013) doi:10.1093/mnras/stt1538 AdvanceAccesspublication2013September13 The ALHAMBRA survey: reliable morphological catalogue of 22 051 early- and late-type galaxies M. Povic´,1‹ M. Huertas-Company,2,3 J. A. L. Aguerri,4 I. Ma´rquez,1 J. Masegosa,1 C. Husillos,1 A. Molino,1 D. Cristo´bal-Hornillos,5 J. Perea,1 N. Ben´ıtez,1 A. del Olmo,1 A. Ferna´ndez-Soto,6,7 Y. Jime´nez-Teja,1 M. Moles,1,5 E. Alfaro,1 T. Aparicio-Villegas,1,8 B. Ascaso,1 T. Broadhurst,9,10 J. Cabrera-Can˜o,11 F. J. Castander,12 J. Cepa,4,13 M. Fernandez Lorenzo,1 M. Cervin˜o,1,4 R. M. Gonza´lez Delgado,1 L. Infante,14 C. Lo´pez-Sanjuan,5 V. J. Mart´ınez,7,15 I. Matute,1 I. Oteo,4,11 A. M. Pe´rez-Garc´ıa,4,13,16 F. Prada1 and J. M. Quintana1 1InstitutodeAstrof´ısicadeAndaluc´ıa(IAA-CSIC),E-18008,Granada,Spain 2GEPI,Paris-MeudonObservatory,F-75014Meudon,France 3UniversityofParis,F-75205Paris,France 4InstitutodeAstrof´ısicadeCanarias(IAC),E-38200LaLaguna,Tenerife,Spain 5CentrodeEstudiosdeF´ısicadelCosmosdeArago´n(CEFCA),E-44001Teruel,Spain 6InstitutodeF´ısicadeCantabria(CSIC-UC),E-39005Santander,Spain 7UnidadAsociadaObservatoriAstrono`mic(IFCA–UV),Valencia,Spain 8Observato´rioNacional-MCT,RuaJosCristino,77.CEP20921-400RiodeJaneiro-RJ,Brazil 9DepartmentofTheoreticalPhysics,UniversityofBasqueCountry,UPV/EHU,POBox644,E-48080Bilbao,Spain 10IKERBASQUE,BasqueFoundationforScience,AlamedaUrquijo36-5,E-48008Bilbao,Spain 11FacultaddeF´ısica,DepartamentodeF´ısicaAto´mica,MolecularyNuclear,UniversidaddeSevilla,E-41012Sevilla,Spain 12InstitutdeCie`nciesdel’Espai,IEEC/CSIC,E-08193Barcelona,Spain 13DepartamentodeAstrof´ısica,FacultaddeF´ısica,UniversidaddelaLaguna,E-38200LaLaguna,Spain 14DepartamentodeAstronom´ıa,PontificiaUniversidadCato´lica,SantiagodeChile,Chile 15ObservatoriAstrono`micdelaUniversitatdeVale`ncia,Valencia,Spain 16Asociac´ıonASPID,ApartadodeCorreos412,E-38200LaLaguna,Tenerife,Spain Accepted2013August13.Received2013August5;inoriginalform2013April9 ABSTRACT Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) isphotometricsurveydesignedtotracethecosmicevolutionandcosmicvariance.Itcoversa largeareaof∼4deg2 ineightfields,wheresevenfieldsoverlapwithothersurveys,allowing ustohavecomplementarydatainotherwavelengths.Allobservationswerecarriedoutin20 continuous,mediumband(30nmwidth)opticaland3near-infrared(JHK)bands,providing theprecisemeasurementsofphotometricredshifts.Inaddition,morphologicalclassification ofgalaxiesiscrucialforanykindofgalaxyformationandcosmicevolutionstudies,providing the information about star formation histories, their environment and interactions, internal perturbations, etc. We present a morphological classification of >40 000 galaxies in the ALHAMBRA survey. We associate to every galaxy a probability to be early type using the automatedBayesiancodeGALSVM.DespiteofthespatialresolutionoftheALHAMBRAimages (∼1 arcsec), for 22 051 galaxies, we obtained the contamination by other type of less than 10percent. Of those, 1640 and 10 322 galaxies are classified as early- (down to redshifts ∼0.5)andlate-type(downtoredshifts∼1.0),respectively,withmagnitudesF613W≤22.0. Inaddition,formagnituderange22.0<F613W≤23.0,weclassifiedother10089late-type galaxieswithredshifts≤1.3.Weshowthattheclassifiedobjectspopulatetheexpectedregions (cid:2) E-mail:[email protected] (cid:4)C 2013TheAuthors PublishedbyOxfordUniversityPressonbehalfoftheRoyalAstronomicalSociety Downloaded from https://academic.oup.com/mnras/article-abstract/435/4/3444/1035057 by Universidad de Sevilla user on 26 March 2018 ALHAMBRA:morphologicalclassification 3445 inthecolour–massandcolour–magnitudeplanes.Thepresenteddatasetisespeciallyattractive giventhehomogeneousmultiwavelengthcoverageavailableintheALHAMBRAfields,and isintendedtobeusedinavarietyofscientificapplications.Thelow-contaminationcatalogue (<10percent)ismadepubliclyavailablewiththispaper. Keywords: surveys–galaxies:fundamentalparameters–galaxies:statistics. Morgan & Mayall 1957; Baldwin, Phillips & Terlevich 1981; 1 INTRODUCTION Folkes,Lahav&Maddox1996;Sa´nchez-Almeidaetal.2010),or Oneofthefirststepsinanyresearchworkistogroupobjectswith lightdistribution(e.g.Abrahametal.1994;Conseliceetal.2000; common properties (e.g. shape, weight, colour, etc.). This taxon- Abrahametal.1996;Abraham,vandenBergh&Nair2003;Lotz, omyisapowerfultoolinordertounderstandthephysicsbehindthe Primack&Madau2004;Scarlataetal.2007).Currentworksareled formationandevolutionofthestudiedobjects.Probablythemost to more complex fitting models, using orthonormal mathematical popular classification of galaxies is based on the shapes or mor- basestodecomposethegalaxies,andthencorrelatingthephysical phologies(startedwithReynolds1920;Hubble1926,1936).This properties of the objects with the coefficients of the decomposi- first order classification has survived over time since the differ- tionbymeansofaprincipalcomponentanalysis.Thisisthecase entmorphologicalclassesofgalaxieshavealsodifferentphysical of the shapelets (Kelly & McKay 2004, 2005; Andrae, Jahnke & properties and probably different evolutionary tracks. In general, Melchior 2011a), or future works with the sersiclets (Ngan galaxies can be divided into two main classes: early-types (here- et al. 2009; Andrae, Melchior & Jahnke 2011b), and the CHEFs afterETs)andlate-types(hereafterLTs).ETsincludeellipticaland (Jime´nez-Teja&Ben´ıtez2012).Themainadvantageoftheselatter lenticulargalaxies,whileLTsincludespiralsandirregulargalaxies. methodswithregardtotheformeristheirflexibilityandreliabilityto ETsappeartobeafamilyofobjectsshowingoldstellarpopulations, reproduceeveryfeatureinthegalaxies,andthentoefficientlymodel spheroidal-like dynamical properties and a small fraction of cold every kind of morphology, including irregular objects. Moreover, gaswhereasLTsaremoregas-richobjects,presentyoungerstellar they do not need any a prioriknowledge and they donot impose populations,andaremainlyrotationsupported. anyprofiletofitthegalaxies.However,thesemathematicalmodels Visual inspection is the traditional way to classify galaxies. arecomputationallymoreexpensiveandtheparametersofthefinal Bydefinition,itissubjectiveand notreproducible,butforbright decompositiondonotprovideanyphysicalinformation.ALHdata and extended objects there is a general good agreement between willbeusedforfurtherdevelopmentoftheCHEFsmethod(Jime´nez differentobservers.Theyarehowevertimeconsuming.Inthepast, etal.,inpreparation). galaxysamplescontainedfromdozensuptohundredsofgalaxies GALSVM(Huertas-Companyetal.2008)providesageneralization whilepresentgalaxysurveyshaveuptomillionsofgalaxies.This of the non-parametric classifications by using an unlimited num- makesimpossibletogivedetailedmorphologicalclassificationsun- ber of dimensions and providing a probabilistic output following lessalargeamountofclassifiersareinvolved(seetheGalaxyZoo a Bayesian approach (see also Fasano et al. 2012 for a similar project;Lintottetal.2008). approach). Thealgorithmhasbeenshowntobeespeciallyuseful Overthepastfewyears,differentautomatedmethodsofmorpho- whendealingwithlow-resolutionandhigh-redshiftdata(Huertas- logicalclassificationofgalaxieshavebeendeveloped.Automated Company et al. 2009) and has been successfully applied to sev- classifications resolve the two main problems raised above. They eral large samples at low and high redshift (Huertas-Company provideindeedreproducibleinformation,andtheerrorscanbefully et al. 2009, 2011), including the Cosmological Evolution Survey understoodbyusingextensivesimulations(e.g.Trujilloetal.2001; (COSMOS;1 Scoville et al. 2007) and Sloan Digital Sky Survey Simard et al. 2002, 2011). In addition, modern galaxy classifica- (SDSS;2Castander1998)samples. tionalgorithmsareabletoclassifylargesamplesofgalaxiesina In this paper, we present the morphological classification of a reasonableamounttime. largesampleofgalaxiesfromtheAdvancedLargeHomogeneous Weusuallydistinguishbetweenthreebroadgroupsofautomated AreaMediumBandRedshiftAstronomical,ALHAMBRAsurvey galaxyclassifications:parametricbasedongalaxyphysicalparam- (hereafter ALH; see Moles et al. 2008), located at different red- eters, non-parametric and parametric based on mathematical pa- shifts.TakingintoaccounttheresolutionofALHdata(∼1arcsec) rameters.Parametricclassificationsuseparametricmodelsinorder andalltheadvantagesofGALSVMcodementionedabove,weused toreproducesomegalaxymeasurements.Oneofthemostpopular thismethodforourmorphologicalclassification.TheALHsurvey parametricmethodsbasedongalaxyphysicalparametersclassifies imaged ∼4 deg2 of the sky through 23 optical and near-infrared galaxies according to some properties of their structural parame- (NIR) filters. The large number of filters provide accurate photo- tersobtainedbyfittingthesurfacebrightness(e.g.deVaucouleurs metricredshiftsbyfittingthespectralenergydistributions(hereafter 1948;Se´rsic1963;Prietoetal.1997,2001;Pengetal.2002,2010; SEDs)ofthegalaxiesforaboutonemillionsources.Thisgalaxy Simard et al. 2002, 2011; Aguerri et al. 2004, 2005; de Souza, sampleisidealinordertostudyevolutionarypropertiesofgalaxies Gadotti & dos Anjos 2004; Me´ndez-Abreu et al. 2008). On the inthelast8Gyr(Molesetal.2008;Cristo´bal-Hornillosetal.2009; otherhand,non-parametricgalaxyclassificationsarebasedonthe Matuteetal.2012;Oteoetal.2013a,b). measurements of a set of galaxy parameters that correlate with The ALH survey, data and sample selection are introduced in the morphological types. These methods have the advantage that Section2.Themethodologyusedformorphologicalclassification theyassumenon-parametricmodelsandcanhenceclassifyregular and irregular objects. Several galaxy parameters have been used todiscriminatebetweendifferentmorphologicaltypes,i.e.colours 1http://cosmos.astro.caltech.edu/ (e.g.Stratevaetal.2001),spectralproperties(e.g.Humason1931; 2http://www.sdss.org/ Downloaded from https://academic.oup.com/mnras/article-abstract/435/4/3444/1035057 by Universidad de Sevilla user on 26 March 2018 3446 M.Povic´ etal. Table1. ALHobservationsusedinthispaper:ALHfieldsandtheircentralcoordinates,numberofobjectsandcoveredareasintheF613W banddowntomagnitudes23.0,rangeofseeingofindividualobservationsusedtocreatethefinalones,andtheaveragedseeing. Field RA(J2000) Dec.(J2000) Num.ofobj.inF613Wband Area Min–maxseeing Averagedseeing (hms) (◦(cid:6)(cid:6)(cid:6)) (atmag≤23.0) (deg2) (arcsec) (arcsec) ALH-2/DEEP2 022832.0 +004700 14322 0.5 0.86–1.40 1.04 ALH-3/SDSS 091620.0 +460220 12508 0.5 0.70–1.18 0.89 ALH-4/COSMOS 100028.6 +021221 7104 0.25 1.06–1.32 1.17 ALH-5/HDF-N 123500.0 +615700 6274 0.25 0.95–1.40 1.23 ALH-6/GROTH 141638.0 +522505 13614 0.5 0.81–1.30 1.11 ALH-7/ELAIS-N1 161210.0 +543000 15887 0.5 0.84–1.40 1.04 ALH-8/SDSS 234550.0 +153450 14128 0.5 0.72–1.40 0.91 Figure1. Exampleoftwogalaxiesobservedwith20opticaland3NIRALHfilters. is described in Section 3, and the main results are discussed in from340to970nm,withnon-overlappingandequal30nmwidth Sections4–6.Finally,AppendixAdescribesthecontentofthefirst medium bands (Aparicio-Villegas et al. 2010). This set of opti- publishedmorphologicalcatalogueofgalaxiesintheALHsurvey. calfilterswasspeciallydesignedfortheALHsurveytoachievea Weassumedthefollowingcosmologicalparametersthroughout goodaccuracyofphotometricredshiftsof∼δz/(1+z)=0.015for thepaper:(cid:3)(cid:4)=0.7,(cid:3)M=0.3andH0=70kms−1Mpc−1.Unless galaxiesbrighterthanF814W≤24.5,threetimesbetterthantheone otherwisespecified,allmagnitudesaregivenintheABsystem(Oke achievedwhenusingthe4–5filtersystems(formoreinformation, &Gunn1983). seeBen´ıtezetal.2009).Fig.1showstheexampleoftwogalaxies observedinallALHbands. OpticaldatawereobservedwithLargeAreaImagerforCalarAlto 2 DATA (LAICA4),withthetotalexposuretimeof100000sperpointing. Ontheotherhand,OMEGA20005instrumentwasusedintheNIR, TheALHobservationswerecarriedoutattheCalarAltoGerman- SpanishAstronomicalCenter(CAHA3),undertheSpanishguaran- withthetotalexposuretimeof60000sperpointing.Datareduction teedtimeof110nights.EightfieldswereobservedintheNorthern was carried out using the standard set of IRAF6 packages. Table 1 givesthesummaryofALHobservationsusedinthiswork. hemisphere sky, having a seeing lower than 1.6 arcsec (ranging mainlybetween0.8and1.2arcsec).Allfields(exceptALH-1)have themultiwavelengthinformationavailablefromother(deep)extra- galactic surveys (see Moles et al. 2008 and Table 1). Each ALH 4http://www.caha.es/CAHA/Instruments/LAICA/index.html detectionwasobservedin23bands,with20opticalandthreestan- 5http://w3.caha.es/CAHA/Instruments/O2000/index2.html dardJHKNIRfilters.Opticalrangeiscoveredinacontinuousway 6IRAF is distributed by the National Optical Astronomy Observatory (NOAO),whichisoperatedbytheAssociationofUniversitiesforResearch inAstronomy(AURA)undercooperativeagreementwiththeNationalSci- 3http://www.caha.es/ enceFoundation(NSF). Downloaded from https://academic.oup.com/mnras/article-abstract/435/4/3444/1035057 by Universidad de Sevilla user on 26 March 2018 ALHAMBRA:morphologicalclassification 3447 Source detection was performed by means of the SEXTRACTOR like,andequalto0forextendedsources.Unclassifiedsourceshave (v.2.8.6)code(Bertin&Arnouts1996).Both,detectionofsources GEOM_CLASS_STAR=99.TakingintoaccounttheALHreso- andcreationofphotometriccatalogues,werecarriedoutinall23 lution,itwasconfirmedthatthismethodworkswelldowntomag- bands,whereeachcataloguecontainsmorethan180photometric, nitudesr=23.0,whichisingoodagreementwithourmagnitude- astrometricandbasicmorphologicalparameters.Morethan670000 selectioncriteria(seebelow). sourcesweredetectedinallALHsurveys,withaphotometriccom- To select the extended sources, we used the pletenessofr∼25.0(correspondstoSDSSrbandconstructedfrom GEOM_CLASS_STAR=0.Withthiscriteria,usingthecompari- fiveindividualALHbands).Alladditionalinformationrespectto sons with the Hubble Space Telescope (HST) data from the thesourcedetectionandcreationofphotometriccataloguescanbe COSMOS survey, we estimated to have in the selected sample found in Husillos et al. (in preparation), while the catalogues are contaminationofpoint-likesourceslowerthan1percentdownto publiclyavailableviathesurveywebpage.7 magnitudes22.0intheF613Wband,andof5–7percentbetween For photometric redshift estimations (hereafter photo-z), the magnitudes22.0and23.0. BayesianPhotometricRedshiftcodewasused(BPZ;Ben´ıtez2000; (ii) Photo-zselection.Weusedtwocriteriatoselectthesources Ben´ıtezetal.2004).BPZwasrunonaseparatedpointspreadfunction with good photo-z measurements. First, we only selected those (PSF)correctedphotometryandanewlibraryoftemplates(Ben´ıtez sources detected in all ALH filters. And secondly, we selected etal.,inpreparation)wasimplemented,composedby11SEDs(4el- sources with BPZ_ODDS10 parameter above 0.2. With these two liptical,1lenticular,1Sbc,1Scdand4starburstgalaxies),originally criteria,weexpecttohavelessthan3percentofoutliers(Molino drawnfromPEGASE(Fioc&Rocca-Volmerange1997),butthenop- etal.2013).Wecheckedthatrequiringtheobjectstobedetected timizedusingtheFIREWORKSphotometryandspectroscopicredshifts inallALHbandsintroducesonlyasmallselectionbiasaffecting fromWuytsetal.(2008).Basedonasampleof∼7000galaxieswith thesampleofredgalaxiesatz>0.4andmagnitudes<22inthe known spectroscopic redshifts, drawn from different surveys (see F613Wband,arangeinwhichourmethodisnotabletoefficiently Table1),thefinalperformanceofresultingphoto-zswasevaluated. selectETs(seeSection4). Theexpectedaccuracyforgalaxieswithmagnitudes<23.0inthe (iii) Magnitude selection. We selected only objects with mag- constructedF814Wnmbandis∼δz/(1+z)=0.011withasmall nitudes ≤23.0 in the F613W filter, and with magnitude errors fraction of catastrophic outliers no higher than 3percent. In this <0.5. Above this magnitude limit, the reliability of signal-to- work,weusedtheBPZmeasuredphoto-zs,andthesamephotome- noise (S/N) measurements, photo-z estimations, and geometrical trythatwasusedinphoto-zestimations.Allinformationaboutthe extended/point-sourceclassificationsdecreasesignificantly.Selec- photo-zmeasurementsandcataloguescanbefoundinMolinoetal. tionoftheF613WfilterisexplainedinSection3.2.2.Incomparison (2013). with previous criteria, magnitude selection is the most restrictive one. (iv) Flag tests. In the sample selected through previous con- 2.1 Sampleselection ditions, 57percent of sources are ‘good detections’ (SEXTRACTOR Wecarriedoutthemorphologicalclassificationonawell-defined FLAG parameter = 0), 27percent are possibly blended sources sample,freeofstars,havingreliablephoto-zandphotometricmea- (FLAG=2),15percent,plusblending,havecloseneighboursor surements.Inthissection,wedescribethedifferentselectioncriteria badpixels(FLAG=3),while<1percenthaveotherFLAGvalues. appliedtoobtainthefinalworkingsample. We classified morphologically all galaxies independently of their FLAG parameter, including close/interacting systems. However, (i) Extended–point-like source separation. To discriminate be- thefinalstatistics(Sections5and6),andthepublishedcatalogue tween the extended and point-like sources, we used the classifi- (AppendixA)includeonlysourceswithFLAGvalues0and2(see cation provided by Husillos et al. (in preparation). In all obser- Section4). vations,asampleofmorethan2000real,bright,unsaturatedand geometricallycircularpoint-likeALHsourceswasused,scaledto The final selected sample to be morphologicaly classified has lowerrandomfluxes,andinjectedintotheemptyregionsofopti- 43665galaxies. calimage.Afterthis,thesourceswererecovered,usingthesame parametrization as applied in source detection. Point-like sources 3 MORPHOLOGICAL CLASSIFICATION areconsideredassuccessfullyrecoveredwhendetectedatdistances OF GALAXIES lowerthan1arcsecfrompreviousinjectioncoordinates.Thesame procedurewasimplementedforextendedsources.Finally,thelo- 3.1 Generalmethodology cus of point-like and extended sources was defined in the appar- ent magnitude and surface brightness space (MAG_AUTO8 and The main tool used in this work to estimate morphologies is MU_MAX9parameters,respectively,obtainedbySEXTRACTOR).By GALSVM, a non-parametric support vector machine (SVM) based plottingeachlocus,itispossibletoestimatethepoint-likesource code(Huertas-Companyetal.2008,2009,2011).Basically,GALSVM contamination in a quantitative way. GEOM_CLASS_STAR pa- usesatrainingsetoflocalgalaxieswithknownvisualmorpholo- rameterwasdefinedinthisway,havingvalueequalto1forpoint gies to train the SVM that is then applied to the data set to be classified (see Section 3.2.1). Galaxies from the training sample are redshifted and scaled in luminosity to match the magnitude 7http://alhambrasurvey.com/ countsandredshiftdistributionoftheALHsample,resampledwith 8Kron-like elliptical aperture magnitude [see Bertin (2009) and Hol- theALHpixelscale(∼0.222arcsecpixel−1),andfinallydropped werda (2009) SEXTRACTOR manuals at https://www.astromatic.net and http://mensa.ast.uct.ac.za/∼holwerda/Site/Source_Extractor.html, respec- tively]. 10Definestheredshiftconfidencelimits,wheregalaxieswithhigherODDS 9Peaksurfacebrightnessabovebackground(seethemanualsgiveninfoot- haveamoresecureredshiftestimations(seeBen´ıtez2000,formoreinfor- note8). mation). Downloaded from https://academic.oup.com/mnras/article-abstract/435/4/3444/1035057 by Universidad de Sevilla user on 26 March 2018 3448 M.Povic´ etal. Figure2. MagnitudeandredshiftnormalizeddistributionsoflocalsampleusedbyGALSVM(greensolidlines).Thissamplewasscaledinluminosityand redshifted(blacksolidlines)tomatchthedistributionsoftheALHsample(reddashedlines).ShownexamplecorrespondstodistributionsintheALH-7field. in a real ALH background. Fig. 2 shows an example of redshift 3.2 GALSVMCONFIGURATIONANDCLASSIFICATION andmagnitudedistributionsoflocalsamplebeforeandafterbeing 3.2.1 Trainingsampleoflocalgalaxies redshifted and scaled in luminosity (green and black solid lines), andcorrespondingdistributionsoftheALH-7sample(reddashed We use a local sample of 3000 visually classified galaxies lines). (0.01≤z≤0.1)takenfromtheNair&Abraham(2010,hereafter Wemeasuredsevenmorphologicalparametersonthissimulated N&A)cataloguewhichcontains∼14000galaxiesfromtheSDSS. dataset(andontheALHsamplelateron),andusethemsimulta- Thenumberofgalaxiesusedfortrainingisselectedasatrade-off neouslytotrainthevectormachine: betweenclassificationaccuracyandcomputingtime.Thecomput- ingtimetotraintheSVMwiththecurrentalgorithmisindeedvery (i) Ellipticity sensitive to the size of the training data set. We therefore chose (ii) Abraham concentration index (CABR) – ratio between the objectsrandomlyandselectthesamenumberofET(ellipticaland fluxesat30and90percentoftheradius(Abrahametal.1996) lenticular)andLT(spiralandirregular)galaxies,toavoidproblems (iii) Conselice–Bershady concentration index (CCON) – ratio related to unbalanced data sets, which is required for GALSVM to betweencircularradiicontaining20and80percentofthetotalflux workproperly.Wecheckedthattherandomlyselectedsubsampleis (Bershady,Jangren&Conselice2000) representativeintermsofgeneralproperties(colours,magnitudes, (iv) Gini (GINI)– cumulative distributionfunction of galaxy’s etc.)ofthecompletedataset.Fig.3showsthesecomparisonsfor pixelvalues(Abrahametal.2003) the g-band magnitude, redshift, g − r colour, N&A morphologi- (v) Asymmetry(ASYM)–measuresthedegreeofasymmetryin calclassificationandinclination(forLTgalaxiesonly).Moreover, thelightdistribution(Conseliceetal.2000) wealsocomparedmagnitudes,redshifts,andcoloursofETandLT (vi) Smoothness(SMOOTH)–measurestherelevanceofsmall- galaxiesinboth,selectedandfullsamples.Ascanbeseenfromnor- scalestructures(Conseliceetal.2000),and malizeddistributions,thepropertiesofrandomlyselectedandfull (vii) M20momentoflight(M20)–fluxineachpixelmultiplied N&Asamplesareconsistentinallplots,asstatedbyKolmogorov– bythesquareddistancetothecentreofthegalaxy,summedover Smirnov(hereafterKS)testswhichprovesthatnoselectionbiases the20percentbrightestpixelsofthegalaxy(Lotzetal.2004). areintroduced. N&A classification was obtained in the SDSS g-band images, Even though several of these parameters appear to be redun- while our classification was carried out in the F613W band (cor- dant, SVM were specially designed to be robust to redundancies respondstoSDSSrband;seeSection3.2.2).Takingintoaccount in the feature space (see e.g. Huertas-Company et al. 2008). The thatweareperformingbroadclassification,separatingallsources set of parameters used to obtain the morphological classification intoETsandLTgalaxies,thedifferencebetweenthegandrbands wastestedinPovic´etal.(2012).Mentionedparametersweremea- inspectedvisuallyisinsignificantforourwork.Foreachmorpho- suredforboth:localsample(redshiftedandscaledinluminosity) logicaltypefromN&Acatalogue,weselectedrandomly50sources and the ALH sample that we want to classify. Using vector ma- andwechecked(between4people)theirimagesinallfiveSDSS chine, and comparison between the GALSVM classification of lo- bands.Inallcases,wedonotseeanydifferencesingalaxystruc- cal galaxies and their original, visual one, we can then classify turesbetweentheg,randibands.Ontheotherhand,wedosee ALH galaxies. The output of the classification step is a proba- significant changes between any of these three bands and u or z bility value to be in a given class for each object. The probabil- filters. ity takes values from 0 to 1 (99.9 for unclassified objects). The Theselectedlocaldatasetisthenredshifted,scaledinluminosity robustness of the classification and the sensitivity to the train- and dropped in the ALH fields. To that purpose, GALSVMrequires ing set is estimated by repeating the classification several times the apparent magnitude and photo-z distributions of all sources. through Monte Carlo runs (hereafter MC) with slightly different Toimprovestatistics,weusedforeachfieldthemagandphoto-z trainingsets(seeHuertas-Companyetal.2011,formoredetails). distributionsofthefourCCDsaftercheckingthatthesedistributions Wedescribeinthefollowingthespecificconfigurationusedinthis arecompletelyconsistentwiththoseofindividualfields(individual work. CCDs). Before dropping the mock galaxies they are re-sampled Downloaded from https://academic.oup.com/mnras/article-abstract/435/4/3444/1035057 by Universidad de Sevilla user on 26 March 2018 ALHAMBRA:morphologicalclassification 3449 Figure3. ComparisonbetweenthepropertiesofthefullN&Asample(blacksolidlines)and3000galaxies(reddashedlines)selectedrandomlyfromthefull onetobeusedinourmorphologicalclassification.g-bandmagnitude(topleft),redshift(topright)andg−rcolour(middle)distributionsarerepresentedfor allgalaxies(leftsubdiagram),ETs(middlesubdiagram)andLTs(rightsubdiagram).Wealsocomparedmorphologicaltypes(forallgalaxies;bottomleft)and inclinations(forLTgalaxiesonly;bottomright)distributions.Maximumdeviation(D)andprobabilitythattwodistributionsarethesame(prob;takesvalues between0and1,wheresmallvaluesshowthatthecumulativedistributionfunctionofselectedsampleissignificantlydifferentfromthefullsample)areresults oftheKSstatistics,showinginallplotsthatpropertiesofourselectedN&Asamplearecompletelyconsistentwiththefullone. with the same pixel scale than the ALH galaxies and convolved galaxiesathigherredshift(sinceweareusingverybrightgalaxies). withaPSFtomatchthesamespatialresolution.Inordertocope Bydroppingthegalaxyinarealbackground,weexpecttoreproduce with the k-correction, we select the SDSS filter which is closer atbestallthedifferentnoisesfromtherealimages. to the wavelength the ALH filter is probing given the redshift of Weassumedthatthereisnochangeingalaxypropertiesbetween thegalaxy.Surfacebrightnessdimmingistakenintoaccountwhen the local and high-redshift samples (e.g. luminosity–morphology scalingthegalaxyinfluxsinceweempiricallymatchthemagnitude dependence).Thisassumptionmightbestrongforourredshiftrange countsoftheALHsurvey(wedonotintroduceanysizeevolution (∼0–1), but can be justified since we are classifying all galaxies though). Concerning the noise, we make the hypothesis that the intotwobroadmorphologicaltypes.Moreover,weonlyusedmor- noise from SDSS galaxies is negligible compared to the noise of phological parameters in our classification, excluding luminosity. Downloaded from https://academic.oup.com/mnras/article-abstract/435/4/3444/1035057 by Universidad de Sevilla user on 26 March 2018 3450 M.Povic´ etal. This minimizes significantly the luminosity–morphology depen- dence;however,itdoesnoteliminateitcompletely(e.g.stillhigher redshiftsamplewillcontainmoreluminoussources,besides,forthe redshiftedtrainingsamplewearetryingtoreproducethemagnitude distributionofALHsourcesassumingthatluminosity/morphology relationsaresimilar).Tominimizeevenmoretheluminosityeffects onourmorphologicalclassification,weforcedtheGALSVMtoselect ∼50percentofETandLTlocalgalaxiesineachtrainingMCrun. Although, we used 3000 local galaxies in this work, a larger samplewasconstructedfromtheN&AandEFIGI11(Baillardetal. 2011)samples,withthetotalof15036sourcesdowntoredshifts z ≤ 0.1. The EFIGI visual classification was used at redshifts z < 0.01, including all galaxies with good morphological classi- fication, and excluding dwarf objects, while N&A galaxies range between0.01≤z≤0.1.Atthemoment,thisisthemostcomplete localsamplethatcanbeusedtotestthemorphologyofhigh-redshift galaxieswiththeGALSVMcode,includingforeachsourcethelistof astrometric,photometric,redshift,morphologicaltype,sizeparam- eters,poststamps,masksandPSFimagesinallfiveSDSSbands. 3.2.2 GALSVMclassification ThefinalclassificationisperformedintheALHF613Wband,since theS/Nratioishigherinthisfilter,asshowninAparicio-Villegas etal.(2010).ForeachGALSVMrun,wesetthequalityparametersthat correspondtousedALHimage:filtername,centralwavelength,full widthhalf-maximum,pixelscale,sigma,zero-pointandsaturation level.GiventhetypicalresolutionoftheALHsurvey(mainlyaround Figure4. Fromtoptobottom:distributionsofF613Wmagnitudes(left) 1.0arcsec,seeTable1)andthedepth,wehaverestrictedinthiswork andcorrespondingredshifts(right)intheALH-4fieldforsixmagnitude cutsusedinourmorphologicalclassification:≤20.0,≤21.0,≤21.5,≤22.0, to two broad morphological classes: ET and LT. For each source ≤22.5and≤23.0. in the final selected sample (see Section 2.1), we compute seven morphologicalparametersdescribedinSection3.1. 4 CALIBRATION OF THE MORPHOLOGICAL Since the sample is fully dominated by faint objects given the CLASSIFICATION USING COSMOS/HST DATA shape of the magnitude counts (Fig. 4), when fainter objects are included in the classification, the algorithm will be optimized to TheclassificationiscalibratedintheALH-4fieldusingtheclassi- classifythesegalaxiesandthefractionofmisclassifiedbrightob- ficationofthesameobjectsobservedwithHST/AdvancedCamera jectsmightsignificantlyincrease.Toavoidthiseffect,weperformed forSurveys(ACS)intheCOSMOSsurvey.Themorphologicalclas- themorphologicalclassificationwithsixincreasingmagnitudecuts: sificationinCOSMOSusedherewascarriedoutwithGALSVMby ≤20.0,≤21.0,≤21.5,≤22.0,≤22.5and≤23.0.Thatway,bright Huertas-Companyetal.(2009),andispubliclyavailablethroughthe galaxies are classified using a training set made only of bright Tascaetal.(2009)catalogue.12 Theclassificationseparatesgalax- galaxies.Thesecutsalsocorrespondroughlytoincreasingredsh- iesintothreeclasses(early,lateandirregulars)butdoesnothave fits:≤0.7,≤0.9,≤1.0,≤1.2,≤1.2and≤1.3. probabilistic information though since it was done with an older Thefinalprobabilityforeachgalaxyiscomputedastheaverage versionofGALSVM. oftheoutputprobabilityof15MCindependentruns.Again,this ByusingCOSMOSasthereferencesample,weexplicitlyneglect numberisanempiricaltrade-offbetweencomputingtimeandac- the classification errors of the galaxies in COSMOS. This choice curacy,andisaresultofprevioustestscarriedoutwith10,15and is justified since we focus here on bright galaxies with only two 20runs.IneachMCrun,GALSVMselectsrandomlyabalancedset morphologicalclasses.Wealsoneglecttheeventualmorphological of2000outof3000inputlocalgalaxies.Theresultofeachrunisa drift between the morphologies in COSMOS (F814W) and ALH probabilityforaALHgalaxytobeET,whereforsmallprobability (F613W).Again,sincewearesplittingourgalaxiesintwoclasses values increases the possibility to be an LT. At the end, for each wedonotexpectasignificanteffect.Thisassumptionisindeedcon- ALHsourcewecomputethefinalprobabilitytobeET(hereafter firmedthroughextensivetestsontheSDSSdataset.Wecompared pE)asaveragevalueof15probabilities,andtheprobabilityerroras differentmorphologicalparametersoflocalN&Agalaxiesbetween thescatterofthedistribution.Obviously,sincewedealwithatwo- therandibands,withoutfindinganysignificantdifferencesintwo classproblemonly,theprobabilityforthesourcetobeLT(hereafter bands,independentlyoftheredshiftandtheHubbletype. pL)issimplypL=1−pE. Fig.5showsthedistributionsofpEderivedintheALH-4fieldfor threemorphologicaltypesclassifiedintheCOSMOS/HSTsurvey 12http://irsa.ipac.caltech.edu/data/COSMOS/tables/morphology/cosmos_ 11http://www.astromatic.net/projects/efigis morph_tasca_1.1.tbl Downloaded from https://academic.oup.com/mnras/article-abstract/435/4/3444/1035057 by Universidad de Sevilla user on 26 March 2018 ALHAMBRA:morphologicalclassification 3451 Figure5. ComparisonbetweentheGALSVMclassificationintheALH-4andCOSMOSsurveysfordifferentF613Wmagnitudecuts:≤20.0(topleft),≤21.0 (topright),≤21.5(middleleft),≤22.0(middleright),≤22.5(bottomleft)and≤23.0(bottomright).Ineachplot,wecomparethedistributionsofaveraged probabilities(PROB_AVG)measuredintheALH-4fieldforthreemorphologicaltypesclassifiedintheCOSMOSfieldusingtheHST/ACSimagingdata (Huertas-Companyetal.2009;Tascaetal.2009):elliptical/S0(redsolidlines),spiral(bluedashedlines)andirregular(greendottedlines)galaxies. withGALSVMcode:E/S0(redsolidlines),spirals(bluedashedlines) Table2. p10thresholdforselectingETandLTgalaxies(p10sample) and irregulars (green dotted lines). Following these distributions, indifferentmagnitudebins. welookfortheprobabilitythreshold(pE,pL)toapplytotheALH th th classificationsothattheresultingclassificationcontainslessthan Mag.limit 20.0 21.0 21.5 22.0 22.5 23.0 10percent contaminations from the neighbouring morphological pE >0.6 >0.7 >0.75 >0.8 – – type.Tothatpurpose,foragivenprobabilitythresholdpE,pL we 10 definethefollowingparameters: th th p1L0 >0.7 >0.7 >0.6 >0.5 >0.5 >0.5 (i) Truepositives(tp):galaxieswithp >pE(p >pL)inALH E th L th Hereafter,asampleclassifiedwithp thresholdswewillcallp10 whichareclassifiedET(LT)inCOSMOS; 10 (ii) True negatives (tn): galaxies with p <pE (p <pL) in sample.Thisisasamplethatwereleaseinpaperandwhichweanal- E th L th yseinthefollowingsections,asweexplaininSection5.However, ALHwhichareclassifiedLT(ET)inCOSMOS; (iii) False positives (fp): galaxies with p >pE (p >pL) in inthesamewayweobtainedthep10thresholds,wemeasuredalso E th L th thethresholdsathighercontaminationlevels.Wecomparestatistics ALHwhichareclassifiedLT(ET)inCOSMOS; (iv) False negatives (fn): galaxies with p <pE (p <pL) in in Section 5, while the full catalogue of whole >44 000 selected E th L th sourcescanbeobtainedthroughdirectcontact. ALHwhichareclassifiedET(LT)inCOSMOS. Each probability threshold, has a corresponding completeness, Thepurity(P,fractionofwell-classifiedobjectsamongallobjects which is reported later in Table 4. For the p10 sample, the com- classifiedinagivenclass)andthecompleteness(C,fractionofwell- pleteness varies from ∼70percent for the brightest objects to classifiedobjectsamongallobjectsreallybelongingtoagivenclass) ∼30percentatthefaintend.Thesevaluesbecomeslightlyworse arethereforedefinedasfollows: if galaxies from CCD3 are included, since it is degraded com- fp paredtotheothers.13Allstatisticsarecarriedoutusingonly‘good P =1− fp+tp (1) detections’, i.e. FLAG = 0 (see Section 2.1). However, a similar accuracyisobtainedwhen‘blended’(FLAG=2)sourcesarein- tp cluded. Therefore, in the following sections and in the published C = fn+tp, (2) catalogue (Appendix A) we use both FLAG = 0 and FLAG = 2 sources. pE andpL arethereforethethresholdstoapplysothatthecon- Asasanitycheck,weperformedavisualinspectionofp10classi- 10 10 taminationislowerthan10percent(P>0.9).Table2showsthe fiedsampleintheALH-4field(overlapswithCOSMOS).Weused values obtained for the different magnitude cuts and for the two morphological classes. Note that for ET galaxies fainter than 22, thecontaminationofLTgalaxiesisalwaysabove10percent. 13http://www.caha.es/CAHA/Instruments/LAICA Downloaded from https://academic.oup.com/mnras/article-abstract/435/4/3444/1035057 by Universidad de Sevilla user on 26 March 2018 3452 M.Povic´ etal. theHST/ACSimagesofallETs(86intotal)andof300randomly selectedLTs(20percentofthetotalp10LTsampleclassifiedinthe ALH-4field).Visualclassificationwasperformedbyfivepersons lookingeachobjectindividually.Byeachclassifierwemeasuredthe populationofpossiblemisclassifiedsources(withineachtype),and thenweobtainedtheaveragedone:14.0±6.0and7.8±4.8percent forETandLTclassifiedsources,respectively,whichisinagreement withthestatisticspresentedabove.Figs6and7showasampleof selectedETandLTgalaxyimages,respectively,indifferentmag- nitudebins.ForeachALHsource(topimages),weshowalsothe correspondingHST/ACSimage. 5 MORPHOLOGICAL CLASSIFICATION IN ALH Aftercalibratingourmorphology,wethenrunintheconsistentway the GALSVM code in whole ALH survey. In seven ALH fields, we settheGALSVMconfigurationfiles,andforalldetectionswemea- suredmorphologicalparametersandaveragedprobabilities.Given the number of fields/observations and magnitude cuts (see Sec- tion3.2.2),weobtained288catalogues. Intotal,withGALSVMweobtainedtheclassificationfor85percent ofselectedsources(withdifferentlevelsofcontamination),while 15percentstayedunclassified.Sourcesforwhichwewereableto measuremorphologicalparametershavedifferentlevelsofcontam- inationbyothermorphologicaltype.Weanalysedtheunclassified sourcesintheALH-4field(overlapswithCOSMOS)byusingthe HST/ACSimages,detectingthat∼80percentofsampleareinter- action/mergercandidates.Inaddition,∼40percentofunclassified sourcesweredetectedwiththeCCD3,whichingeneralhaslower Figure6. SampleofETgalaxiesindifferentmagnitudebins,observedin S/NincomparisonwiththeotherthreeCCDs(asalreadymentioned theALH-4(topimages,F613Wband)andCOSMOS/HST(bottomimages, above).ThepopulationofET/LTsourceswemightbemissingfor F814Wband)surveys. beingunclassifiedwithGALSVMisabout3percent. Figure7. SameasinFig.6,butforgalaxiesclassifiedasLT. Downloaded from https://academic.oup.com/mnras/article-abstract/435/4/3444/1035057 by Universidad de Sevilla user on 26 March 2018 ALHAMBRA:morphologicalclassification 3453 Table3. Populationofsourcesclas- taminationdoesnotgoabove20percent;soingeneral,ifweare sifiedasETorLTwithdifferentlev- able to detect LT galaxy structures and classify the galaxies, the elsofcontaminationbyothertype. contamination will always be low. When this is not the case, we have a contamination of ET sample with LT sources. Finally, for Contaminationlevel Population thep10galaxiesweexpecttohaveacontaminationbyothertype <10percent 61percent lowerthan10percent,andcontaminationofstarsbelow1percent <20percent 73percent downtomagnitudes22.0and5–7percentbetweenmagnitudes22.0 <30percent 74percent and23.0.(seeSection2.1).Thislow-contaminationcatalogueisthe <40percent 77percent onewearereleasingwiththispaper.Descriptionofallcolumnsand <50percent 82percent asampleofcatalogueforthefirstfiveobjectsareavailableinAp- >50percent 18percent pendixA.Thefullp10catalogueof22051galaxiesisavailablein theelectronicversionofthispaperandthroughtheALHwebsite http://alhambrasurvey.com/. Foreachmagnitudebinwethenappliedthep10 thresholds,ob- Wedonottreatmergersspecificallyinourclassification.How- tained in the HST/ACS calibration phase to ensure a 10percent ever,wedominimizetheirpopulationbyexcludingfromourp10 contaminationlevel(p10sample;seeTable2).Withthiscontami- classifiedsampleallsourceswithSEXTRACTORFLAGparameter>2 nation,inallfieldswekeepclassified22051galaxies,61percent (includeobjectswithcloseneighbours).Theydoenterinthetotal ofallclassifiedsources,asshowninTable3(tablealsoprovidesthe selectedsample,butweexcludedthemfromallanalysispresented summaryonothersourcesclassifiedasET/LTwithhighercontam- inthispaper(seeSection4).Moreover,wesawthatmanyinteract- inationlevels).Ofthose,1640and10322sourcesareclassifiedas ingsystemsstayedunclassifiedwithGALSVM.Asmentionedabove, ET(photo-z<0.5)andLT(photo-z<1.0),respectively,downto ∼80percentofallunclassifiedsourcesshowclearsignsofdistor- magnitudes22.0intheF613Wband.Forthismagnitudelimit,the tions,closecompanions,areedge-onsystems,oramixture.Finally, fractionofourETgalaxiesrespecttoLTsis∼16percent[consistent wecheckedtheHST/ACSimagesofallp10galaxiesthatoverlap withtheresultsobtainedbyHuertas-Companyetal.(2009)inthe withtheCOSMOSfield,inordertoquantifythepopulationofpos- COSMOSfieldusingthesamemethodofgalaxyclassification].In sibleinteractions.Fromindependentinspectionscarriedoutbyfive addition,formagnituderange22.0<F613W≤23.0weclassified persons,weobtainedtheaveragedpopulationof15.0±2.5percent other10089LTgalaxieswiththesamelevelofcontaminationof merger/interactioncandidatesbetweenthegalaxiesclassifiedasLT. 10percent and down to photo-zs of 1.3. For the rest of the sam- ple,thecontaminationishigher(includingalsoclassifiedsources withveryclosecompanions(FLAG≥3)whichweexcludedfrom 5.1 Selectioneffects thep10sample),asshowninTable3,beingingeneralaffectedby Sincethefinalcatalogueisobtainedafterapplyingarbitraryproba- theresolutionofourdataandbytheworstqualityofCCD3data. bilitycuts,itmightbeaffectedbynon-trivialselectioneffectswhich Table 4 shows the number of objects and completeness of each weinvestigateinthefollowingfromthepointofviewofredshift morphologicaltypeineachmagnitudebin.Besidestheinformation andsizedistributions. aboutp10sample,wealsoprovidethestatisticsathighercontam- ination levels. As expected, the level of contamination is directly (i) Redshift.Figs8and9showforeachanalysedmagnitudebin, related with the magnitude, where fainter objects were classified the redshift distributions of ET and LT galaxies, respectively, of withpoorerprobabilities.Athighercontaminationlevelswehave thefullsampleascomparedtothefinalp sampledefinedinthe 10 problemsclassifyingETsources,sincemanyLTsstarttomixwith previoussection.Foratotalsample(blacksolidlines),theclassi- ETsgivingworstprobabilitydistributions.ForLTgalaxies,thecon- ficationisdirectlyobtainedfromtheTascaetal.(2009)catalogue Table4. NumberandcompletenessofETandLTgalaxies,classifiedineachmagnitudebininrelationwiththecontaminationlevel.Besideeachnumberwe alsorepresentthepercentageofgalaxiesrespecttothetotalnumberofsourcesintheobservedcontaminationcategory(lastcolumn). F613Wmagnitude ≤20.0 20.0–21.0 21.0–21.5 21.5–22.0 22.0–22.5 22.5–23.0 Contamination≤10percent 715(44percent) 549(33percent) 219(13percent) 157(9percent) – – 1640 C<10 0.7 0.4 0.4 0.3 – – Contamination≤20percent 1103(28percent) 1841(47percent) 622(16percent) 252(6percent) 112(3percent) – 3930 ET C<20 0.7 0.4 0.4 0.3 0.1 – 20<Contamination≤50percent – – 706(21percent) 1609(47percent) 1081(32percent) – 3396 C20−50 – – 0.6 0.5 0.4–0.5 – Contamination>50percent – – – 492(7percent) 1877(28percent) 4297(65percent) 6666 C>50 – – – 0.7 0.6–0.7 0.8 Contamination≤10percent 1082(5percent) 2818(14percent) 2689(13percent) 3733(18percent) 4828(24percent) 5261(26percent) 20411 C<10 0.7 0.7 0.7 0.7 0.6 0.3 Contamination≤20percent 1720(7percent) 3432(15percent) 3032(13percent) 3659(16percent) 4966(22percent) 6177(27percent) 22986 LT C<20 0.7 0.7 0.7 0.7 0.6 0.3 20<Contamination≤50percent – – – – – – C20−50 – – – – – – Contamination>50percent – – – – – – C>50 – – – – – – Downloaded from https://academic.oup.com/mnras/article-abstract/435/4/3444/1035057 by Universidad de Sevilla user on 26 March 2018
Description: